Multimessenger Probes for New Physics in Light of A. Sakharov’s Legacy in Cosmoparticle Physics †
Abstract
:1. Introduction
2. Cosmoparticle Physics of Dark Matter
2.1. From WIMP Miracle to DM Reality
2.2. Multiple Charged Constituents of Composite Higgs Boson
2.3. Messengers of Dark Atom Physics
2.3.1. Dark Atoms and Their Charged Constituents
2.3.2. Structure of Dark Atoms
2.3.3. Cosmological Evolution of Dark Atoms
2.3.4. Indirect Effects of Dark Atoms
2.3.5. Dark Atom Effects in Underground Detectors
2.4. Cosmophenomenology of Dark Matter Physics
3. PBH Messengers of BSM Models
3.1. PBHs from Superheavy Metastable Particles
3.2. PBHs from Phase Transitions during Inflation
3.3. PBHs from Bubble Collisions in First-Order Phase Transitions
3.4. PBH Formation in Succession of U(1) Phase Transitions
3.5. Cosmoarchaeology of PBH Evaporation
3.6. PBH Dark Matter
4. Anti-Matter Stars as the Probe for Baryosynthesis in Inflationary Universe
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SM | Standard Model |
BSM | Beyond the Standard Model |
BBN | Big Bang Nucleosynthesis |
AGN | Active Galactic Nucleus |
BH | Black Hole |
PBH | Primordial Black Hole |
DM | Dark Matter |
CDM | Cold Dark Matter |
MACHO | Massive Astrophysical Compact Halo Object |
GW | Gravitational Wave |
SUSY | Supersymmetry |
LSP | Lightest Supersymmetric Particle |
SUGRA | Supergravity |
WTC | Walking TechniColor |
References
- Sakharov, A.D. Cosmoparticle physics—A multidisciplinary science. Vestnik AN SSSR 1989, 4, 39–40. [Google Scholar]
- Sakharov, A.D. On Cosmoparticle physics. Direct reproduction and English translation of the handwritten original. In Proceedings of the 1 International Conference on Cosmoparticle Physics “Cosmion-94”, Dedicated to 80 Anniversary of Ya.B. Zeldovich and 5 Memorial of A.D. Sakharov, Moscow, Russia, 5–14 December 1994; Khlopov, M.Y., Prokhorov, M.E., Starobinsky, A.A., Thanh Van, T., Eds.; Editions Frontieres: Paris, France, 1996; pp. VII–XII. [Google Scholar]
- Linde, A.D. Particle Physics and Inflationary Cosmology; Harwood: Chur, Switzerland, 1990. [Google Scholar]
- Kolb, E.W.; Turner, M.S. The Early Universe; Addison-Wesley: Boston, MA, USA, 1990. [Google Scholar]
- Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe Hot Big Bang Theory. Cosmological Perturbations and Inflationary Theory; World Scientific: Singapore, 2011. [Google Scholar]
- Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe Hot Big Bang Theory; World Scientific: Singapore, 2011. [Google Scholar]
- Khlopov, M.Y. Fundamental cross-disciplinary studies of microworld and Universe. Vestn. Russ. Acad. Sci. 2001, 71, 1133–1137. [Google Scholar]
- Khlopov, M.Y. Cosmoparticle Physics; World Scientific: Singapore, 1999. [Google Scholar]
- Khlopov, M.Y. Fundamentals of Cosmoparticle Physics; CISP-Springer: Cambridge, UK, 2012. [Google Scholar]
- Khlopov, M. Cosmological Reflection of Particle Symmetry. Symmetry 2016, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M. Multi-messenger cosmology of new physics. J. Phys. Conf. Ser. 2020, 1690, 012182. [Google Scholar] [CrossRef]
- Khlopov, M. What comes after the Standard model? Prog. Part. Nucl. Phys. 2021, 116, 103824. [Google Scholar] [CrossRef]
- Ketov, S.V.; Khlopov, M.Y. Cosmological Probes of Supersymmetric Field Theory Models at Superhigh Energy Scales. Symmetry 2019, 11, 511. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y. Fundamental particle structure in the cosmological dark matter. Int. J. Mod. Phys. A 2013, 28, 1330042. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y. Primordial black holes. Res. Astron. Astrophys. 2010, 10, 495–528. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y. Cosmological probes for supersymmetry. Symmetry 2015, 7, 815–842. [Google Scholar] [CrossRef] [Green Version]
- Bertone, G. Particle Dark Matter: Observations, Models and Searches; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Frenk, C.S.; White, S.D.M. Dark matter and cosmic structure. Ann. Phys. 2012, 524, 507–534. [Google Scholar] [CrossRef] [Green Version]
- Gelmini, G.B. Search for dark matter. Int. J. Mod. Phys. A 2008, 23, 4273. [Google Scholar] [CrossRef]
- Aprile, E.; Profumo, S. Focus on dark matter and particle physics. New J. Phys. 2009, 11, 105002. [Google Scholar] [CrossRef]
- Feng, J.L. Dark matter candidates from particle physics and methods of detection. Ann. Rev. Astron. Astrophys. 2010, 48, 495–545. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.B.; Georgi, H. SU(2) × U(1) Breaking by Vacuum Misalignment. Phys. Lett. B 1984, 136, 183. [Google Scholar] [CrossRef]
- Kaplan, D.B.; Georgi, H.; Dimopoulos, S. Composite Higgs Scalars. Phys. Lett. B 1984, 136, 187. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Cohen, A.G.; Katz, E.; Nelson, A.E.; Gregoire, T.; Wacker, J.G. The minimal moose for a little Higgs. J. High Energ. Phys. 2002, 08, 021. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Cohen, A.G.; Katz, E.; Nelson, A.E. The Littlest Higgs. J. High Energ. Phys. 2002, 7, 034. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Contino, R.; Pomarol, A. The minimal composite Higgs model. Nucl. Phys. B 2005, 719, 165–187. [Google Scholar] [CrossRef] [Green Version]
- Contino, R.; Da Rold, L.; Pomarol, A. Light custodians in natural composite Higgs models. Phys. Rev. D 2007, 75, 055014. [Google Scholar] [CrossRef] [Green Version]
- Goertz, F. Composite Higgs theory. Proc. Sci. 2018, ALPS2018, 12. [Google Scholar] [CrossRef] [Green Version]
- Kats, Y.; McCullough, M.; Perez, G.; Soreq, Y.; Thaler, J. Colorful Twisted Top Partners and Partnerium at the LHC. J. High Energ. Phys. 2017, 06, 126. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, S.; Kvedaraite, S.; Perez, G.; Savoray, I. Bounds and prospects for stable multiply charged particles at the LHC. J. High Energ. Phys. 2019, 2019, 41. [Google Scholar] [CrossRef] [Green Version]
- Sannino, F.; Tuominen, K. Orientifold theory dynamics and symmetry breaking. Phys. Rev. D 2005, 71, 051901. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.K.; Hsu, S.D.H.; Sannino, F. Composite higgs from higher representations. Phys. Lett. B 2004, 597, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, D.D.; Sannino, F.; Tuominen, K. Light composite higgs from higher representations versus electroweak precision measurements: Predictions for LHC. Phys. Rev. D 2005, 72, 055001. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, D.D.; Sannino, F.; Tuominen, K. Light composite higgs and precision electroweak measurements on the Z resonance: An update. Phys. Rev. D 2006, 73, 037701. [Google Scholar] [CrossRef] [Green Version]
- Gudnason, S.B.; Kouvaris, C.; Sannino, F. Towards working technicolor: Effective theories and dark matter. Phys. Rev. D 2006, 73, 115003. [Google Scholar] [CrossRef] [Green Version]
- Gudnason, S.B.; Kouvaris, C.; Sannino, F. Dark matter from new technicolor theories. Phys. Rev. D 2006, 74, 095008. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y.; Kouvaris, C. Strong interactive massive particles from a strong coupled theory. Phys. Rev. D 2008, 77, 065002. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y.; Kouvaris, C. Composite dark matter from a model with composite Higgs boson. Phys. Rev. D 2008, 78, 065040. [Google Scholar] [CrossRef] [Green Version]
- Perl, M.L.; Lee, E.R.; Loomba, D. Searches for Fractionally Charged Particles. Annu. Rev. Nucl. Part. Sci. 2009, 59, 47–65. [Google Scholar] [CrossRef]
- Beylin, V.; Khlopov, M.; Kuksa, V.; Volchaanskiy, N. New physics of strong interaction and Dark Universe. Universe 2020, 6, 196. [Google Scholar] [CrossRef]
- Khlopov, M.Y. Composite dark matter from 4th generation. JETP Lett. 2006, 83, 1–4. [Google Scholar] [CrossRef]
- Beylin, V.; Khlopov, M.; Kuksa, V.; Volchanskiy, N. Hadronic and Hadron-Like Physics of Dark Matter. Symmetry 2019, 11, 587. [Google Scholar] [CrossRef] [Green Version]
- Cahn, R.N.; Glashow, S. Chemical Signatures for Superheavy Elementary Particles. Science 1981, 213, 607. [Google Scholar] [CrossRef] [Green Version]
- Pospelov, M. Particle Physics Catalysis of Thermal Big Bang Nucleosynthesis. Phys. Rev. Lett. 2007, 98, 231301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohri, K.; Takayama, F. Big bang nucleosynthesis with long-lived charged massive particles. Phys. Rev. D 2007, 76, 063507. [Google Scholar] [CrossRef] [Green Version]
- Bikbaev, T.E.; Khlopov, M.Y.; Mayorov, A.G. Numerical simulation of dark atom interaction with nuclei. Bled Work. Phys. 2020, 21, 105–117. [Google Scholar]
- Sommerfeld, A. Ueber die beugung und bremsung der elektronen. Ann. Phys. 1931, 11, 257–330. [Google Scholar] [CrossRef]
- Gamow, G. Zur Quantentheorie des Atomkernes. Z. Phys. 1928, 51, 204–212. [Google Scholar] [CrossRef]
- Sakharov, A.D. Interaction of an electron and positron in pair production. Sov. Phys. Usp. 1991, 34, 375–377. [Google Scholar] [CrossRef]
- Belotsky, K.M.; Khlopov, M.Y.; Shibaev, K.I. Sakharov’s enhancement in the effect of 4th generation neutrino. Gravit. Cosmol. Suppl. 2000, 6, 140–150. [Google Scholar]
- Arbuzov, A.B.; Kopylova, T.V. On relativization of the Sommerfeld-Gamow-Sakharov factor. J. High Energy Phys. 2012, 2012, 9. [Google Scholar] [CrossRef] [Green Version]
- Zeldovich, Y.B.; Klypin, A.A.; Khlopov, M.Y.; Chechetkin, V.M. Astrophysical bounds on the mass of heavy stable neutral leptons. Sov. J. Nucl. Phys. 1980, 31, 664–669. [Google Scholar]
- Fargion, D.; Khlopov, M.Y.; Konoplich, R.V.; Mignani, R. Bounds on very heavy relic neutrinos by their annihilation in galactic halo. Phys. Rev. D 1995, 52, 1828–1836. [Google Scholar] [CrossRef] [Green Version]
- Cirelli, M. Dark Matter Indirect searches: Phenomenological and theoretical aspects. J. Phys. Conf. Ser. 2013, 447, 012006. [Google Scholar] [CrossRef]
- Roszkowski, L.; Sessolo, E.M.; Trojanowski, S. WIMP dark matter candidates and searches-current status and future prospects. Rept. Prog. Phys. 2018, 81, 066201. [Google Scholar] [CrossRef] [Green Version]
- Gaskins, J.M. A review of indirect searches for particle dark matter. Contemp. Phys. 2016, 57, 496–525. [Google Scholar] [CrossRef]
- Arcadi, G.; Dutra, M.; Ghosh, P.; Lindner, M.; Mambrini, Y.; Pierre, M.; Profumo, D.; Queiroz, F.S. The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 2018, 78, 203. [Google Scholar] [CrossRef] [PubMed]
- Belotsky, K.M.; Esipova, E.A.; Kamaletdinov, A.K.; Shlepkina, E.S.; Solovyov, M.L. Indirect effects of dark matter. IJMPD 2019, 28, 1941011. [Google Scholar] [CrossRef] [Green Version]
- Cudell, J.-R.; Khlopov, M.Y.; Wallemacq, Q. Dark atoms and the positron-annihilation-line excess in the galactic bulge. Adv. High Energy Phys. 2014, 2014, 869425. [Google Scholar] [CrossRef]
- Khlopov, M. Direct and Indirect Probes for Composite Dark Matter. Front. Phys. 2019, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Bulekov, O.V.; Khlopov, M.Y.; Romaniouk, A.S.; Smirnov, Y.S. Search for Double Charged Particles as Direct Test for Dark Atom Constituents. Bled Work. Phys. 2017, 18, 11. [Google Scholar]
- Gani, V.A.; Khlopov, M.Y.; Voskresensky, D.N. Double charged heavy constituents of dark atoms and superheavy nuclear objects. Phys. Rev. D 2019, 99, 015024. [Google Scholar] [CrossRef] [Green Version]
- Dover, C.B.; Gaisser, T.K.; Steigman, G. Cosmological constraints on new stable hadrons. Phys. Rev. Lett. 1979, 42, 1117–1120. [Google Scholar] [CrossRef]
- Wolfram, S. Abundances of stable particles produced in the early universe. Phys. Lett. B 1979, 82, 65–68. [Google Scholar] [CrossRef]
- Starkman, G.D.; Gould, A.; Esmailzadeh, R.; Dimopoulos, S. Opening the window on strongly interacting dark matter. Phys. Rev. D 1990, 41, 3594–3603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javorsek, D.; Elmore, D.; Fischbach, E.; Granger, D.; Miller, T.; Oliver, D.; Teplitz, V. New experimental limits on strongly interacting massive particles at the TeV scale. Phys. Rev. Lett. 2001, 87, 231804. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S. Uranus’s anomalously low excess heat constrains strongly interacting dark matter. Phys. Rev. D 2004, 70, 103517. [Google Scholar] [CrossRef] [Green Version]
- Mack, G.D.; Beacom, J.F.; Bertone, G. Towards closing the window on strongly interacting dark matter: Far-reaching constraints from Earth’s heat flow. Phys. Rev. D 2007, 76, 043523. [Google Scholar] [CrossRef] [Green Version]
- Wandelt, B.D.; Dave, R.; Farrar, G.R.; McGuire, P.C.; Spergel, D.N.; Steinhardt, P.J. Self-Interacting Dark Matter. In Proceedings of the IV International Symposium “Sources and Detection of Dark Matter and Dark Energy in the Universe”, Marina del Rey, CA, USA, 23–25 February 2000; pp. 263–274. [Google Scholar]
- McGuire, P.C.; Steinhardt, P.J. Cracking Open the Window for Strongly Interacting Massive Particles as the Halo Dark Matter. In Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, 7–15 August 2001; p. 1566. [Google Scholar]
- Zaharijas, G.; Farrar, G.R. A window in the dark matter exclusion limits. Phys. Rev. D 2005, 72, 083502. [Google Scholar] [CrossRef] [Green Version]
- McCammon, D.; Almy, R.; Deiker, S.; Morgenthaler, J.; Kelley, R.L.; Marshall, F.J.; Moseley, S.H.; Stahle, C.K.; Szymkowiak, A.E. A sounding rocket payload for X-ray astronomy employing high-resolution microcalorimeters. Nucl. Instr. Meth. 1996, 370, 266–268. [Google Scholar] [CrossRef]
- McCammon, D.; Almy, R.; Apodaca, E.; Tiest, W.B.; Cui, W.; Deiker, S.; Galeazzi, M.; Juda, M.; Lesser, A.; Miharaet, T. A high spectral resolution observation of the soft X-ray diffuse background with thermal detectors. Astrophys. J. 2002, 576, 188–203. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Cerulli, R.; Montecchia, F.; Amato, M.; Ignesti, G.; Incicchitti, A.; Prosperi, D.; Dai, C.; He, H. Search for WIMP annual modulation signature: Results from DAMA/NaI-3 and DAMA/NaI-4 and the global combined analysis. Phys. Lett. B 2000, 480, 23–31. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Cappella, F.; Cerulli, R.; Montecchia, F.; Nozzoli, F.; Incicchitti, A.; Prosperi, D.; Dai, C.; Kuang, H. Dark matter search. Riv. Nuovo Cim. 2003, 26, 1–73. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Cappella, F.; Cerulli, R.; Dai, C.; d’Angelo, A.; He, H.; Incicchitti, A.; Kuang, H.; Ma, J. First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 2008, 56, 333–355. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; d’Angelo, S.; Di Marco, A.; Montecchia, F.; Cappella, F.; d’Angelo, A.; Incicchitti, A.; Caracciolo, V.; Castellano, S. Dark Matter investigation by DAMA at Gran Sasso. Int. J. Mod. Phys. A 2013, 28, 1330022. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.L.; d’Angelo, A.; Di Marco, A.; He, H.L. New Model independent Results From the First Six Full Annual Cycles of DAMA/LIBRA-Phase2. Bled Work. Phys. 2018, 19, 27–57. [Google Scholar]
- Khlopov, M.; Mayorov, A.; Soldatov, E. Dark Atoms of the Universe: Towards OHe nuclear physics. Bled Work. Phys. 2010, 11, 73. [Google Scholar]
- Khlopov, M. Dark Atoms and Puzzles of Dark Matter Searches. Int. J Mod. Phys. A 2014, 29, 1443002. [Google Scholar] [CrossRef] [Green Version]
- Abrams, D.; Akerib, D.; Barnes, P. Exclusion limits on the WIMP nucleon cross-section from the cryogenic dark matter search. Phys. Rev. D 2002, 66, 122003. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.; Armel-Funkhouser, M.; Attisha, M.; Young, B. Exclusion limits on the WIMP-nucleon cross section from the first run of the cryogenic dark matter search in the soudan underground laboratory. Phys. Rev. D 2005, 72, 052009. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Z.; Akerib, D.; Arrenberg, S. Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the soudan underground laboratory. Phys. Rev. Lett. 2009, 102, 011301. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Arisaka, K.; Arneodo, F. First dark matter results from the XENON100 experiment. Phys. Rev. Lett. 2010, 105, 131302. [Google Scholar] [CrossRef] [PubMed]
- Akerib, D.S.; Alsum, S.; Araújo, H.M.; Bai, X.; Balajthy, J.; Beltrame, P.; Bernard, E.P.; Bernstein, A.; Biesiadzinski, T.P.; Boulton, E.M.; et al. Search for annual and diurnal rate modulations in the LUX experiment. Phys. Rev. D 2018, 98, 062005. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y.; Chechetkin, V.M. Antiprotons in the universe as a cosmological test of grand unification. Sov. J. Part. Nucl. 1987, 18, 267–288. [Google Scholar]
- Polnarev, A.G.; Khlopov, M.Y. Cosmology, primordial black holes, and supermassive particles. Sov. Phys. Uspekhi 1985, 28, 213–232. [Google Scholar] [CrossRef]
- Hawking, S.W.; Moss, I.G.; Stewart, J.M. Bubble collisions in the very early universe. Phys. Rev. D 1982, 26, 2681–2693. [Google Scholar] [CrossRef]
- Konoplich, R.V.; Rubin, S.G.; Sakharov, A.S.; Khlopov, M.Y. Formation of black holes in the first order phase transitions as cosmological test of mechanisms of symmetry breaking. Phys. Atom. Nucl. 1999, 62, 1593–1600. [Google Scholar]
- Khlopov, M.Y.; Rubin, S.G. Cosmological Pattern of Microphysics in Inflationary Universe; Kluwer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Zeldovich, Y.B.; Novikov, I.D. The hypothesis of cores retarded during expansion and the hot cosmological model. Sov. Astron. 1967, 10, 602–609. [Google Scholar]
- Belotsky, K.M.; Dmitriev, A.E.; Esipova, E.A.; Gani, V.A.; Grobov, A.V.; Khlopov, M.Y.; Kirillov, A.A.; Rubin, S.G.; Svadkovsky, I.V. Signatures of primordial black hole dark matter. Mod. Phys. Lett. A 2014, 29, 1440005. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Particle creation by black holes. Comm. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Carr, B.J. The primordial black hole mass spectrum. Astroph. J. 1975, 201, 1–19. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Polnarev, A.G. Primordial black holes as a cosmological test of grand unification. Phys. Lett. B 1980, 97, 383–387. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Malomed, B.A.; Zel’dovich, Y.B. Gravitational instability of scalar fields and formation of primordial black holes. Mon. Not. R. Astron. Soc. 1985, 215, 575–589. [Google Scholar] [CrossRef]
- Kadnikov, A.F.; Maslyankin, V.I.; Khlopov, M.Y. Modelling of evolution of quasi-stellar systems, formed by particles and antiparticles in early Universe. Astrophysics 1990, 31, 523–531. [Google Scholar] [CrossRef]
- Kalashnikov, O.K.; Khlopov, M.Y. On the possibility of checking the cosmology of asymptotically free SU(5) theory. Phys. Lett. B 1983, 127, 407–422. [Google Scholar] [CrossRef]
- Kofman, L.A.; Linde, A.D. Generation of density perturbations in the inflationary cosmology. Nucl. Phys. B 1987, 282, 555–626. [Google Scholar] [CrossRef]
- Sakharov, A.S.; Khlopov, M.Y. Cosmological signatures of family symmetry breaking in multicomponent inflation models. Phys. Atom. Nucl. 1993, 56, 412–417. [Google Scholar]
- Dymnikova, I.; Khlopov, M.Y.; Koziel, L.; Rubin, S.G. Quasilumps from first-order phase transitions. Gravit. Cosmol. 2000, 6, 311–318. [Google Scholar]
- Lewicki, M.; Vaskonen, V. On bubble collisions in strongly supercooled phase transitions. Phys. Dark Universe 2020, 30, 100672. [Google Scholar] [CrossRef]
- Rubin, S.G.; Sakharov, A.S.; Khlopov, M.Y. Formation of primordial galactic nuclei at phase transitions in the early universe. JETP 2001, 92, 921–929. [Google Scholar] [CrossRef] [Green Version]
- Rubin, S.G.; Khlopov, M.Y.; Sakharov, A.S. Primordial nonlinear structures and massive black holes from early universe. Gravit. Cosmol. Suppl. 2000, 6, 51–58. [Google Scholar]
- Khlopov, M.Y.; Rubin, S.G.; Sakharov, A.S. Primordial structure of massive black hole clusters. Astropart. Phys. 2005, 23, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Belotsky, K.M.; Dokuchaev, V.I.; Eroshenko, Y.N.; Esipova, E.A.; Khlopov, M.Y.; Khromykh, L.A.; Kirillov, A.A.; Nikulin, V.V.; Rubin, S.G.; Svadkovsky, I.V. Clusters of primordial black holes. Eur. Phys. J. C 2019, 79, 246. [Google Scholar] [CrossRef] [Green Version]
- Arzoumanian, Z.; Baker, P.T.; Blumer, H.; Becsy, B.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; Chatterjee, S.; Chen, S.; Cordes, J.M.; et al. The NANOGrav 12.5-year Data Set: Search For An Isotropic Stochastic Gravitational-Wave Background. Astrophys. J. Lett. 2020, 905, L34. [Google Scholar]
- Novikov, I.D.; Polnarev, A.G.; Starobinski, A.A.; Zeldovich, Y.B. Primordial black holes. Astron. Astrophys. 1979, 80, 104–109. [Google Scholar]
- Polnarev, A.G.; Khlopov, M.Y. Dustlike stages in the early universe and constraints on the primordial black-hole spectrum. Sov. Astron. 1982, 26, 391–395. [Google Scholar]
- Chechetkin, V.M.; Khlopov, M.Y.; Sapozhnikov, M.G. Anti-proton interactions with light elements as a test of gut cosmology. Riv. Nuovo Cim. 1982, 5, 1–79. [Google Scholar] [CrossRef]
- Lemoine, M. Moduli constraints on primordial black holes. Phys. Lett. B 2000, 481, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y.; Barrau, A.; Grain, J. Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe. Class. Quantum Gravity 2006, 23, 1875–1882. [Google Scholar] [CrossRef]
- Carr, B.; Kuehnel, F.; Sandstad, M. Primordial black holes as dark matter. Phys. Rev. D 2016, 94, 083504. [Google Scholar] [CrossRef] [Green Version]
- Ali-Haimoud, Y.; Kamionkowski, M. Cosmic microwave background limits on accreting primordial black holes. Phys. Rev. D 2017, 95, 043534. [Google Scholar] [CrossRef] [Green Version]
- The LIGO Scientific Collaboration; The Virgo Collaboration; Abbott, B.P. The LIGO Scientific Collaboration; The Virgo Collaboration; Abbott, B.P. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. arXiv 2018, arXiv:1811.12907. [Google Scholar]
- Abbott, B.P.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. arXiv 2020, arXiv:2010.14527. [Google Scholar]
- Nitz, A.H.; Capano, C.D.; Kumar, S.; Wang, Y.-F.; Kastha, S.; Schäfer, M.; Dhurkunde, R.; Cabero, M. 3-OGC: Catalog of gravitational waves from compact-binary mergers. arXiv 2021, arXiv:2105.09151. [Google Scholar]
- Dolgov, A.D. Massive primordial black holes in contemporary and young universe (old predictions and new data). Int. J. Mod. Phys. A 2018, 33, 1844029. [Google Scholar] [CrossRef]
- The LIGO Scientific Collaboration; The Virgo Collaboration; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙. Phys. Rev. Lett. 2020, 125, 101102. [Google Scholar] [CrossRef] [PubMed]
- The LIGO Scientific Collaboration; The Virgo Collaboration; Abbott, R.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Properties and astrophysical implications of the 150 Msun binary black hole merger GW190521. Astrophys. J. Lett. 2020, 900, L13. [Google Scholar]
- Bringmann, T.; Depta, P.F.; Domcke, V.; Schmidt-Hoberg, K. Strong constraints on clustered primordial black holes as dark matter. Phys. Rev. D 2019, 99, 063532. [Google Scholar] [CrossRef] [Green Version]
- Sakharov, A.D. Violation of CP-invariance, C-asymmetry and baryon asymmetry of the Universe. JETP Lett. 1967, 5, 32. [Google Scholar]
- Kuzmin, V.A. CP violation and baryon asymmetry of the universe. JETP Lett. 1970, 12, 228. [Google Scholar]
- Chechetkin, V.M.; Khlopov, M.Y.; Sapozhnikov, M.G.; Zeldovich, Y.B. Astrophysical aspects of antiproton interaction with He (antimatter in the universe). Phys. Lett. B 1982, 118, 329–332. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Freese, K.; Rangarajan, R.; Srednicki, M. Baryogenesis during reheating in natural inflation and comments on spontaneous baryogenesis. Phys. Rev. D 1997, 56, 6155–6165. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, A.D. Matter and antimatter in the universe. Nucl. Phys. Proc. Suppl. 2002, 113, 40–49. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Rubin, S.G.; Sakharov, A.S. Possible origin of antimatter regions in the baryon dominated universe. Phys. Rev. D 2000, 62, 083505. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y. An antimatter globular cluster in our galaxy: A probe for the origin of matter. Gravit. Cosmol. 1998, 4, 69–72. [Google Scholar]
- Golubkov, Y.A.; Khlopov, M.Y. Anti-protons annihilation in the galaxy as a source of diffuse gamma background. Phys. Atom. Nucl. 2001, 64, 1821–1829. [Google Scholar] [CrossRef]
- Fargion, D.; Khlopov, M.Y. Antimatter bounds by anti-asteroids annihilations on planets and sun. Astropart. Phys. 2003, 19, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Belotsky, K.M.; Golubkov, Y.A.; Khlopov, M.Y.; Konoplich, R.V.; Sakharov, A.S. Anti-helium flux as a signature for antimatter globular clusters in our galaxy. Phys. Atom. Nucl. 2000, 63, 233–239. [Google Scholar] [CrossRef]
- Ting, S. The First Five Years of the Alpha Magnetic Spectrometer on the ISS. In Proceedings of the CERN Collquium, CERN, Geneva, Switzerland, 8 December 2016. [Google Scholar]
- Choutko, V.A. AMS Heavy Antimatter. In Proceedings of the AMS Days at la Palma, La Palma, Canary Islands, Spain, 9–13 April 2018. [Google Scholar]
- Poulin, V.; Salati, P.; Cholis, I.; Kamionkowski, M.; Silk, J. Where do the AMS-02 anti-helium events come from? arXiv 2019, arXiv:1808.08961. [Google Scholar]
- Khlopov, M.Y.; Kirichenko, A.O.; Mayorov, A.G. Anihelium flux from antimatter globular cluster. Bled Work. Phys. 2020, 21, 118–127. [Google Scholar]
- Blinnikov, S.I.; Dolgov, A.D.; Postnov, K.A. Antimatter and antistars in the universe and in the galaxy. Phys. Rev. D 2015, 92, 023516. [Google Scholar] [CrossRef] [Green Version]
- Kroupa, P.; Haslbauer, M.; Banik, I.; Nagesh, S.T.; Pflamm-Altenburg, J. Constraints on the star formation histories of galaxies in the Local Cosmological Volume. Mon. Not. R. Astr. Soc. 2020, 497, 37. [Google Scholar] [CrossRef]
- Chae, K.-H.; Lelli, F.; Desmond, H.; McGaugh, S.S.; Li, P.; Schombert, J.M. Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies. Astrophys. J. 2020, 904, 51. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khlopov, M. Multimessenger Probes for New Physics in Light of A. Sakharov’s Legacy in Cosmoparticle Physics. Universe 2021, 7, 222. https://doi.org/10.3390/universe7070222
Khlopov M. Multimessenger Probes for New Physics in Light of A. Sakharov’s Legacy in Cosmoparticle Physics. Universe. 2021; 7(7):222. https://doi.org/10.3390/universe7070222
Chicago/Turabian StyleKhlopov, Maxim. 2021. "Multimessenger Probes for New Physics in Light of A. Sakharov’s Legacy in Cosmoparticle Physics" Universe 7, no. 7: 222. https://doi.org/10.3390/universe7070222
APA StyleKhlopov, M. (2021). Multimessenger Probes for New Physics in Light of A. Sakharov’s Legacy in Cosmoparticle Physics. Universe, 7(7), 222. https://doi.org/10.3390/universe7070222