
universe

Article

Anisotropic Cosmological Model in a Modified Theory
of Gravitation

Rishi Kumar Tiwari 1, Aroonkumar Beesham 2,3,* , Soma Mishra 4 and Vipin Dubey 1

����������
�������

Citation: Tiwari, R.K.; Beesham, A.;

Mishra, S.; Dubey, V. Anisotropic

Cosmological Model in a Modified

Theory of Gravitation. Universe 2021,

7, 226. https://doi.org/10.3390/

universe7070226

Academic Editors: James A. Isenberg,

Gerald B. Cleaver, Gonzalo J. Olmo,

Lijing Shao, Giacomo Tommei and

Lorenzo Iorio

Received: 24 May 2021

Accepted: 23 June 2021

Published: 4 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Government Model Science College, Rewa 486003, India;
hegascrew@mp.gov.in or rishitiwari59@rediffmail.com (R.K.T.); vipindubey.dubey@gmail.com (V.D.)

2 Department of Mathematical Sciences, University of Zululand, Richards Bay 3900, South Africa
3 Faculty of Natural Sciences, Mangosuthu University of Technology, Jacobs, Umlazi 4031, South Africa
4 Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya, Satna 485334, Madhya Pradesh, India;

somamishravits@gmail.com
* Correspondence: beeshama@unizulu.ac.za

Abstract: Current observations indicate that, on a large enough scale, the universe is homogeneous
and isotropic. However, this does not preclude the possibility of some anisotropy having occurred
during the early stages of the evolution of the universe, which could then have been damped out
later. This idea has aroused interest in the Bianchi models, which are homogeneous but anisotropic.
Secondly, there is much interest in modified gravity these days due to the problems that the usual
ΛCDM model faces in general relativity. Hence, in this paper, a study was conducted on the Bianchi
type-I cosmological model in f (R,T)-modified gravity. Following some ideas from cosmography,
a specific form of the deceleration parameter was assumed, leading to a model that exhibited a
transition from early deceleration to late-time acceleration. The derived model approached isotropy
at late times. The physical properties of the model were discussed, and expressions for the various
parameters of the model were derived. It is also possible to make progress towards solving the
cosmological constant problem, since in this model in f (R,T) gravity, a variable cosmological-type
parameter arose, which was large early on but decreased to a constant value in later times.

Keywords: Bianchi type-I universe; f (R,T) theory; deceleration parameter; variable
cosmological parameter

1. Introduction

Recent theoretical and experimental studies have revealed that our universe is cur-
rently in an accelerating stage of expansion [1–5] and that an unknown form of matter
called “dark energy” plays a significant role in driving this acceleration [6,7]. The most
interesting characteristics of this dark energy are positive energy density but negative
pressure. The results of the Wilkinson microwave anisotropy probe (WMAP) [8] and Plank
indicate that the universe is composed of roughly 68.5% dark energy, 26.5% dark matter,
and 5% baryonic matter. Dark energy can be expressed in either of two ways. The first is
by means of so-called exotic matter—i.e., either by using the equation of state parameter
(EOS) ω = p

ρ , where p is the pressure and ρ is the energy density, or with respect to the
cosmological constant. The second approach used to picture the expansion of the universe
is a modified version of the Einstein–Hilbert action principle—i.e., alternative theories to
Einstein’s theory of gravitation. In this process, an arbitrary function replaces the matter
Lagrangian in the action. Hence, the acceleration in the expansion of the universe, to-
gether with effective causes linked to dark energy, is most attractively explained in these
modified theories.

The cosmological constant Λ, introduced by Albert Einstein in his field equations to
obtain a static universe, is now treated as a suitable representative for dark energy for
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explaining the increase in the expansion of the universe. However, cosmological puzzles
such as the fine tuning and cosmic coincidence problems currently surround it [9].

In the last few years, to explain the mechanism of the late-time acceleration, dark
matter, and dark energy, many modified theories of gravity have been studied—e.g.,
f (R), f (T), f (G) and f (R, T) gravity. These models were put forward to explain dark
energy and other problems of cosmology. Noteworthy amongst them is f (R) gravity, which
has been broadly investigated by several authors [5,10,11]. In f (R) gravity, an arbitrary
function of R replaces R in the Einstein–Hilbert action. Another recommendation to explain
late-time acceleration is f (T) gravity, which has recently been developed. This theory is a
generalized version of tele-parallel gravity in which the Weitzenbock connection is used
instead of the LeviCivita connection. The fascinating attribute of this theory is that it can
explain the current acceleration without invoking dark energy.

Another modified theory that has attracted a lot of attention in recent years is f (R, T)
gravity, which was introduced by Harko et al. [12]. In this theory, the gravitational La-
grangian is defined by an arbitrary function of the Ricci scalar R and the trace T of the
energy momentum tensor. It is to be observed that the dependency upon T may be at-
tributed to quantum effects or to an imperfect fluid. In their paper [12], Harko and his
collaborators studied some specific forms of the function f (R, T). This theory can be con-
sidered as a more convenient theory to depict the accelerating stage of the universe. Some
other authors who have investigated various aspects of the Bianchi type-I model in f (R, T)
gravity will now be briefly mentioned.

The locally rotationally symmetric (LRS) Bianchi type-I models were found by
Adhav [13]. Sharif and Zubair [14] studied exponential and power law solutions for
the Bianchi type-I model with perfect fluid. Models with a constant deceleration parameter
were found by Shamir [15]. Ram and Kumari [16] obtained Bianchi types I and V bulk
viscous solutions by choosing a nonlinear form of the deceleration parameter. A model
with a cosmological constant and quadratic equation of state was investigated by Singh
and Bishi [17]. Sahoo and Sivakumar [18] found LRS models with a dynamic cosmological
parameter by assuming a linearly varying deceleration parameter. By assuming an expan-
sion scalar that is proportional to the shear scalar, Shamir [19] was able to derive exact
solutions for an LRS Bianchi type-I model. Singh and Bishi [20] found transit solutions
by assuming a quadratic equation of state as well as a scale factor which is a product of
power-law and exponential. Zubair and Ali Hassan [21] studied the Bianchi types I and
III and Kantowski–Sachs spacetimes in a unified way by assuming that the expansion
scalar is proportional to the shear scalar and also that the derivative of f (R,T) with respect
to R is proportional to the scale factor. In Singh et al. [22], an LRS model with a scalar
field was considered, as well as power-law and exponential forms for the scale factor and
scalar field. A string cosmological model was derived by Sahoo [23] utilizing a constant
deceleration parameter and the ansatz that the scalar expansion is proportional to the shear
scalar. Shukla and Jayadev [24] found solutions for particle creation in an LRS model with
gamma-law equation of state, and expansion proportional to shear. A string solution in the
LRS case was solved by Kanakavalli and Rao [25] by taking the equation of state for strings.
Zubair et al. [26] found Bianchi types I and V solutions by using a linear deceleration
parameter and taking the expansion proportional to the expansion.

Solutions for Bianchi types I and V with magnetized strange quark matter and cos-
mological constant were found by Aktas [27], who used the usual equation of state for
quark matter and a constant deceleration parameter. Caglar and Aygun [28] investigated
a model with quark matter and a cosmological constant by assuming that the expan-
sion was proportional to the shear, and by using the usual equation of state for quark
matter. Tiwari et al. [29] looked at varying gravitational and cosmological parameters
with a particular non-linear equation of state and expansion proportional to the shear.
In general, energy-momentum is not conserved in f (R,T) theory, but the requirement of
energy-momentum conservation may be imposed to obtain solutions. An LRS model with
a constant deceleration parameter was found by Bishi et al. [30]. Electromagnetic and scalar
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fields were introduced by Solanke and Karade [31] and solutions were found by assuming
the interaction between these fields to be linear. Gudekli and Caliskan [32] considered
the LRS model and found perfect fluid solutions by assuming the two scale factors to be
proportional to each other. In a very interesting paper, Yadav and Ali [33] applied Lie
point symmetry analysis to find two solutions, one with a big-bang singularity and the
other without. Bulk viscous LRS models were found by Sahoo and Reddy [34] using a
specific time-dependent deceleration parameter. Yadav [35] found a transitioning solution
by using a hybrid expansion law for the scale factor. The stability of the LRS models
was discussed by Sharma et al. [36]. Pradhan et al. [37] found solutions that exhibited a
transition from early deceleration to late-time acceleration by choosing two suitable forms
of the scale factor. By choosing a hybrid form for the scale factor, Yadav et al. [38] were able
to study bulk viscous LRS models. Cyclic LRS models with periodic varying deceleration
parameters were derived by Bhardwaj and Rana [39], and Singh and Beesham [40] stud-
ied LRS models with a constant expansion rate. A reconstruction of the LRS model was
made by Tiwari et al. [41] by choosing a non-linear form for the deceleration parameter.
Bhardwaj and Dixit [42] constructed bouncing solutions by choosing a suitable form for
the scale factor.

In this paper, we discussed the Bianchi type-I cosmological model by assuming a
particular form for the deceleration parameter as a function of the Hubble parameter. The
reason for choosing the Bianchi type-I model is that, although the universe is currently
observed to be homogeneous and isotropic, it could have started off with some anisotropy.
Then, as the universe evolved, the anisotropy became damped out, leading to the currently
observable universe. The field equations are presented in Section 2. The solution of the
field equations is derived and discussed in Section 3. The observational parameters such as
cosmological red-shift, luminosity distance, and state-finder parameters for the model are
also discussed in Section 3. Section 4 contains the conclusion.

This paper is based on results presented at the 1st International Electronic Conference
on Universe and is a much extended version of the abbreviated paper that appeared in the
conference proceedings [43].

2. Modified f(R, T) Gravity

The action of f (R,T) gravity is given by:

S =
∫ √

−g
(
−1

16πG
f (R, T) + Lm

)
d4x, (1)

where g is the determinant of the metric tensor gij; f (R, T) is an arbitrary function of the
Ricci scalar R and the trace T of the energy-momentum tensor Tij—i.e.,

(
T = gijTij

)
; and

Lm is the matter Lagrangian density. It is worth mentioning here that the f (R, T) theory of
gravity is a modification of general relativity and can be considered as an extension of the
f (R) theory. As in f (R) gravity models, the field equations are obtained by varying the
total action of both the field and matter and equating this variation to zero.

Now, using gravitational units (8πG = 1, c = 1) and varying the action S in (1) with
respect to the metric tensor gij, we obtain the field equations in f (R, T) gravity as:

fR(R, T)Rij −
1
2

f (R, T)gij +
(

gij �−∇i∇j
)

fR(R, T) = −Tij − fT(R, T)Tij − fT(R, T)Θij, (2)

where fR(R, T) = ∂ f (R,T)
∂R , fT(R, T) = ∂ f (R,T)

∂T , Rij is the Ricci tensor, and Tij is the energy-
momentum tensor given by:

Tij =
−2√−g

δ(
√−gLm)

δgij . (3)

In Equation (2), � = ∇i∇i is the D’Alembertian operator, where ∇i represents the
covariant derivative and:
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Θij = −2Tij + gijLm − 2gµv ∂2Lm

∂gij∂gµv . (4)

On contraction, Equation (2) yields an important relation connecting the Ricci scalar R
and the trace T of the energy-momentum tensor:

fR(R, T)R + 3 � fR(R, T)− 2 f (R, T) = −T − fT(R, T)(T + Θ), (5)

where Θ = Θi
i. If we assume that the matter Lagrangian density Lm depends only on the

metric tensor component gij rather than its derivatives, then Equation (3) is reduced to
the form:

Tij = gijLm − 2
∂Lm

∂gij . (6)

For a perfect fluid distribution, the energy-momentum tensor of the matter has
the form:

Tij = (ρ + p)uiuj + pgij, (7)

where ρ and p are the energy density and pressure of the fluid, respectively. Here ui is
the four-velocity vector satisfying uiui = −1 and ui∇jui = 0. Now, using the fact that
Lm = −p, Equation (4) can be rewritten as:

Θij = −pgij − 2Tij. (8)

On account of this, the field Equation (2) takes the form:

fR(R, T)Rij −
1
2

f (R, T)gij −
(
∇i∇j −�gij

)
fR(R, T) = −Tij + fT(R, T)

(
Tij + pgij

)
. (9)

Harko et al. [12] have considered three possible forms of the function f (R, T):

f (R, T) =


R + 2 f1(T)

f1(R) + f2(T)
f1(R) + f2(R) f3(T)

. (10)

In the present study, we shall concentrate on the first form of f (R, T)—i.e., f (R, T) =
R + 2 f1(T)—and choose f1(T) = −λT, where λ is an arbitrary constant. For this consider-
ation and energy-momentum tensor (7), Equation (9) is reduced to the form:

Rij −
1
2

Rgij = −(1 + 2λ)Tij + λ(T + 2p)gij. (11)

Now, Einstein’s field equations with the cosmological term can be written as:

Rij −
1
2

Rgij = −Tij + Λgij. (12)

By comparing Equations (11) and (12), and by taking the parameter λ to be small,
we can make the identification Λ = Λ(T) = λ(T + 2p). Therefore, in the f (R, T) the-
ory of gravity, the field equations with a variable cosmological parameter Λ(T) can be
expressed as:

Rij −
1
2

Rgij = −(1 + 2λ)Tij + Λgij. (13)

In the case of a perfect fluid, the trace T of the energy-momentum tensor can be written
as T = ρ− 3p. The cosmological parameter can be written as:

Λ = λ(ρ− p). (14)



Universe 2021, 7, 226 5 of 12

It can clearly be seen from Equation (13), which follows from Equation (11), that
the usual energy conservation law does not hold in general in the f (R, T) theory. It has
been pointed out by Shabani and Zaiae [44] that the non-conservation of energy from
the thermodynamic point of view implies an irreversible matter creation process. It is
expected that this process could be justified by fundamental particle physics. Such particle
creation corresponds to energy flow from the gravitational field to the created matter
particles. The same authors in another paper [45] investigated the consequences of the
energy conservation. They found that, in general, if there is energy conservation in f (R, T)
gravity then late-time stable accelerating solutions are not a general feature. However, with
energy non-conservation, it is possible to find a large class of solutions with a dynamic
Λ(T) which have late-time acceleration and are stable.

In our case, let us examine, first, if we have energy conservation or not. The LHS
of Equation (13) has zero divergence by virtue of the Bianchi identities. This implies
that the RHS must also have zero divergence. From this, it can be seen that there is only
one situation in which the usual energy conservation law holds. This is when dρ

dt = dp
dt .

Otherwise, in general, as is the case in this paper, there is a non-conservation of energy.

3. Model and Field Equations

The gravitational field for a spatially homogeneous and anisotropic Bianchi type-I
space-time is given by the line element:

ds2 = −dt2 + A2dx2 + B2dy2 + C2dz2. (15)

where A, B, C are metric functions of the cosmic time t. For the Bianchi type-I space-time
(14), the field Equation (13) in f (R,T) gravity yields the following dynamical equations:

..
B
B
+

..
C
C
+

.
B

.
C

BC
= Λ− (1 + 2λ)p, (16)

..
A
A

+

..
C
C
+

.
A

.
C

AC
= Λ− (1 + 2λ)p, (17)

..
A
A

+

..
B
B
+

.
A

.
B

AB
= Λ− (1 + 2λ)p, (18)

.
A

.
B

AB
+

.
B

.
C

BC
+

.
A

.
C

AC
= Λ + (1 + 2λ)ρ, (19)

where an over-dot denotes the ordinary derivative with respect to cosmic time t. We
assume that the matter content obeys the usual equation of state:

p = ωρ, −1 ≤ ω ≤ 1. (20)

The spatial volume (V) and average scale factor (a) for the Bianchi type-I space- time
are given by, respectively:

V = ABC, (21)

a = (ABC)
1
3 = V

1
3 . (22)

An average Hubble parameter (H) for the Bianchi type-I is defined by:

H =
1
3
(H1 + H2 + H3), (23)

where H1 =
.
A
A , H2 =

.
B
B , and H3 =

.
C
C are the directional Hubble parameters along the

X, Y, and Z axes, respectively.
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Equations (22) and (23) can also be written in the form:

H =

.
a
a
=

1
3

( .
A
A

+

.
B
B
+

.
C
C

)
. (24)

The expansion scalar (θ), shear scalar (σ), and anisotropy parameter Am are defined
as, respectively:

θ = 3H = 3
.
a
a

, (25)

σ2 =
1
2

(
3

∑
I=1

H2
i −

1
3

θ2

)
, (26)

Am =
2σ2

3H2 . (27)

From Equations (16)–(18), we can obtain the following equations:

..
A
A
−

..
B
B
+

.
C
C

( .
A
A
−

.
B
B

)
= 0, (28)

..
B
B
−

..
C
C
+

.
A
A

( .
B
B
−

.
C
C

)
= 0, (29)

..
A
A
−

..
C
C
+

.
B
B

( .
A
A
−

.
C
C

)
= 0. (30)

These equations imply that:

A
B

= c1exp
(

d1

∫ dt
a3

)
, (31)

B
C

= c2exp
(

d2

∫ dt
a3

)
, (32)

A
C

= c3exp
(

d3

∫ dt
a3

)
, (33)

where c1, c2, c3 and d1, d2, d3 are the constants of integration. From Equations (31)–(33), we
can easily obtain the metric potentials A, B, and C as:

A = m1aexp
[

2k1 + k2

3

∫ dt
a3

]
, (34)

B = m2aexp
[

k2 − k1

3

∫ dt
a3

]
, (35)

C = m3aexp
[
− k1 + 2k2

3

∫ dt
a3

]
, (36)

where m1, m2, m3 and k1, k2 are arbitrary constants of integration satisfying m1m2m3 = 1.
The deceleration parameter (q) is defined as:

q = − a
..
a

.
a2 . (37)

Then, Equations (13)–(16) can be expressed in terms of H, q, and σ as:

3H2 − σ2 = Λ + (1 + 2λ)ρ, (38)
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H2(2q− 1)− σ2 = (1 + 2λ)p−Λ. (39)

4. Solution to Field Equations

Equations (14) and (16)–(20), which are obtained from the field Equation (13), represent
six equations in the six unknown quantities—i.e., A, B, C, ρ, p, and Λ, respectively. Hence,
one can try to solve for the system directly. However, this is very difficult. Additionally, we
care about seeking suitable cosmological solutions that exhibit a transition from decelera-
tion early on, to acceleration at late times, in keeping with recent observations [1–5]. In this
investigation, we assume that the deceleration parameter q can be expanded as a function
of the Hubble parameter H [41]. There are many different assumptions that can be adopted
to solve this system. The motivation for considering the time-dependent deceleration
parameter q is due to the fact that the universe exhibits a phase transition from the past
decelerating expansion to the recent accelerating one, as evidenced by observations [1–5].
The deceleration parameter is a geometric parameter which describes the acceleration or
deceleration of the universe depending on its sign. In this context, it is known that if q < 0,
then the universe has accelerating expansion; if q > 0, then the universe has decelerating
expansion; if q = 0, then the universe has a constant rate of expansion; and if q < −1, then
the accelerating expansion is dubbed super-exponential expansion.

Motivated by the above, in order to explain the behavior of the universe, we chose
the deceleration parameter as a function of the Hubble parameter H as proposed by
Tiwari et al. [41]:

q = α− β

H
. (40)

Here, α and β are constants and β > 0. This form of the deceleration parameter yields
the required transition from positive to negative as we desire. Equation (40) leads to the
following solution for the scale factor:

a = k1

(
eβt − 1

) 1
1+α , (41)

where k1 is a constant. The directional Hubble parameters H1, H2, and H3 are given
by, respectively:

H1 =
βeβt

(1 + α)
(
eβt − 1

) + (2k1 + k2)

3k3
1
(
eβt − 1

)3/(1+α)
, (42)

H2 =
βeβt

(1 + α)
(
eβt − 1

) + (k2 − k1)

3k3
1
(
eβt − 1

)3/(1+α)
, (43)

H3 =
βeβt

(1 + α)
(
eβt − 1

) − (k1 + 2k2)

3k3
1
(
eβt − 1

)3/(1+α)
. (44)

The spatial volume V, Hubble parameter H, expansion scalar θ, shear scalar σ2, anisotropy
parameter Am, and deceleration parameter q take the following forms, respectively:

V = k3
1

(
eβt − 1

) 3
1+α , (45)

H =
βeβt

(1 + α)
(
eβt − 1

) , (46)

θ =
3β

(1 + α)
(
1− e−βt

) , (47)

σ2 =
k2

1 + k2
2 + k1k2

3k6
1
(
eβt − 1

) 6
1+α

, (48)
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Am =
2(k2

1 + k2
2 + k1k2)(1 + α)2

9β2k6
1e2βt

(
eβt − 1

) 4−2α
1+α

, (49)

q = −1 + (1 + α)e−βt. (50)

Equations (41)–(50) are determined essentially from (40), and are the kinematic quanti-
ties. The field Equation (13), on the other hand is basically used to determine the dynamical
quantities, viz., the energy density ρ, pressure p, and cosmological parameter Λ.

From Equations (17)–(19), we obtain energy density ρ and pressure p:

ρ =
1

(1 + ω)(1 + 2λ)

 2β2eβt

(1 + α)
(
eβt − 1

)2 −
2
(
k2

1 + k2
2 + k1k2

)
3k6

1
(
eβt − 1

) 6
1+α

, (51)

p =
ω

(1 + ω)(1 + 2λ)

 2β2eβt

(1 + α)
(
eβt − 1

)2 −
2
(
k2

1 + k2
2 + k1k2

)
3k6

1
(
eβt − 1

) 6
1+α

, (52)

The cosmological parameter Λ = λ(ρ− p) is given by:

Λ = λ

 2(1−ω)β2eβt

(1 + ω)(1 + 2λ)(1 + α)
(
eβt − 1

)2 −
(1−ω)

(1 + ω)(1 + 2λ)

2
(
k2

1 + k2
2 + k1k2

)
3k6

1
(
eβt − 1

) 6
1+α

. (53)

For our Bianchi model (14), we observe that the spatial volume V is zero and expansion
scalar θ are infinite at t = 0. Thus, the universe starts evolving with zero volume and
an infinite rate of expansion at t = 0. Equations (34)–(36) and (41) show that the scale
factors also vanish at t = 0, hence the model has a “point type” singularity at the initial
epoch. Initially, at t = 0 the Hubble parameter H and shear scalar σ2 are infinite. The
energy density ρ, pressure p and cosmological constant Λ are also infinite. As t tends
to infinity, V becomes infinitely large, whereas σ2 approaches zero. Later, the energy
density ρ and pressure p converge to zero. The cosmological parameter Λ also approaches
a constant later. The deceleration parameter q for the model is a constant α at t = 0, and
as t increases—i.e., when it is (1/β) log(1 + α)—q is zero, which shows that there will be
a transition to acceleration. It is equal to −1 when t tends to infinity, which shows that
the model describes the accelerating phase of the universe. The anisotropy parameter
Am gives a measure of the anisotropy of the model, and is given by Equation (49), which
is large early on as t→ 0 but decreases very rapidly [46]. Depending upon the choice
of parameters of the model (α and β), we can make the anisotropy less than one part in
105 at the time of decoupling, in keeping with the observations of the cosmic microwave
background radiation. In other words, the anisotropy is effectively erased at the time of
decoupling, and the universe is effectively isotropic thereafter.

As a matter of interest, the solution for Λ = 0, which also means λ = 0 from
Equation (14), can now be easily given. All the kinematic quantities are the same as
before, viz., Equations (41)–(50). The density and pressure are given by:

ρ = p =
1

(1 + ω)

 2β2eβt

(1 + α)
(
eβt − 1

)2 −
2
(
k2

1 + k2
2 + k1k2

)
3k6

1
(
eβt − 1

) 6
1+α

.

This corresponds to a stiff matter solution.

4.1. Some Cosmological Distance Parameters: Cosmological Red-Shift

The age and size of the universe is defined by the Hubble parameter. From Equation (46),
the Hubble parameter is:

H =
βeβt

(1 + α)
(
eβt − 1

) .
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From this, we obtain:
H
H0

=
eβt(eβt0 − 1

)
eβt0
(
eβt − 1

) , (54)

where H0 is the present value of the Hubble parameter and t0 is the present time.
The following equation explains the relationship between the scale factor a and red-

shift z:
a =

a0

1 + z
, (55)

where a0 is the present value of the scale factor. Here, we assume a0 = 1. Using Equation (41),
we can also write:

a =
1

1 + z
= k1

(
eβt − 1

) 1
1+α . (56)

This enables us to write the Hubble parameter as:

H = H0

(
1− e−βt0

)[
{k1(1 + z)}1+α + 1

]
. (57)

Equation (57) represents the value of the Hubble parameter in terms of the red
shift parameter.

The distance modulus (µ) is given by:

µ(z) = 5logdL + 25, (58)

where dL stands for the luminosity distance, which is defined by:

dL = r1(1 + z)a0. (59)

A source emits a photon at r = r1 at time t = t0, and an observer receives it at time t,
located at r = 0. Then, we can calculate r1 from the following equation:

r1 =
∫ t0

t

dt
a

=
∫ t0

t

dt

k1
(
eβt − 1

) 1
1+α

. (60)

To solve this integral, we take α = 0 without any loss of generality. We obtain the
value of r1 as:

r1 =
1

βk1
log
(

1− e−βt0

1− e−βt

)
. (61)

Hence, from Equations (59) and (60), we obtain the expression for the luminosity
distance as:

dL =
1

βk1
log
[(

1− e−βt0
)(
{k1(1 + z)}1+α + 1

)]
(1 + z). (62)

From Equations (58) and (62), we obtain the expression for the distance modulus.

4.2. State-Finder Parameters

The state-finder parameters are a cosmological diagnostic pair {r, s} which permit
us to examine the characteristics of dark energy independent of a model. Moreover,
like the dependence of the Hubble and deceleration parameters on the first and second
derivatives, respectively, the state-finder parameters depend on the third derivative of the
scale factor, a(t). These parameters were introduced by Sahni et al. [47] and Alam et al. [48].
They are defined as:

r =
...
a

aH3 , (63)

s =
r− 1

3
(

q− 1
2

) . (64)
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The values of the state-finder parameters for our model are, respectively:

r = 1−
3β + (1 + α)2(1− e−2βt)(

eβt − 1
) , (65)

s =
2(1 + α)2(1− e−2βt)− 6β(
eβt − 1

)[
6(1 + α)e−βt − 9

] . (66)

When (r, s) = (1, 0), we have the ΛCDM model, while for (r, s) = (1, 1), we have
the cold dark mater (CDM) limit [49]. Additionally, when r < 1 we have a quintessence
region and for s > 0 the phantom region. We observe that for our model, when t→ 0 ,
{r, s} → {∞,−∞}, and as t→ ∞ , {r, s} → {1, 0} . This shows that our model starts from
an Einstein static era and asymptotically approaches the ΛCDM model as t→ ∞ .

5. Conclusions

In this paper, we discussed a spatially homogeneous and anisotropic Bianchi type-I
space-time in the framework of f (R, T) gravity. A specific choice of f (R, T) = R + 2 f1(T),
where f1(T) = −λT, has been considered to explore some exact solutions of an anisotropic
and homogeneous Bianchi type-I space-time. One can ask the question regarding what
constraints are placed on the coupling parameter λ. It is most interesting to note that solar
system tests do not place any restrictions on the value of λ, since such tests are based on
the vacuum field equations—i.e., the energy momentum tensor is zero, which also implies
for the trace that T = 0 [50]. Nagpal et al. [51] have shown that the value λ = 65 allows for
structure formation, which is consistent with a wide variety of observational data and a
transition from deceleration to acceleration. Bhattacharjee and Sahoo [52] have studied
bounds from big bang nucleosynthesis in f (R, T) gravity, and found the following stronger
bound: −0.42 ≤ λ ≤ 0.07 from the abundances of helium and deuterium. The Lithium
problem persists as in the standard model.

For obtaining deterministic solutions of the field equations, we employed a variation
law in which the deceleration parameter q is assumed to be a function of the Hubble

parameter H—i.e., q = α− β
H , which gives the scale factor a = k1

(
eβt − 1

) 1
1+α (where α, β,

and k1 are constants and β > 0). Since we also assumed a barotropic equation of state,
Equation (20), we can have the usual radiation and matter-dominated eras. We find that
the universe expands exponentially until later times and that it also becomes more or less
isotropic by the time of decoupling. The cosmological parameter Λ is very large at initial
times and approaches a constant as t tends to infinity. This is in agreement with the work
of Amirhashchi [53] and Yadav [54], and can help in finding a solution for the cosmological
constant problem. The cosmological constant problem [55] has yet to be solved, despite
much research in the area. One possibility is a dynamic cosmological parameter [56] which
can fit the observations [57] or fit the observations even better than the standard ΛCDM
model [58]. For t→ 0 , the deceleration parameter q tends to be constant. We also discussed
some cosmological distance parameters and state-finder parameters. Finally, we noticed
from the state-finder parameters {r, s} that the evolution of the universe begins from an
Einstein static era (r → ∞, s→ −∞) and approaches the ΛCDM model (r → 1, s→ 0) at
later times.
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