# Anisotropic Cosmological Model in a Modified Theory of Gravitation

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modified $\mathit{f}\left(\mathit{R},\mathit{T}\right)$ Gravity

## 3. Model and Field Equations

## 4. Solution to Field Equations

^{5}at the time of decoupling, in keeping with the observations of the cosmic microwave background radiation. In other words, the anisotropy is effectively erased at the time of decoupling, and the universe is effectively isotropic thereafter.

#### 4.1. Some Cosmological Distance Parameters: Cosmological Red-Shift

#### 4.2. State-Finder Parameters

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Riess, A.G.; Kirshner, R.P.; Schmidt, B.P.; Jha, S.; Challis, P.; Garnavich, P.M.; Esin, A.A.; Carpenter, C.; Grashius, R.; Schild, R.E.; et al. BVRI light curves for 22 Type Ia supernovae. Astron. J.
**1998**, 116, 1009. [Google Scholar] [CrossRef][Green Version] - Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J.
**1999**, 517, 565. [Google Scholar] [CrossRef] - Tegmark, M.; Strauss, M.A.; Blanton, M.R.; Abazajian, K.; Dodelson, S.; Sandvik, H.; Wang, X.; Weinberg, D.H.; Zehavi, I.; Bahcall, N.A.; et al. Cosmological parameters from SDSS and WMAP. Phys. Rev. D
**2004**, 69, 103501. [Google Scholar] [CrossRef][Green Version] - Allen, S.W.; Schmidt, R.W.; Ebeling, H.; Fabian, A.C.; Van Speybroeck, L. Constraints on dark energy from Chandra observations of the largest relaxed clusters. Mon. Not. R. Astron. Soc.
**2004**, 353, 457. [Google Scholar] [CrossRef][Green Version] - Bennett, C.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S.S.; Page, L.; Spergel, D.N.; Tucker, G.S.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. Astrophys. J. Suppl. Ser.
**2003**, 148, 1–27. [Google Scholar] [CrossRef][Green Version] - Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys.
**2007**, 4, 115–145. [Google Scholar] [CrossRef][Green Version] - Copeland, E.J.; Sami, M.; Tsijikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D
**2006**, 15, 1753. [Google Scholar] [CrossRef][Green Version] - Ade, P.A.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys.
**2014**, 571, A16. [Google Scholar] - Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys.
**2003**, 75, 559–606. [Google Scholar] [CrossRef][Green Version] - Capozziello, S.; Cardone, V.F.; Troisi, A. Reconciling dark energy models with f(R) theories. Phys. Rev. D
**2005**, 71, 43503. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D.; Sami, M. Dark energy cosmology from higher-order, strin-inspires gravity, and its reconstruction. Phys. Rev. D
**2006**, 74, 046004. [Google Scholar] [CrossRef][Green Version] - Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D
**2011**, 84, 24020. [Google Scholar] [CrossRef][Green Version] - Adhav, K.S. LRS Bianchi type-I cosmological model in f(R,T) theory of gravity. Astrophys. Space Sci.
**2011**, 339, 365–369. [Google Scholar] [CrossRef] - Sharif, M.; Zubair, M. Study of Bianchi I anisotropic model in f(R,T) gravity. Astrophys. Space Sci.
**2014**, 349, 457–465. [Google Scholar] [CrossRef] - Shamir, M.F. Bianchi type-I cosmology in f(R,T) gravity. J. Exp. Theor. Phys.
**2014**, 119, 242–250. [Google Scholar] [CrossRef] - Ram, S.; Kumari, P. Bianchi types I and V bulk viscous fluid cosmological models in f(R,T) gravity theory. Open Phys.
**2014**, 12, 744–754. [Google Scholar] [CrossRef][Green Version] - Singh, G.P.; Bishi, B.K. Bianchi type-I Universe with Cosmological Constant and Quadratic Equation of State in f(R,T) Modified Gravity. Adv. High Energy Phys.
**2015**, 2015, 816826. [Google Scholar] [CrossRef] - Sahoo, P.K.; Sivakumar, M. LRS Bianchi type-I cosmological model in f(R,T) theory of gravity with Lambda (T). Astrophys. Space Sci.
**2015**, 357, 34. [Google Scholar] [CrossRef] - Shamir, M.F. Locally rotationally symmetric Bianchi type I cosmology in f(R,T) gravity. Eur. Phys. J. C
**2015**, 75, 1–8. [Google Scholar] [CrossRef] - Singh, G.P.; Bishi, B.K. Bianchi type-I transit Universe in f(R,T) modified gravity with quadratic of state and Λ. Astrophys. Space Sci.
**2015**, 360, 34. [Google Scholar] [CrossRef] - Zubair, M.; Hassan, S.M.A. Dynamics of Bianchi type I, III and Kantowski-Sachs solutions in f(R,T) gravity. Astrophys. Space Sci.
**2016**, 361, 1–8. [Google Scholar] [CrossRef] - Singh, G.; Bishi, B.K.; Sahoo, P. Scalar field and time varying cosmological constant in f(R,T) gravity for Bianchi type-I universe. Chin. J. Phys.
**2016**, 54, 244–255. [Google Scholar] [CrossRef][Green Version] - Sahoo, P.K. LRS Bianchi type-I string cosmological model in f(R,T) gravity. Fortschr. Phys.
**2015**, 64, 414–415. [Google Scholar] [CrossRef] - Shukla, P.; Jayadev, A. LRS Bianchi Type-I Cosmology with Gamma Law EoS in f(R,T) Gravity. Appl. Appl. Math.
**2016**, 11, 229–237. [Google Scholar] - Kanakavalli, T.; Rao, G.A. LRS Bianchi type-I string cosmological models in f(R,T) gravity. Astrophys. Space Sci.
**2016**, 361, 206. [Google Scholar] [CrossRef] - Zubair, M.; Hassan, S.M.A.; Abbas, G. Bianchi type I and V solutions in f(R,T) gravity with time-dependent deceleration parameter. Can. J. Phys.
**2016**, 94, 1289–1296. [Google Scholar] [CrossRef] - Aktas, C. Magnetised strange quark matter in reconstructed f(R,T) gravity for Bianchi I and V universes with cosmological constant. Turk. J. Phys.
**2017**, 41, 469–476. [Google Scholar] [CrossRef] - Calgar, H.; Aygun, S. Bianchi type-I Universe in f(R,T) Modified gravity with Quark Matter and Λ. In Proceedings of the Turkish Physical Society 32nd International Physics Congress (TPS32), Bodrum, Turkey, 6–9 September 2017; Volume 1815, p. 80008. [Google Scholar]
- Tiwari, R.K.; Beesham, A.; Singh, R.; Tiwari, L.K. Time varying G and Λ cosmology in f(R,T) gravity theory. Astrophys. Space Sci.
**2017**, 362, 143. [Google Scholar] [CrossRef] - Bishi, B.K.; Pacif, S.; Sahoo, P.K.; Singh, G.P. LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T) gravity. Int. J. Geom. Methods Mod. Phys.
**2017**, 14, 1750158. [Google Scholar] [CrossRef] - Solanke, D.T.; Karade, T.M. Bianchi type I universe filled with scalar field coupled with electromagnetic fields in f(R,T) theory of gravity. Indian J. Phys.
**2017**, 91, 1457–1466. [Google Scholar] [CrossRef] - Gudekli, E.; Caliskan, A. Perfect fluid LRS Bianchi Type-I-Universe Model in f(R,T). In Proceedings of the 34th International Physics Congress (IPS) of the Turkish-Physical-Society (TPS34), Konacik, Turkey, 5–9 September 2018; Volume 2042, p. 20042. [Google Scholar]
- Yadav, A.K.; Ali, A.T. Invariant Bianchi type I models in f(R,T) gravity. Int. J. Geom. Methods Mod. Phys.
**2018**, 15, 1850026. [Google Scholar] [CrossRef][Green Version] - Sahoo, P.; Reddy, R. LRS Bianchi Type-I Bulk Viscous Cosmological Models in f(R,T) Gravity. Astrophysics
**2018**, 61, 134–143. [Google Scholar] [CrossRef][Green Version] - Yadav, A.K. Transitioning Scenario of Bianchi-I Universe Within f(R,T) Formalism. Braz. J. Phys.
**2019**, 49, 262–270. [Google Scholar] [CrossRef][Green Version] - Sharma, U.K.; Zia, R.; Pradhan, A.; Beesham, A. Stability of LRS Bianchi type-I cosmological models in f(R,T)—gravity. Res. Astron. Astrophys.
**2019**, 19, 55. [Google Scholar] [CrossRef] - Pradhan, A.; Tiwari, R.K.; Beesham, A.; Zia, R. LRS Bianchi type-I cosmological models with accelerated expansion in f(R,T) gravity in the presence of ΛΛ (T). Eur. Phys. J. Plus
**2019**, 134, 229. [Google Scholar] [CrossRef] - Yadav, A.K.; Sahoo, P.K.; Bhardwaj, V. Bulk viscous Biacnhi-I embedded cosmological model in f(R,T) = f
_{1}(R) + f_{2}(R)f_{3}(R) gravity. Mod. Phys. Lett. A**2019**, 34, 1950145. [Google Scholar] [CrossRef] - Bhardwaj, V.K.; Rana, M.K. LRS Bianchi-I transit universe with periodic varying q in f(R,T) gravity. Int. J. Geom. Methods Mod. Phys.
**2019**, 16, 1950195. [Google Scholar] [CrossRef] - Singh, V.; Beesham, A. LRS Bianchi I model with constant expansion rate in f(R,T) gravity. Astrophys. Space Sci.
**2020**, 365, 1–8. [Google Scholar] [CrossRef] - Tiwari, R.K.; Sofuoğlu, D.; Dubey, V.K. Phase transition of LRS Bianchi type-I cosmological model in f(R,T) gravity. Int. J. Geom. Methods Mod. Phys.
**2020**, 17, 2050187. [Google Scholar] [CrossRef] - Bhardwaj, V.K.; Dixit, A. LRS Bianchi type-I bouncing cosmological models in f(R,T) gravity. Int. J. Geom. Methods Mod. Phys.
**2020**, 17, 2050203. [Google Scholar] [CrossRef] - Mishra, S.; Tiwari, R.; Beesham, A.; Dubey, V. Bianchi Type I cosmological model in f(R,T) gravity. In Proceedings of the 1st Electronic Conference on Universe, Basel, Switzerland, 22–28 February 2021; Volume 2021. [Google Scholar]
- Shabani, H.; Ziaie, A.H. Interpretation of f(R,T) gravity in terms of a conserved effective fluid. Int. J. Mod. Phys. A
**2018**, 33, 1850050. [Google Scholar] [CrossRef] - Shabani, H.; Ziaie, A.H. Consequences of energy conservation violation: Late time solutions of Λ(T)CDM subclass of f(R,T) gravity using dynamical system approach. Eur. Phys. J. C
**2017**, 77, 282. [Google Scholar] [CrossRef] - Collins, C.B.; Hawking, S.W. Why is the Universe Isotropic? Astrophys. J.
**1973**, 180, 317–334. [Google Scholar] [CrossRef] - Sahni, V.; Saini, T.D.; Starobinsky, A.A.; Alam, U. Statefinder—A new geometric diagnostic of dark energy. JETP Lett.
**2003**, 77, 201–206. [Google Scholar] [CrossRef] - Alam, U.; Sahni, V.; Saini, T.D.; Starobinsky, A. Exploring the expanding Universe and dark energy using the statefinder diagnostic. Mon. Not. R. Astron. Soc.
**2003**, 344, 1057–1074. [Google Scholar] [CrossRef] - Feng, C.-J. Statefinder diagnosis for Ricci dark energy. Phys. Lett. B
**2008**, 670, 231–234. [Google Scholar] [CrossRef][Green Version] - Harko, T. Private communication. University College, London.
- Nagpal, R.; Pacif, S.K.J.; Singh, J.K.; Bamba, K.; Beesham, A. Analysis with observational constraints in Λ-cosmology in f(R,T) gravity. Eur. Phys. J. C
**2018**, 78, 946. [Google Scholar] [CrossRef][Green Version] - Bhattarcharjee, S.; Sahoo, P.K. Big Bang Nucleosynthesis and Entropy Evolution in f(R,T) Gravitation. Eur. Phys. J. C
**2020**, 135, 350. [Google Scholar] - Amirhashchi, H.L.R.S. Bianchi type II stiff fluid cosmological model with decaying vacuum energy density Λ in general relativity. Phys. Lett. B
**2011**, 697, 429–433. [Google Scholar] [CrossRef][Green Version] - Yadav, A.K. Cosmological Constant Dominated Transit Universe from the Early Deceleration Phase to the Current Acceleration Phase in Bianchi-V Spacetime. Chin. Phys. Lett.
**2012**, 29, 9801. [Google Scholar] [CrossRef][Green Version] - Weinberg, S. The cosmological constant problem. Rev. Mod. Phys.
**1989**, 61, 1–23. [Google Scholar] [CrossRef] - Babourova, A.; Frolov, B. The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential De-crease in the Super-Early Universe. Universe
**2020**, 6, 230. [Google Scholar] [CrossRef] - Geng, C.-Q.; Lee, C.-C.; Yin, L. Constraints on a special running vacuum model. Eur. Phys. J. C
**2020**, 80, 69. [Google Scholar] [CrossRef] - Sola, J. Cosmological constant vis-à-vis dynamical vacuum: Bold challenging the Lambda CDM. Int. J. Mod. Phys. A
**2016**, 31, 16300350. [Google Scholar] [CrossRef][Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tiwari, R.K.; Beesham, A.; Mishra, S.; Dubey, V. Anisotropic Cosmological Model in a Modified Theory of Gravitation. *Universe* **2021**, *7*, 226.
https://doi.org/10.3390/universe7070226

**AMA Style**

Tiwari RK, Beesham A, Mishra S, Dubey V. Anisotropic Cosmological Model in a Modified Theory of Gravitation. *Universe*. 2021; 7(7):226.
https://doi.org/10.3390/universe7070226

**Chicago/Turabian Style**

Tiwari, Rishi Kumar, Aroonkumar Beesham, Soma Mishra, and Vipin Dubey. 2021. "Anisotropic Cosmological Model in a Modified Theory of Gravitation" *Universe* 7, no. 7: 226.
https://doi.org/10.3390/universe7070226