Spacetime Foam, Midisuperspace, and the Cosmological Constant
Abstract
:1. Spacetime Foam and the Cosmological Constant
“...it is essential to allow for fluctuations in the metric and gravitational interactions in any proper treatment of the compensation problem—the problem of compensation of ‘infinite’ energies that is so central to the physics of fields and particles.”
2. Evolution
3. Midisuperspace
4. WKB
- 1.
- There are de Sitter-like regions, in which f is large and is fixed at either or . In these regions, the expansion is large, with a sign determined by . But as long as
- 2.
- The de Sitter-like regions, and more generally regions with large expansion, have probabilities that are strongly, although not exponentially, suppressed. Probabilities are enhanced both for regions in which the sign of the expansion changes and for “nearby” regions where the expansion is small.
- 3.
- For most of the configuration space, the solutions appear to be genuinely nearly time independent: the small average expansion coming from “foamy” cancellations is preserved under evolution.
Funding
Acknowledgments
Conflicts of Interest
1 | For orientable three-manifolds, the prime decomposition is unique; for nonorientable manifolds, there is one free choice. |
2 | A related line of research asks about the asymptotic behavior of spacetimes with a positive cosmological constant [17,18,19,20]. Partial results exist, but the work so far assumes a slice on which the expansion is constant, or at least everywhere positive, and thus does not apply to the foamy spacetimes discussed here. |
References
- Will, C.M. Resource Letter PTG-1: Precision Tests of Gravity. Am. J. Phys. 2010, 78, 1240. [Google Scholar] [CrossRef] [Green Version]
- Martin, J. Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). Comptes Rendus Phys. 2012, 13, 566. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P. Quantum gravity in everyday life: General relativity as an effective field theory. Living Rev. Rel. 2004, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, S.M. The cosmological constant. Living Rev. Rel. 2001, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Wheeler, J.A. On the nature of quantum geometrodynamics. Ann. Phys. 1957, 2, 610. [Google Scholar] [CrossRef]
- Wheeler, J.A. The Lesson of the Black Hole. Proc. Am. Philos. Soc. 1981, 125, 25. [Google Scholar]
- Carlip, S. Hiding the cosmological constant. Phys. Rev. Lett. 2019, 123, 131302. [Google Scholar] [CrossRef] [Green Version]
- Milnor, J. A Unique Decomposition Theorem for 3-Manifolds. Am. J. Math. 1962, 84, 1. [Google Scholar] [CrossRef]
- Giulini, D. Properties of three manifolds for relativists. Int. J. Theor. Phys. 1994, 33, 913. [Google Scholar] [CrossRef] [Green Version]
- Chrusciel, P.T.; Isenberg, J.; Pollack, D. Gluing initial data sets for general relativity. Phys. Rev. Lett. 2004, 93, 081101. [Google Scholar] [CrossRef] [Green Version]
- Chrusciel, P.T.; Isenberg, J.; Pollack, D. Initial data engineering. Commun. Math. Phys. 2005, 257, 29. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Unruh, W.G. Comment on ‘Hiding the Cosmological Constant’. Phys. Rev. Lett. 2020, 125, 089001. [Google Scholar] [CrossRef] [PubMed]
- Carlip, S. Carlip Replies. Phys. Rev. Lett. 2020, 125, 089002. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. Classical Gravitational Back-Reaction. Class. Quant. Grav. 2014, 31, 185014. [Google Scholar] [CrossRef] [Green Version]
- Buchert, T. On globally static and stationary cosmologies with or without a cosmological constant and the dark energy problem. Class. Quant. Grav. 2006, 23, 817. [Google Scholar] [CrossRef]
- Kleban, M.; Senatore, L. Inhomogeneous Anisotropic Cosmology. J. Cosmol. Astropart. Phys. 2016, 1610, 22. [Google Scholar] [CrossRef] [Green Version]
- Mirbabayi, M. Topology of Cosmological Black Holes. J. Cosmol. Astropart. Phys. 2020, 5, 29. [Google Scholar] [CrossRef]
- Moncrief, V.; Mondal, P. Could the Universe have an Exotic Topology? Pure Appl. Math. Quart. 2019, 15, 921. [Google Scholar] [CrossRef]
- Creminelli, P.; Hershkovits, O.; Senatore, L.; Vasy, A. A de Sitter no-hair theorem for 3+1d Cosmologies with isometry group forming 2-dimensional orbits. arXiv 2004, arXiv:2004.10754. [Google Scholar]
- Gannon, D. Singularities in nonsimply connected space-times. J. Math. Phys. 1975, 16, 2364. [Google Scholar] [CrossRef]
- Lee, C.W. A restriction on the topology of Cauchy surfaces in general relativity. Comm. Math. Phys. 1976, 51, 157. [Google Scholar] [CrossRef]
- Burkhart, M.; Pollack, D. Causal geodesic incompleteness of spacetimes arising from IMP gluing. Gen. Rel. Grav. 2019, 51, 139. [Google Scholar] [CrossRef] [Green Version]
- DeWitt, B.S. Quantum Theory of Gravity 1. The Canonical Theory. Phys. Rev. 1967, 160, 1113. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. General Relativity; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Kuchař, K.V. Time and Interpretations of Quantum Gravity. Int. J. Mod. Phys. D 2011, 20, 3. [Google Scholar] [CrossRef]
- Torre, C.G.; Varadarajan, M. Functional evolution of free quantum fields. Class. Quant. Grav. 1999, 16, 2651. [Google Scholar] [CrossRef]
- Murchadha, N.O.; Soo, C.; Yu, H.L. Intrinsic time gravity and the Lichnerowicz-York equation. Class. Quant. Grav. 2013, 30, 095016. [Google Scholar] [CrossRef]
- Choquet-Bruhat, Y.; York, J. The Cauchy problem. In General Relativity and Gravitation I; Held, A., Ed.; Plenum: New York, NY, USA, 1980. [Google Scholar]
- Andersson, L.; Galloway, G.J.; Howard, R. The cosmological time function. Class. Quant. Grav. 1998, 15, 309. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.D.; Kuchař, K.V. Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D 1995, 51, 5600. [Google Scholar] [CrossRef] [Green Version]
- Husain, V.; Pawlowski, T. Time and a physical Hamiltonian for quantum gravity. Phys. Rev. Lett. 2012, 108, 141301. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. Midisuperspace foam and the cosmological constant. Class. Quant. Grav. 2021. [Google Scholar] [CrossRef]
- Morrow-Jones, J.; Witt, D.M. Inflationary initial data for generic spatial topology. Phys. Rev. D 1993, 48, 2516. [Google Scholar] [CrossRef] [PubMed]
- Schleich, K.; Witt, D.M. Designer de Sitter Spacetimes. Can. J. Phys. 2008, 86, 591. [Google Scholar] [CrossRef]
- Schleich, K.; Witt, D.M. What does Birkhoff’s theorem really tell us? arXiv 2009, arXiv:0910.5194. [Google Scholar]
- Schleich, K.; Witt, D.M. A simple proof of Birkhoff’s theorem for cosmological constant. J. Math. Phys. 2010, 51, 112502. [Google Scholar] [CrossRef]
- Bengtsson, I.; Holst, S. de Sitter space and spatial topology. Class. Quant. Grav. 1999, 16, 3735. [Google Scholar] [CrossRef] [Green Version]
- Horiguchi, T.; Maeda, K.; Sakamoto, M. Analysis of the Wheeler-DeWitt equation beyond Planck scale and dimensional reduction. Phys. Lett. B 1995, 344, 105. [Google Scholar] [CrossRef] [Green Version]
- Woodard, R.P. Enforcing the Wheeler-de Witt Constraint the Easy Way. Class. Quant. Grav. 1993, 10, 483. [Google Scholar] [CrossRef]
- Torre, C.G. Gravitational observables and local symmetries. Phys. Rev. D 1993, 48, R2373. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlip, S. Spacetime Foam, Midisuperspace, and the Cosmological Constant. Universe 2021, 7, 495. https://doi.org/10.3390/universe7120495
Carlip S. Spacetime Foam, Midisuperspace, and the Cosmological Constant. Universe. 2021; 7(12):495. https://doi.org/10.3390/universe7120495
Chicago/Turabian StyleCarlip, Steven. 2021. "Spacetime Foam, Midisuperspace, and the Cosmological Constant" Universe 7, no. 12: 495. https://doi.org/10.3390/universe7120495
APA StyleCarlip, S. (2021). Spacetime Foam, Midisuperspace, and the Cosmological Constant. Universe, 7(12), 495. https://doi.org/10.3390/universe7120495