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Abstract: In this paper, we present a review of some recent results concerning the thermal corrections
to the Casimir energy of massless scalar, electromagnetic, and massless spinor fields in the Einstein
and closed Friedmann universes with a cosmic string. In the case of a massless scalar field, it is
shown that the Casimir energy can be written as a simple sum of two terms; the first one corresponds
to the Casimir energy for the massless scalar field in the Einstein and Friedmann universes without a
cosmic string, whereas the second one is simply the Casimir energy of the electromagnetic field in
these backgrounds, multiplied by a parameter λ = (1/α)− 1, where α is a constant that codifies the
presence of the cosmic string, and is related to its linear mass density, µ, by the expression α = 1−Gµ.
The Casimir free energy and the internal energy at a temperature different from zero, as well as the
Casimir entropy, are given by similar sums. In the cases of the electromagnetic and massless spinor
fields, the Casimir energy, free energy, internal energy, and Casimir entropy are also given by the
sum of two terms, similarly to the previous cases, but now with both terms related to the same field.
Using the results obtained concerning the mentioned thermodynamic quantities, their behavior at
high and low temperatures limits are studied. All these results are particularized to the scenario
in which the cosmic string is absent. Some discussions concerning the validity of the Nernst heat
theorem are included as well.

Keywords: Casimir effect; scalar field; electromagnetic field; massless spinor field; Einstein universe;
Friedmann universe; thermal Casimir effect; cosmic string

1. Introduction

The Casimir effect is a phenomenon connected with a fundamental type of physical
reality termed quantum vacuum. It was predicted by H. B. G. Casimir [1] in 1948 as the
attractive force arising between two parallel, uncharged metallic plates in vacuum. This
phenomenon, unlike what is predicted by classical electrodynamics, tell us that there is
a force acting between neutral plates. In fact, this is due to the quantum nature of this
effect whose origin arises from the modification of the vacuum fluctuations (zero-point
oscillations) by the electromagnetic field, induced by the presence of the material bound-
aries, namely the metallic plates. A consequence of this phenomenon is the appearance of a
finite vacuum energy. Thus, the Casimir effect can be considered as a direct manifestation
of the most intriguing basic type of physical reality, namely the quantum vacuum. Later
on the Casimir effect was generalized for quantum fields with different spins and for
material boundaries with different geometries, made of different materials [2–4]. Dur-
ing the last years some experiments were performed on measuring the Casimir force in
different scenarios [5–18] with important results and progress. The Casimir effect was

Universe 2021, 7, 232. https://doi.org/10.3390/universe7070232 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://doi.org/10.3390/universe7070232
https://doi.org/10.3390/universe7070232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/universe7070232
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe7070232?type=check_update&version=3


Universe 2021, 7, 232 2 of 18

investigated over the last 73 years not only from the theoretical point of view, but also from
the experimental point of view as well. Despite the advances made, a lot of problems from
both point of views, theoretical and experimental, remains to resolve as pointed out by
Mostepanenko [19].

As was noticed in the middle 1970’s [20,21], the Casimir effect also manifests in a
space without material boundaries, since that its topology is non-Euclidean. In such
spaces, the identification conditions arising from the topology and imposed to the quantum
fields play a role equivalent to the ones imposed by the boundary conditions due to the
material body. The spaces with non-Euclidean topology can have any geometry, they can
be flat or curved. In both cases, they give rise to the Casimir effect, due to the fact that
the identification conditions modify the spectrum of the vacuum fluctuations (zero-point
oscillations) analogously to what is done by the material boundaries. When the Casimir
effect is calculated in spaces with non-Euclidean topology, some nonzero contribution to
the stress–energy tensor of a quantum field in the vacuum state appears. These depends
on geometrical parameters associated to the manifold. Thus, to appropriately study the
evolution of the universe, we have to solve Einstein’s equations taking this contribution to
the total stress–energy tensor into account [4]. In other words, it is necessary, as well as
important, to take the contribution arising from the Casimir effect into account in order
to give an adequate description of all details of this evolution. Keeping in mind that the
Casimir effect is a quantum phenomenon, one should expect that it may play the most
important role at the early stages of the universe’s evolution.

The first studies concerning the Casimir energy density and pressure in the context
of cosmological models were conducted in the static Einstein universe, which possesses
a topology R1 × S3. In these studies, a conformally coupled massless scalar field was
considered in the pioneer paper by Ford [21]. It was found that the Casimir energy density
and pressure are given by

ε0 =
h̄c

480π2a4 , P0 =
ε0

3
, (1)

where a is the radius of the universe and h̄ and c are the Planck constant and the velocity of
light in vacuum. The same result was shown to be valid for a closed Friedmann universe
with an instantaneous value of the radius by Ford [21] and Dowker and Critchley [22]. Oth-
ers pioneering papers concerning this subject include a paper by Mamaev, Mostepanenko,
and Starobinsky [23], who calculated the Casimir energy density in a closed Friedmann
model using the Abel–Plana formula for the first time, as well as another paper by Ma-
maev and Mostepanenko [24], who obtained, for the first time, a self-consistent solution of
Einstein equations taking the Casimir contribution, whose scale factor is equivalent to the
same corresponding to the inflation, into account.

The Casimir energy density and pressure for the electromagnetic and neutrino fields
in the Einstein cosmological model were also investigated by Ford [25], for the first time.
In the closed Friedmann universe, the vacuum polarization of Casimir origin was shown
to be a specific contribution to the total vacuum stress–energy tensor in addition to the
conformal anomaly and the contribution of particles created from the vacuum [26,27].

After the publication of the pioneering papers by Ford [21,25], Dowker and Critchley [22],
Mamayev, Mostepanneko and Starobinsky [23], the Casimir effect was investigated in different
cosmological scenarios. Among the papers devoted to this subject, we can mention the ones by
Bellucci and Saharian [28], Saharian and Mkhitaryan [29], Pavlov [30], Altaie [31] and Bezerra
de Mello, Saharian and Setare [32]. Also some discussions concerning the Casimir effect
in multi-dimensional cosmology [33] and the problem of dark energy [34] were presented.
Numerous works have been considered the thermal corrections to the Casimir effect in
the context of gravity and cosmological models with non-Euclidean topology. Among
the works related to this subject, we can mention the one concerning the study of the
thermal properties of Green’s function in Rindler, de Sitter, and Schwarzschild spaces [35];
the calculation of the thermal contributions to the Casimir stress–energy tensor of the
scalar field in Einstein universe [36] and in the closed Friedmann universe [37]. The
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approach adopted in [37] were applied to fields with other spins, namely electromagnetic
and neutrino fields to obtain the thermal contribution [38]. The same approach developed
in [37] were extended to obtain the thermal corrections to the Casimir energy in the case of
a scalar field [39], as well as for electromagnetic and neutrino fields [40], in the cosmological
scenario corresponding to the Friedmann universe, but now with a static, infinitely straight
and thin cosmic string.

The Casimir free energy and the internal energy at temperature different from zero, for
massless and massive scalar fields in the closed Friedmann universe were also investigated
in [41]. Analogous results in a universe with a 3-torus topology, R1 × S1 × S1 × S1, were
obtained in [42]. With respect to electromagnetic and neutrino fields, the effects of the
temperature on the total stress–energy tensors in the Einstein cosmological model were
considered in [43], whose results were used [43,44] to determine the backreaction of the
total thermal stress–energy tensor < Tik >. Taking this contribution into account, the
Einstein equations are written as

Rµν −
1
2

Rgµν + Λgµν =< Tµν > . (2)

It is worth mentioning that < Tµν > can be identified as the cosmological constant.
Λ. The role played by the back reaction due to the thermal Casimir effect in the Einstein
universe was investigated for fields of different spin [45]. In the case of the electromagnetic
field it was shown that it is necessary to take a contribution to the thermal stress–energy
tensor, which arises from the zeroth mode in the Poisson summation formula [46], into ac-
count. With respect to the self-consistent solutions of the Einstein equations, an interesting
result was obtained by Mamaev and Mostepanenko [24], where for the first time the effects
of the quantum vacuum polarization associated to Casimir energy were taken into account.

In this review we will consider the presence of a topological defect, namely a cosmic
string, in the Einstein and Friedmann universes. It was predicted that this linear topological
defect was formed in the early stages of the universe [47,48] as a consequence of sponta-
neous symmetry breaking [49]. It is characterized by its tension which is proportional to
its linear mass density, whose magnitude is the order of the energy scale of the symmetry
breaking, This tension determines how strong is the the intensity of the gravitational inter-
action. Taking the data related to the Cosmic Microwave Background (CMB) [50–52] into
account, the estimated upper bound of the string tension of the order of 10−6.

We will consider a static, straight and infinite cosmic string. The spatial section of
the geometry of the spacetime associated to the cosmic string has an azimuthal deficit
angle given by ∆ϕ = 8πGµ. Thus, the space-time is locally analogous to the Minkowski
spacetime, but globally it is different [53–55]. Despite of being locally flat, the cosmic string
produces very interesting gravitational effects due to the global or topological features
of its spacetime, as for example, it can act as a gravitational lens [56], induces a Casimir
effect [57] and many others.

In the primordial universe, with extremely high temperatures, it is predicted that the
cosmic strings were formed [49]. Thus, it seems to us that the investigations of different
cosmological models with a cosmic string has some interest. Motivated by this conclusion,
we will investigate the role played by a cosmic string in the Einstein and Friedmann
universes on the thermal Casimir energies, vacuum, free, internal, and Casimir entropy, by
taking different fields, namely massless scalar, electromagnetic, and massless spinor fields,
into account.

It is worth pointing out that the stress-energy tensor of a quantum field depends on
the global features of the background spacetime. In the case of the spacetime of a cosmic
string, whose geometry of the spatial section is conical, and therefore, it is globally different
from the Minkowski spacetime, the vacuum expectation value of the stress–energy tensor is
affected by the quantity that gives the intensity of the gravitational interaction of the cosmic
string, namely its tension, which is proportional to the angle of the cone that depends on
the linear mass density of the cosmic string [58].
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The Casimir effect is a manifestation of the properties of the quantum vacuum, and
certainly, it has an important role in discussions related to the phenomena appeared in
the the earlier stages of the universe, and also to what happens in the present stage of
accelerated expansion of the universe [34]. In another cosmological scenario, namely related
to cosmological braneworld models, the Casimir effect has also an important role [59]. If
we assume that the cosmic strings were formed in the early stages of the universe, as
predicted, they have been appeared at the end of inflationary era [60] and as a consequence,
they certainly played an important role at that time.

This review is based on papers [36–39], but mainly on the papers [38,39], because
these papers are generalizations of the papers [36,37] in the sense that the presence of a
cosmic string is taken into account. It is organized as follows. In Section 2, we present the
Einstein and Friedmann cosmological models with a cosmic string and some fundamental
results concerning the eigenfrequencies of the quantum fields considered. The vacuum
energy, thermodynamic quantities, and its thermal corrections are presented and discussed
in Sections 3 and 4. The limits of high and low temperatures for the three different fields
are considered in Section 5, for massless scalar field, and Section 6, for electromagnetic and
massless spinor fields. Finally, the discussions and conclusions are presented in Section 7.

2. Spacetimes and Some Fundamental Results

In this section we present the metric associated to the closed Einstein universe with
and without a cosmic string which can also be used to describe a instantaneously closed
Friedmann universe. In the background spacetimes without a cosmic string, we present
some results obtained in the middle 1970’s by Ford [21,25] in a pioneer paper related to the
Casimir energy at zero temperature, for scalar, electromagnetic and neutrino fields. These
papers by Ford [21,25] were motivated by the desire to understand how important is the
quantum vacuum energy in the context of the General Theory of Relativity.

2.1. Einstein and Friedmann Universes with a Cosmic String

A cosmic string can be introduced in any spacetime with an axis of symmetry [61].
All that we have to do, from the geometrical point of view is to remove a wedge and then
glue together the resulting edges. Now, let us proceed in this way to construct the Einstein
universe with a cosmic string. In this case, from the mathematical point of view, we simply
redefine the azimuthal coordinate, by redefining appropriately this coordinate in order to
consider the presence of the cosmic string, as follow

ds2 = c2dτ2 − a2
0d(ψ2 + sin2 ψ(dθ2 + α2 sin2 θdϕ2)), (3)

where α = 1− 4Gµ is the parameter which codifies the presence of the cosmic string
and 0 ≤ ψ ≤ π, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π are dimensionless coordinates, τ is the proper
synchronous time and a0 is the radius of the spatial section of the universe. The volume of
the spatial section of this spacetime is finite and is calculated using the expression

Vα =
∫ √

−g(3)dψdθdϕ = a3
0α
∫ π

0
sin2 ψdψ

∫ π

0
sin θdθ

∫ 2π

0
dϕ = 2π2αa3

0, (4)

with g(3) being the determinant of the spatial part of the metric (3). The line element of the
Einstein spacetime with a topology R3 × S1 is obtained by taking α = 1 in Equation (3),
and can be written as

ds2 = c2dτ2 − a2
0(dψ2 + sin2 ψ(dθ2 + sin2 θdϕ2)), (5)

whose volume of the spatial section is given by V = 2π2a3
0. As to the Friedmann line ele-

ment, it can be obtained from Equation (5) through the following conformal transformation

ds̄2 = Ω−2ds2, (6)
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where Ω = a0/a(t), with a(t) being the scale factor. It is important to call attention to
the fact that in the case of the Friedmann universe [38], which depends on time, there
is a contribution to the energy-momentum tensor arising from the creation of particles
and as well as from the conformal anomaly [26,27]. But, fortunately, when a0 → a(t),
for instantaneous values of a(t), all physical quantities calculated in the Einstein model
continue valid in the Friedmann model. Therefore, all results concerning the Casimir
thermodynamic quantities remain valid [25,37,38].

2.2. Eigenfrequencies: Massless Scalar Field

Firstly, let us consider the conformally massless scalar field φ in the Einstein universe
with a cosmic string. Its behavior is described by the covariant Klein-Gordon equation,
which is given as follows

�φ +
1
6

Rφ = 0, (7)

with � = ∂ν∂ν being the D’Alembertian operator and R is the scalar curvature, which
for the spacetime under consideration, given by the line element (5) is R = 6a−2

0 . Let us
assume that The solution of Equation (7) can be written, in the spacetime under under
consideration, described in Equation (5), as follows

φ(t, ψ, θ, ϕ) = Alαmα
R(ψ)Pmα

lα
(cos θ)eimϕe−iωt, (8)

where Alαmα
are constants, while Pmα

lα
is the associated Legendre function. It is worth calling

attention to the fact that the presence of the cosmic strings changes the quantum numbers l
and m to lα and mα, defined as follows

lα = n + mα, n = 0, 1, 2, . . . ,

mα =
m
α

, −l ≤ m ≤ l. (9)

The quantum number n is independent of the parameter α and thus from Equation (9),
we obtain

lα = l + |m|
(

1
α
− 1
)

, l = 0, 1, 2, . . . , (10)

with l = n + m. Substituting Equation (8) into Equation (7), we obtain the equation for
R(ψ)

d
dψ

(
sin2 ψ

dR
dψ

)
+

(
ω2

c2 −
1
6

R
)

a2
0 sin2 ψR− lα(lα + 1)R = 0, (11)

whose solution is given in terms of the Gegenbauer functions Cl+1
n−l as

R(ψ) = Blαmα
(sin ψ)lα Clα+1

n−lα
(cos ψ), (12)

with Blαmα
being constants.

The eigenfrequencies of the massless scalar field in the background spacetime under
consideration, namely the Einstein universe with a cosmic string are given by

ωn,λ =
cn
a0

+
c|m|λ

a0
, n = 1, 2, 3 . . . , (13)

where λ =
(

1
α − 1

)
. Taking λ = 0, which means that there is no cosmic string at all, we

recover the eigenfrequencies of the massless scalar field

ωn =
cn
a0

, n = 1, 2, 3 . . . , (14)
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Thus, we conclude that the presence of a cosmic string changes the eigenfrequencies,
by adding a term proportional to λ, which codifies the presence of the cosmic string,
according to what is shown explicitly in Equation (13).

2.3. Eigenfrequencies of the Electromagnetic and Massless Spinor Fields

The eigenfrequencies of the electromagnetic and massless spinor fields in the Ein-
stein and closed Friedmann universes were calculated long time ago [25,62]. For the
electromagnetic field they are given by [62]

ω(1) =
c
a0
(n′ + l + 1), n′ = 0, 1, 2, . . . , (15)

with l = 1, 2, 3, . . . and −l ≤ m ≤ l. Taking the presence of the cosmic string into account,
the quantum numbers lα change in according to Equation (10).

Then, replacing l in Equation (15) by lα in Equation (10), we get

ω
(1)
n,λ =

c
a0
(n + |m|λ), n = 2, 3, 4, . . . , (16)

where n = n′ + l + 1 and λ = (1/α) − 1. If there is no cosmic string, then, α = 1,
and Equation (15) is recovered. The eigenfrequencies of the massless spinor field in the
closed Einstein universe, were obtained in the middle 1970s [25]. They are given by the
following expression

ω(1/2) =
c
a0

(
n′ + l +

1
2

)
, n′ = 0, 1, 2, 3, . . . , (17)

Changing l by lα, as we did previously, we get

ω
(1/2)
n,λ =

c
a0

[(
n +

1
2

)
+ |m|λ

]
, n = 1, 2, 3, . . . , (18)

where n = n′ + l. The results when the cosmic string is absent are reobtained by taking
α = 1 as should be expected.

3. Vacuum Energy

Now that we know the eigenfrequencies for all quantum fields under consideration,
we can obtain the vacuum energy for these fields. Let us start with the massless scalar field.
In the sequence we will consider the electromagnetic and massless spinor fields.

3.1. Massless Scalar Field

Firstly, we will consider a real quantum massless scalar field conformally coupled to
the background spacetimes under consideration. The vacuum energy at zero temperature
can be obtained from the following expression

E(s)
0 =

h̄
2 ∑

j
ω
(s)
j , (19)

where j and s indicate the eigenmodes and spin of the fields, respectively.
For the massless scalar field in the Einstein universe with a cosmic string, Equation (19)

yields

E0,λ =
h̄
2

∞

∑
n=1

n

∑
l=0

l

∑
m=−l

ω
(0)
n,λ,

=
h̄
2

∞

∑
n=1

n2ω
(0)
n +

λ

6
h̄

∞

∑
n=2

(n2 − 1)ω(1)
n , (20)
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The eigenfrequencies for the scalar, ω
(0)
n and electromagnetic fields, ω

(1)
n , are both are

given by the Equation (14).
The first term in Equation (20) is the vacuum energy of the massless scalar field in

the Einstein universe and the the second term corresponds to the vacuum energy of the
electromagnetic field multiplying the factor λ/6. which codifies the presence of the cosmic
string in the Einstein universe [39].

In other words, Equation (20) states that

E0,λ = E(0)
0 +

λ

6
E(1)

0 . (21)

where

E(0)
0 =

h̄
2

∞

∑
n=1

n2ω
(0)
n ,

E(1)
0 = h̄

∞

∑
n=2

(n2 − 1)ω(1)
n . (22)

Therefore, the modification induced by the cosmic string in the Einstein universe is to add
to the usual vacuum energy of the massless scalar field E(0)

0 , a term which can be seen as
the usual vacuum energy of the electromagnetic field multiplied by λ/6.

In order to renormalize the vacuum energy E(0)
0,λ given by Equation (21), we have

to do this separately for E(0)
0 and E(1)

0 . This is done by adopting the method based on
the Abel-Plana formula, which was applied for the first time in the pioneering paper by
Mamaev and Mostepanenko [24]. Thus, using the Abel-Plana formula given by [2,4,63,64],

∞

∑
n=1

Φ(n)−
∫ ∞

0
Φ(t)dt = −1

2
Φ(0) + i

∫ ∞

0

Φ(it)−Φ(−it)
e2πt − 1

dt, (23)

where in this case, the function Φ(t) in Equation (23) has the same form as E(s)
0 , in such

a way that one should just make the changing n→ t in order to calculate the integral by
Equation (23). Thus, the renormalized energies for the massless scalar and electromagnetic
fields are given by [37,38]

E(0)
0,ren =

h̄c
240a0

, E(1)
0,ren =

11h̄c
120a0

, (24)

and therefore, Equation (21) is written as

E0,λ,ren = E(0)
0,ren +

λ

6
E(1)

0,ren. (25)

Taking into account the CMB data, which constrain the cosmic string linear mass density
such that Gµ . 10−6, this implies that parameter λ ∼ 10−6. Taking into account that the
vacuum energies in Equation (25) are approximately of the same order of magnitude, we
are forced to conclude that the role played by the cosmic string is negligible, in principle,
differs from the conclusion in the literature [39].

3.2. Electromagnetic and Massless Spinor Fields

Now let us obtain the vacuum energies of the electromagnetic and massless spinor
fields and then proceed to the renormalization, once again, using the Abel-Plana formula.

Let us start by considering the equation

E(s)
0 = ± h̄

2 ∑
j

ω
(s)
j , (26)
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which is similar to Equation (19), except that there an additional minus sign in Equation (26).
Thus, For the electromagnetic and massless spinor fields, the vacuum energies are given by

E(1)
0,λ =

h̄
2

2

∑
σ=1

∞

∑
n=2

n−1

∑
l=1

l

∑
m=−l

ω
(1)
n,λ,

=

(
1 +

λ

3

)
E(1)

0 (27)

E(1/2)
0,λ = −4

h̄
2

∞

∑
n=1

n

∑
l=1

(l−1/2)

∑
m=−(l−1/2)

ω
(1/2)
n,λ ,

=

(
1 +

λ

3

)
E(1/2)

0 , (28)

where σ = 1, 2 identify the two polarization states of the electromagnetic field and the
factor 4 in the first line of Equation (28) takes care of the four components of the massless
spinor field. The vacuum energies when the cosmic string is absent are

E(1)
0 = h̄

∞

∑
n=1

(n2 − 1)ω(1)
n , (29)

E(1/2)
0 = −2h̄

∞

∑
n=1

n(n + 1)ω(1/2)
n , (30)

where ω
(1)
n and ω

(1/2)
n are given by Equations (15) and (17), respectively. As we can see,

the modifications due to the presence of a cosmic string in the Einstein universe (and
consequently in the closed Friedmann universe) are contained in the terms which are
multiplied by λ/3, as showed in Equations (27) and (28).

In the renormalization procedure, the Abel-Plana formula [2,4,63,64] is used, and the
following results are achieved

∞

∑
n=1

Φ(n)−
∫ ∞

0
Φ(t)dt = −1

2
Φ(0) + i

∫ ∞

0

Φ(it)−Φ(−it)
e2πt − 1

dt, (31)

and

∞

∑
n=1

Φ
(

n +
1
2

)
−
∫ ∞

0
Φ(t)dt = −i

∫ ∞

0

Φ(it)−Φ(−it)
e2πt + 1

dt, (32)

valid for bosons and fermions, respectively. In both cases, the function Φ(t) in Equations (31)
and (32) have the same form as E(s)

0 . Therefore, we can calculate the integrals by making
the identifications n → t and (n + 1/2) → t, for bosons and fermions, respectively. The
renormalized energies of the electromagnetic and massless spinor fields, are [38]

E(1)
0,ren =

11h̄c
120a0

, E(1/2)
0,ren =

17h̄c
480a0

. (33)

Therefore, we can write Equations (27) and (28) in the following compact form

E(s)
0,λ,ren =

(
1 +

λ

3

)
E(s)

0,ren. (34)

where E(1)
0,ren and E(1/2)

0,ren are given in Equation (33). Again, we conclude that, taking the
contribution to these renormalized energies into account, arising due to the cosmic string
is negligible.
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4. Thermal Correction

From now on, we will consider the nonzero temperature contributions (thermal
corrections) to the zero-temperature Casimir stress–energy tensor of the massless scalar,
electromagnetic and massless spinor fields in the Einstein and closed Friedmann universes
with a cosmic string, and also mention the particular results when the cosmic string
is absent.

4.1. Massless Scalar Field

Firstly, we will consider the massless scalar field and generalize previous results [37],
to take the presence of the cosmic string into account. In this case, the free energy can be
written as

Fλ(T) = E0,λ + ∆Fλ(T), (35)

where E0,λ is the vacuum energy given by Equation (21). The renormalized vacuum energy
E0,λ,ren in Equation (25), permit us to write Equation (35) as

Ftot,λ(T) = E0,λ,ren + ∆Fλ(T). (36)

According to [37,38], the thermal correction ∆F(T) can be renormalized by subtracting the
contribution of the black body radiation and also a contribution of pure quantum nature.
Thus, in any finite volume, the asymptotic expression for the free energy Ftot(T) contains
the following terms:

α0
(kBT)4

(h̄c)3 , α1
(kBT)3

(h̄c)2 , α2
(kBT)2

h̄c
, (37)

where the coefficients α0, α1, α2 depend on the spin of the field. For example, for the
massless scalar and electromagnetic fields, only the following coefficients are different
from zero

α
(0)
0 = −π2

90
V

α
(1)
0 = −π2

45
V, α

(1)
2 =

π2a0

3
. (38)

The thermal correction ∆F(s)(T) is renormalized by using again the Abel-Plana
Formula (23) [37,38]. Doing this procedure, we find the following result

FC,λ(T) = E0,λ,ren + ∆FC,λ(T), (39)

where ∆FC,λ(T) is the renormalized thermal correction corresponding to ∆F(s)
λ (T), which

should be obtained using the Abel-Plana formula as follows

∆FC,λ(T) = ∆Fλ(T)−
∫ ∞

0
Φλ(t)dt. (40)

Thus, the thermal correction ∆Fλ(T) is given by

∆Fλ(T) = ∆F(0)(T) +
λ

6
∆F(1)(T), (41)

where

∆F(0)(T) = kBT
∞

∑
n=1

n2ln
[

1− e−(h̄ω
(0)
n /kBT)

]
, (42)

∆F(1)(T) = 2kBT
∞

∑
n=1

(n2 − 1)ln
[

1− e−(h̄ω
(1)
n /kBT)

]
, (43)
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for the massless scalar and electromagnetic fields [37,38], respectively. In order to calculate
the Casimir free energy, we have to perform the calculation of the integral on the right
hand side of Equation (40), whose result is

∫ ∞

0
Φλ(t)dt = α

(0)
0

(kBT)4

(h̄c)3 +
λ

6

(
α
(1)
0

(kBT)4

(h̄c)3 + α
(1)
2

(kBT)2

h̄c

)
. (44)

The integral (44) corresponds to the quantum contributions given in Equation (38). There-
fore, for the massless scalar field in the background under consideration, the integral (44)
has a term proportional to α

(0)
0 in Equation (38), and also the terms proportional to α

(1)
0

and α
(1)
2 , related to the electromagnetic field. In this case, the Casimir free energy can be

obtained from Equation (39) and is written as

FC,λ(T) = Ftot,λ(T)− α
(0)
0

(kBT)4

(h̄c)3 −
λ

6

(
α
(1)
0

(kBT)4

(h̄c)3 + α
(1)
2

(kBT)2

h̄c

)
. (45)

Observing the approximated value of λ ∼ 10−6, we conclude that the contribution arising
from the presence of the cosmic string is negligible.

We can obtain other thermodynamic quantities by using the results for the total and
Casimir free energies through the relations

U(T) = −T2 ∂

∂T

[
F(T)

T

]
, (46)

for the internal energy and

P(T) = −∂F(T)
∂V

, (47)

S(T) = −∂F(T)
∂T

. (48)

for the pressure and entropy, respectively.

4.2. Electromagnetic and Massless Spinor Fields

Now, let us consider the vacuum energies of the electromagnetic and massless spinor
fields by generalizing some results in the literature [38], using the following general
expression for the free energy

F(s)
λ (T) = E(s)

0,λ + ∆F(s)
λ (T), (49)

where E(s)
0,λ is the vacuum energy at zero temperature given by Equations (27) and (28).

Taking into account the renormalized vacuum energy E0,λ,ren in Equation (33), Equation (49)
turns into

F(s)
tot,λ(T) = E(s)

0,λ,ren + ∆F(s)
λ (T). (50)

Again, the thermal correction ∆F(T) is renormalized by subtract not only the contribution of
the black body radiation, as well as contribution of pure quantum nature [38], Considering
a finite volume, the total free energy Ftot(T) contains the following terms

α
(s)
0

(kBT)4

(h̄c)3 , α
(s)
1

(kBT)3

(h̄c)2 , α
(s)
2

(kBT)2

h̄c
, (51)

where the the coefficients α
(s)
0 , α

(s)
1 , α

(s)
2 for the electromagnetic and massless spinor fields

are given by
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α
(1)
0 = −π2

45
V, α

(1)
2 =

π2a0

3
,

α
(1/2)
0 = −7π2

180
V, α

(1/2)
2 =

π2a0

12
(52)

The renormalization of ∆Fλ(T) in Equation (50), give us the following expression for the
Casimir free energy

F(s)
C,λ(T) = E(s)

0,λ,ren + ∆F(s)
C,λ(T), (53)

where ∆F(s)
C,λ(T) is the renormalized thermal correction obtained from ∆F(s)

λ (T) by using
the Abel-Plana formulas as follows:

∆F(s)
C,λ(T) = ∆F(s)

λ (T)−
∫ ∞

0
Φ(s)

λ (t)dt. (54)

The thermal correction ∆F(s)
λ (T) of the vacuum energies (27) and (28) is given by the

general expression

∆F(s)
λ (T) =

(
1 +

λ

3

)
∆F(s)(T), (55)

where

∆F(1)(T) = 2kBT
∞

∑
n=1

(n2 − 1)ln
[

1− e−(h̄ω
(1)
n /kBT)

]
, (56)

∆F(1/2)(T) = −4kBT
∞

∑
n=1

n(n + 1)ln
[

1 + e−(h̄ω
(1/2)
n /kBT)

]
, (57)

for the electromagnetic and massless spinor fields [38], respectively. To obtain the Casimir
free energy, we need to calculate the integral in the right hand side of Equation (54), whose
result is ∫ ∞

0
Φ(1)

λ (t)dt =
(

1 +
λ

3

)(
α
(1)
0

(kBT)4

(h̄c)3 + α
(1)
2

(kBT)2

h̄c

)
, (58)

for the electromagnetic field and

∫ ∞

0
Φ(1/2)

λ (t)dt =
(

1 +
λ

3

)(
α
(1/2)
0

(kBT)4

(h̄c)3 + α
(1/2)
2

(kBT)2

h̄c

)
, (59)

for the massless spinor fields. The integrals (58) and (59) provide the quantum contributions
given by Equation (52). Thus, the Casimir free energies for electromagnetic and massless
spinor fields can be obtained from Equation (54) and these are given by

F(1)
C,λ(T) = F(1)

tot,λ(T)−
(

1 +
λ

3

)(
α
(1)
0

(kBT)4

(h̄c)3 + α
(1)
2

(kBT)2

h̄c

)
, (60)

F(1/2)
C,λ (T) = F(1/2)

tot,λ (T)−
(

1 +
λ

3

)(
α
(1/2)
0

(kBT)4

(h̄c)3 + α
(1/2)
2

(kBT)2

h̄c

)
. (61)

It is worth pointing out once again that considering the approximated value of λ ∼ 10−6

into Equations (55), (60) and (61), we arise to the same previous conclusion, namely that
the role played by the cosmic string is negligible.
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5. High and Low Limits of Temperature: Massless Scalar Field

Now, let us investigate the behavior of the thermodynamic quantities obtained previ-
ously in the Einstein universe with a cosmic string, but at this time with focus on the limits
of low and high temperatures.

5.1. Low Temperature Limit

The low temperature limit kBT << h̄c/a0 of the Casimir free energy can be obtained
from Equation (39) written in the following form:

FC,λ(T) = F(0)
C (T) +

λ

6
F(1)

C (T), (62)

where

F(0)
C (T) =

h̄c
240a0

+
π2

90
V
(kBT)4

(h̄c)3 − kBTe−(h̄c/a0kBT), (63)

is the expression for the Casimir free energy of the massless scalar field at low temperature
limit [37] and

F(1)
C (T) =

11h̄c
120a0

+
π2

45
V
(kBT)4

(h̄c)3 −
π2a0

3
(kBT)2

h̄c
− 6kBTe−(2h̄c/a0kBT). (64)

is the expression for the Casimir free energy of the electromagnetic field [38], in this limit.
From Equations (46) and (39), we get the Casimir internal energy, which is written as

UC,λ(T) = U(0)
C (T) +

λ

6
U(1)

C (T), (65)

where

U(0)
C (T) =

h̄c
240a0

− π2

30
V
(kBT)4

(h̄c)3 +
h̄c
a0

e−(h̄c/a0kBT), (66)

is the Casimir internal energy of the massless scalar field [37] and

U(1)
C (T) =

11h̄c
120a0

− π2

15
V
(kBT)4

(h̄c)3 +
π2a0

3
(kBT)2

(h̄c)
+

12h̄c
a0

e−(2h̄c/a0kBT), (67)

is the Casimir internal energy of the electromagnetic field [38].
Analogously, we can obtain the Casimir entropy using Equations (48) and (39). Thus

the following result

SC,λ(T) = S(0)
C (T) +

λ

6
S(1)

C (T), (68)

where

S(0)
C (T) = −2π2

45
kB

(
kBT
h̄c

)3
V +

h̄c
a0T

e−(h̄c/a0kBT). (69)

is the Casimir entropy of the massless scalar field [37], while

S(1)
C (T) = 2π2kB

akBT
3h̄c

[
1− 4π2

15
(a0kBT)2

(h̄c)2

]
+

12h̄c
aT

e−(2h̄c/a0kBT). (70)

is the Casimir entropy of the electromagnetic field [38]. It is worth calling attention to
the fact that the Casimir entropy satisfies the third law of thermodynamics (the Nernst
heat theorem) when T goes to zero, as should be expected due to the fact that the Casimir
entropy for both the massless scalar field and the electromagnetic field, separately, satisfy
the third law of thermodynamic [37,38,65,66].
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5.2. High Temperature Limit

In high temperature limit, which means that kBT >> h̄c/a0, the Casimir free energy
given by Equation (62) is the sum of the following contributions

F(0)
C (T) =

kBT
4π2 ζ(3) + 4π2

(
a0kBT

h̄c

)3 h̄c
a0

e−4π2(a0kBT/h̄c), (71)

arising from massless scalar field [37] and

F(1)
C (T) = −kBTln

a0kBT
h̄c

− RkBT

+8π2a2
0
(kBT)3

(h̄c)2 e−(4π2a0kBT/h̄c), (72)

from the electromagnetic field, respectively [38]. The parameter R is a constant equal to
1.77698 see Ref. [38].

The contributions to the Casimir internal energy, corresponding to the massless scalar
and to the electromagnetic fields, given by Equation (65), in this limit, result in the follwoing

U(0)
C (T) = 16π4

(
a0kBT

h̄c

)4 h̄c
a0

e−4π2(a0kBT/h̄c), (73)

for massless scalar field contribution [37] and

U(1)
C (T) = kBT +

32π4a3
0(kBT)4

(h̄c)3 e−(4π2a0kBT/h̄c). (74)

for the internal energy of the electromagnetic field [38]. The total free energy and its limits
of low and high temperatures can be obtained from Equation (45).

6. High and Low Limits of Temperature: Electromagnetic and Massless Spinor Fields

In this section, we will proceed a similar analysis did previously, but now taking into
consideration the electromagnetic and massless spinor fields. The procedure follows, in a
straightforward manner, what was done in relation to the massless scalar field.

6.1. Low Temperature Limit

The low temperature limit means that kBT << h̄c/a0. Applying this limit to the Casimir
free energy for the electromagnetic and massless spinor fields considering Equation (55), and
taking into account the general form

F(s)
C,λ(T) =

(
1 +

λ

3

)
F(s)

C (T), (75)

we obtain the following results

F(1)
C (T) =

11h̄c
120a0

+
π2

45
V
(kBT)4

(h̄c)3 −
π2a0

3
(kBT)2

h̄c
− 6kBTe−(2h̄c/a0kBT). (76)

in the case of the electromagnetic field [38] and

F(1/2)
C (T) =

17h̄c
480a0

+
7π2

180
V
(kBT)4

(h̄c)3 −
π2a0

12
(kBT)2

h̄c
− 8kBTe−(3h̄c/2a0kBT), (77)

in the case of the massless spinor field [38].
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Using Equations (46) and (53), we get

U(s)
C,λ(T) =

(
1 +

λ

3

)
U(s)

C (T), (78)

where

U(1)
C (T) =

11h̄c
120a0

− π2

15
V
(kBT)4

(h̄c)3 +
π2a0

3
(kBT)2

(h̄c)
+

12h̄c
a0

e−(2h̄c/a0kBT), (79)

is the Casimir internal energy of the electromagnetic field [38] and

U(1/2)
C (T) =

17h̄c
480a0

− 7π2

60
V
(kBT)4

(h̄c)3 +
π2a0

12
(kBT)2

(h̄c)
+

12h̄c
a0

e−(3h̄c/2a0kBT), (80)

is the Casimir internal energy of the massless spinor field [38].
Concerning the Casimir entropy, it can be obtained using Equations (48) and (53).

Thus, we get

S(s)
C,λ(T) =

(
1 +

λ

3

)
S(s)

C (T). (81)

The Casimir entropy for the electromagnetic [38] and the massless spinor fields [38] are
given, respectively, by

S(1)
C (T) = 2π2kB

akBT
3h̄c

[
1− 4π2

15
(a0kBT)2

(h̄c)2

]
+

12h̄c
aT

e−(2h̄c/a0kBT), (82)

and

S(1/2)
C (T) = π2kB

akBT
3h̄c

[
1
2
− 14π2

15
(a0kBT)2

(h̄c)2

]
+

12h̄c
aT

e−(3h̄c/2a0kBT). (83)

The Casimir entropy (81) satisfies the third law of thermodynamics (the Nernst heat
theorem). This is expected due to the fact that both entropies satisfy the third law of
thermodynamics.

6.2. High Temperature Limit

The high temperature limit is obtained under the condition kBT >> h̄c/a0. In this
limit, the Casimir free energy (75) for the electromagnetic and massless spinor fields are
given, respectively, by

F(1)
C (T) = −kBTln

a0kBT
h̄c

− RkBT

+8π2a2
0
(kBT)3

(h̄c)2 e−(4π2a0kBT/h̄c), (84)

and

F(1/2)
C (T) = 4π2a2

0
(kBT)3

(h̄c)2 e−(2π2a0kBT/h̄c). (85)

The Casimir internal energy given by Equation (78), in the high temperature limit,
turns into
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U(1)
C (T) = kBT +

32π4a3
0(kBT)4

(h̄c)3 e−(4π2a0kBT/h̄c). (86)

for the internal energy of the electromagnetic field [38] and

U(1/2)
C (T) =

8π4a3
0(kBT)4

(h̄c)3 e−(2pi2a0kBT/h̄c), (87)

for the internal energy of the neutrino field [38].

7. Discussions and Conclusions

The Einstein and closed Friedmann universes with a cosmic string were considered as
a background spacetime in which the Casimir vacuum energy, Casimir free energy, internal
energy, and entropy were calculated for fields with different spin, namely the massless
scalar, electromagnetic, and massless spinor fields.

Particularly in the massless scalar field case, we showed that the regularized quantum
vacuum energy is the sum of two terms; the first is associated with the scalar field itself in
the Einstein universe without the cosmic string, while the second is an electromagnetic-like
term multiplied by a factor given by λ = (1/α)− 1, which codifies the presence of the
cosmic string. Therefore, all contribution which arises due to the to the presence of the
cosmic string is contained, exclusively, in the second term. It is worth stressing that the
contribution of this term is negligible as compared with the contribution given by the first
term, which is exclusively due to the massless scalar field. With respect to the regularized
free energy, internal energy and entropy, their expression also separates into two terms
analogously to the regularized quantum vacuum energy.

These thermodynamic quantities were studied in the low and high temperature limits.
One of the main results obtained is the fact that in the low temperature limit, the Casimir
entropy is in accordance with the third law of thermodynamics. Particularly, in the context
of the Friedmann universe. With respect to the the internal energy of the massless scalar
field we observed that, at a very high temperature limit, it tends to (λ/6)kBT and in the low
temperature limit, it tends to a constant value, according to result given by Equation (25).

The Casimir vacuum energy, free energy, internal energy and entropy for the electro-
magnetic and massless spinor fields were also calculated. The results obtained for these
thermodynamic quantities tell us that the expressions for these fields, in the spacetimes
considered, also splits up into two terms. but differently from the massless scalar field,
both terms are of the same nature, or in other words, the two terms for the electromagnetic
have origin in the electromagnetic field itself, and similarly for the massless spinor field.
However, similarly to the massless scalar field case, the second term is multiplied by the
factor λ = (1/α)− 1 which codifies the presence of a cosmic string. It is worth calling
attention to the fact this second term, in both cases, are of six orders of magnitude less than
the first one, and can be neglected, in principle. Other thermodynamics quantities such as
internal energy, entropy have the same structure.

The low and high temperature limits of the thermodynamics quantities were analyzed,
with an interesting result in the low temperature limit, namely that the Casimir entropies of
the electromagnetic and massless spinor fields also obey the third law of thermodynamics.

It is worth emphasizing that the contributions to the Casimir vacuum energy and
to all thermodynamics quantities considered, for the three fields, which arise due to the
presence of the cosmic string are very small as compared with the contribution arising
from the first term, which does not depend on the presence of the cosmic string. Therefore,
from the physical point of view, the presence of the comic string only changes slightly
the results when compared to the ones obtained when the cosmic string is absent [36,37].
Mathematically, the results obtained in [38,39] just reduce to the results obtained in [36,37]
by taking α = 1, or, equivalently, λ = 0, which corresponds to the situation where the
cosmic is absent.
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