Remarks on Some Results Related to the Thermal Casimir Effect in Einstein and Closed Friedmann Universes with a Cosmic String
Abstract
:1. Introduction
2. Spacetimes and Some Fundamental Results
2.1. Einstein and Friedmann Universes with a Cosmic String
2.2. Eigenfrequencies: Massless Scalar Field
2.3. Eigenfrequencies of the Electromagnetic and Massless Spinor Fields
3. Vacuum Energy
3.1. Massless Scalar Field
3.2. Electromagnetic and Massless Spinor Fields
4. Thermal Correction
4.1. Massless Scalar Field
4.2. Electromagnetic and Massless Spinor Fields
5. High and Low Limits of Temperature: Massless Scalar Field
5.1. Low Temperature Limit
5.2. High Temperature Limit
6. High and Low Limits of Temperature: Electromagnetic and Massless Spinor Fields
6.1. Low Temperature Limit
6.2. High Temperature Limit
7. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casimir, H.B.G. On the Attraction Between Two Perfectly Conducting Plates. Indag. Math. 1948, 10, 261–263. [Google Scholar]
- Mostepanenko, V.M.; Trunov, N. The Casimir Effect and Its Applications; Clarendon Press: Oxford, UK, 1997. [Google Scholar]
- Martin, P.A.; Buenzli, P.R. The Casimir effect. Acta Phys. Pol. B 2006, 37, 2503–2559. [Google Scholar] [CrossRef]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press: Oxford, UK, 2009. [Google Scholar] [CrossRef]
- Bordag, M.; Mohideen, U.; Mostepanenko, V.M. New developments in the Casimir effect. Phys. Rep. 2001, 353, 1–205. [Google Scholar] [CrossRef] [Green Version]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 2009, 81, 1827–1885. [Google Scholar] [CrossRef] [Green Version]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Control of the casimir force using semiconductor test bodies. Int. J. Mod. Phys. 2011, 25, 171–230. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Banishev, A.A.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Reduction of the Casimir force from indium tin oxide film by UV treatment. Phys. Rev. Lett. 2011, 107, 090403. [Google Scholar] [CrossRef] [PubMed]
- Banishev, A.A.; Chang, C.C.; Castillo-Garza, R.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Modifying the Casimir force between indium tin oxide film and Au sphere. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 85, 045436. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Banishev, A.A.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Gradient of the Casimir force between Au surfaces of a sphere and a plate measured using an atomic force microscope in a frequency-shift technique. Phys. Rev. B 2012, 85, 165443. [Google Scholar] [CrossRef] [Green Version]
- Banishev, A.A.; Chang, C.C.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Measurement of the gradient of the Casimir force between a nonmagnetic gold sphere and a magnetic nickel plate. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 85, 195422. [Google Scholar] [CrossRef] [Green Version]
- Banishev, A.A.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Demonstration of the casimir force between ferromagnetic surfaces of a Ni-coated sphere and a Ni-coated plate. Phys. Rev. Lett. 2013, 110, 137401. [Google Scholar] [CrossRef] [Green Version]
- Decca, R.S.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; López, D.; Mostepanenko, V.M. Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements. Phys. Rev. D Part. Fields Gravit. Cosmol. 2003, 68, 116003. [Google Scholar] [CrossRef] [Green Version]
- Decca, R.S.; López, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys. 2005, 318, 37–80. [Google Scholar] [CrossRef] [Green Version]
- Decca, R.S.; López, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D Part. Fields Gravit. Cosmol. 2007, 75, 077101. [Google Scholar] [CrossRef] [Green Version]
- Decca, R.S.; López, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect. Eur. Phys. J. C 2007, 51, 963–975. [Google Scholar] [CrossRef] [Green Version]
- Banishev, A.A.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Casimir interaction between two magnetic metals in comparison with nonmagnetic test bodies. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 155410. [Google Scholar] [CrossRef] [Green Version]
- Bimonte, G.; López, D.; Decca, R.S. Isoelectronic determination of the thermal Casimir force. Phys. Rev. B 2016, 93, 184434. [Google Scholar] [CrossRef] [Green Version]
- Mostepanenko, V.M. Casimir Puzzle and Casimir Conundrum: Discovery and Search for Resolution. Universe 2021, 7, 84. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum field theory in curved spacetime. Phys. Rep. 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Ford, L.H. Quantum vacuum energy in general relativity. Phys. Rev. D 1975, 11, 3370–3377. [Google Scholar] [CrossRef]
- Dowker, J.S.; Critchley, R. Covariant Casimir calculations. J. Phys. A Gen. Phys. 1976, 9, 535–540. [Google Scholar] [CrossRef]
- Grib, A.A.; Mamayev, S.G.; Mostepanenko, V.M. Particle creation from vacuum in homogeneous isotropic models of the Universe. Gen. Relativ. Gravit. 1976, 7, 535–547. [Google Scholar] [CrossRef]
- Mamaev, S.G.; Mostepanenko, V.M. Isotropic cosmological models determined by vacuum quantum effects. Sov. J. Exp. Theor. Phys. 1980, 51, 9. [Google Scholar]
- Ford, L.H. Quantum vacuum energy in a closed universe. Phys. Rev. D 1976, 14, 3304–3313. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Grib, A.; Mamayev, S.; Mostepanenko, V.; Mostepanenko, V. Vacuum Quantum Effects in Strong Fields; Friedmann Laboratory Publishing: St. Petersburg, Russia, 1994. [Google Scholar]
- Bellucci, S.; Saharian, A.A. Electromagnetic two-point functions and the Casimir effect in Friedmann-Robertson-Walker cosmologies. Phys. Rev. D Part. Fields Gravit. Cosmol. 2013, 88, 064034. [Google Scholar] [CrossRef] [Green Version]
- Saharian, A.A.; Mkhitaryan, A.L. Vacuum fluctuations and topological Casimir effect in Friedmann–Robertson–Walker cosmologies with compact dimensions. Eur. Phys. J. C 2010, 66, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, A.E. EoS of Casimir vacuum of massive fields in Friedmann universe. Mod. Phys. Lett. A 2020, 35, 2050271. [Google Scholar] [CrossRef]
- Altaie, M.B. Back reaction of the neutrino field in an Einstein universe. Class. Quantum Gravity 2003, 20, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Bezerra de Mello, E.R.; Saharian, A.A.; Setare, M.R. Casimir effect for parallel plates in a Friedmann-Robertson-Walker universe. Phys. Rev. D 2017, 95, 065024. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Odintsov, S.D.; Saharian, A.A. Repulsive Casimir effect from extra dimensions and Robin boundary conditions: From branes to pistons. Phys. Rev. D 2009, 79, 065023. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Wang, P. Dark energy: Vacuum fluctuations, the effective phantom phase, and holography. Phys. Rev. D 2005, 71, 103504. [Google Scholar] [CrossRef] [Green Version]
- Dowker, J.S. Thermal properties of Green’s functions in Rindler, de Sitter, and Schwarzschild spaces. Phys. Rev. D 1978, 18, 1856–1860. [Google Scholar] [CrossRef]
- Dowker, J.S.; Critchley, R. Vacuum stress tensor in an Einstein universe: Finite-temperature effects. Phys. Rev. D 1977, 15, 1484–1493. [Google Scholar] [CrossRef]
- Bezerra, V.B.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Romero, C. Thermal Casimir effect in closed Friedmann universe revisited. Phys. Rev. D 2011, 83, 104042. [Google Scholar] [CrossRef]
- Bezerra, V.B.; Mostepanenko, V.M.; Mota, H.F.; Romero, C. Thermal Casimir effect for neutrino and electromagnetic fields in the closed Friedmann cosmological model. Phys. Rev. D 2011, 84, 104025. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, V.B.; Mota, H.F.; Muniz, C.R. Thermal Casimir effect in closed cosmological models with a cosmic string. Phys. Rev. D 2014, 89, 024015. [Google Scholar] [CrossRef]
- Mota, H.F.; Bezerra, V.B. Topological thermal Casimir effect for spinor and electromagnetic fields. Phys. Rev. D 2015, 92, 124039. [Google Scholar] [CrossRef]
- Zhuk, A.; Kleinert, H. Casimir effect at nonzero temperatures in a closed Friedmann Universe. Theor. Math. Phys. 1996, 109, 1483–1493. [Google Scholar] [CrossRef]
- Kleinert, H.; Zhuk, A. The casimir effect at nonzero temperatures in a universe with topology S1 × S1 × S1. Theor. Math. Phys. 1996, 108, 1236–1248. [Google Scholar] [CrossRef]
- Altaie, M.B.; Dowker, J.S. Spinor fields in an Einstein universe: Finite-temperature effects. Phys. Rev. D 1978, 18, 3557–3564. [Google Scholar] [CrossRef]
- Hu, B. Effect of finite-temperature quantum fields on the early universe. Phys. Lett. B 1981, 103, 331–337. [Google Scholar] [CrossRef]
- Altaie, M.B. Back reaction of quantum fields in an Einstein universe. Phys. Rev. D 2002, 65, 044028. [Google Scholar] [CrossRef] [Green Version]
- Altaie, M.B.; Al-Ahmad, U. A Non-Singular Universe with Vacuum Energy. Int. J. Theor. Phys. 2011, 50, 3521–3528. [Google Scholar] [CrossRef] [Green Version]
- Vilenkin, A.; Shellard, E.P.S. Cosmic Strings and Other Topological Defects; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hindmarsh, M.B.; Kibble, T.W. Cosmic strings. Rep. Prog. Phys. 1995, 58, 477–562. [Google Scholar] [CrossRef]
- Kibble, T.W. Topology of cosmic domains and strings. J. Phys. A Gen. Phys. 1976, 9, 1387–1398. [Google Scholar] [CrossRef]
- Jeong, E.; Smoot, G.F. Search for Cosmic Strings in Cosmic Microwave Background Anisotropies. Astrophys. J. 2005, 624, 21–27. [Google Scholar] [CrossRef]
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. Seven-year wilkinson microwave anisotropy probe (WMAP*) observations: Cosmological interpretation. Astrophys. J. Suppl. Ser. 2011, 192, 18. [Google Scholar] [CrossRef] [Green Version]
- Keisler, R.; Reichardt, C.L.; Aird, K.A.; Benson, B.A.; Bleem, L.E.; Carlstrom, J.E.; Chang, C.L.; Cho, H.M.; Crawford, T.M.; Crites, A.T.; et al. A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope. Astrophys. J. 2011, 743, 28. [Google Scholar] [CrossRef]
- Vilenkin, A. Gravitational field of vacuum domain walls and strings. Phys. Rev. D 1981, 23, 852–857. [Google Scholar] [CrossRef]
- Hiscock, W.A. Exact gravitational field of a string. Phys. Rev. D 1985, 31, 3288–3290. [Google Scholar] [CrossRef]
- Linet, B. The static metrics with cylindrical symmetry describing a model of cosmic strings. Gen. Relativ. Gravit. 1985, 17, 1109–1115. [Google Scholar] [CrossRef]
- Vilenkin, A. Cosmic strings and domain walls. Phys. Rep. 1985, 121, 263–315. [Google Scholar] [CrossRef]
- Dowker, J.S. Casimir effect around a cone. Phys. Rev. D 1987, 36, 3095–3101. [Google Scholar] [CrossRef]
- Bezerra de Mello, E.R.; Bezerra, V.B.; Saharian, A.A. Electromagnetic Casimir densities induced by a conducting cylindrical shell in the cosmic string spacetime. Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys. 2007, 645, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Ogushi, S. Casimir effect in de Sitter and anti–de Sitter braneworlds. Phys. Rev. D Part. Fields Gravit. Cosmol. 2003, 67, 063515. [Google Scholar] [CrossRef] [Green Version]
- Jeannerot, R.; Rocher, J.; Sakellariadou, M. How generic is cosmic string formation in supersymmetric grand unified theories. Phys. Rev. D Part. Fields Gravit. Cosmol. 2003, 68, 103514. [Google Scholar] [CrossRef] [Green Version]
- Aryal, M.; Ford, L.H.; Vilenkin, A. Cosmic strings and black holes. Phys. Rev. D 1986, 34, 2263–2266. [Google Scholar] [CrossRef]
- Mashhoon, B. Electromagnetic waves in an expanding universe. Phys. Rev. D 1973, 8, 4297–4302. [Google Scholar] [CrossRef]
- Saharian, A.A. The generalized Abel-Plana formula. Applications to Bessel functions and Casimir effect. arXiv 2000, arXiv:hep-th/0002239. [Google Scholar]
- Szegö, G. Review: A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions. Bull. Am. Math. Soc. 1954, 60, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, Part 1; Buttenworth-Heinmann: Oxford, UK, 1980. [Google Scholar]
- DINGLE, H. Relativity, Thermodynamics and Cosmology. Nature 1935, 135, 935–936. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, V.B.; Mota, H.F.S.; Muniz, C.R.; Filho, C.A.R. Remarks on Some Results Related to the Thermal Casimir Effect in Einstein and Closed Friedmann Universes with a Cosmic String. Universe 2021, 7, 232. https://doi.org/10.3390/universe7070232
Bezerra VB, Mota HFS, Muniz CR, Filho CAR. Remarks on Some Results Related to the Thermal Casimir Effect in Einstein and Closed Friedmann Universes with a Cosmic String. Universe. 2021; 7(7):232. https://doi.org/10.3390/universe7070232
Chicago/Turabian StyleBezerra, Valdir Barbosa, Herondy Francisco Santana Mota, Celio Rodrigues Muniz, and Carlos Augusto Romero Filho. 2021. "Remarks on Some Results Related to the Thermal Casimir Effect in Einstein and Closed Friedmann Universes with a Cosmic String" Universe 7, no. 7: 232. https://doi.org/10.3390/universe7070232
APA StyleBezerra, V. B., Mota, H. F. S., Muniz, C. R., & Filho, C. A. R. (2021). Remarks on Some Results Related to the Thermal Casimir Effect in Einstein and Closed Friedmann Universes with a Cosmic String. Universe, 7(7), 232. https://doi.org/10.3390/universe7070232