# Renormalizable and Unitary Lorentz Invariant Model of Quantum Gravity

## Abstract

**:**

## 1. Introduction

## 2. Main Part

## 3. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- ’t Hooft, G.; Veltman, M.J.G. One loop divergencies in the theory of gravitation. Ann. Inst. H. Poincare Phys. Theor.
**1974**, A20, 69. [Google Scholar] - Goroff, M.H.; Sagnotti, A. Quantum gravity at two loops. Phys. Lett. B
**1985**, 160, 81. [Google Scholar] [CrossRef] - Goroff, M.H.; Sagnotti, A. The Ultraviolet Behavior of Einstein Gravity. Nucl. Phys. B
**1986**, 266, 709. [Google Scholar] [CrossRef] - van de Ven, A.E.M. Two loop quantum gravity. Nucl. Phys. B
**1992**, 378, 309. [Google Scholar] [CrossRef] - Stelle, K.S. Renormalization of Higher Derivative Quantum Gravity. Phys. Rev. D
**1977**, 16, 953. [Google Scholar] [CrossRef] - Barvinsky, A.O.; Blas, D.; Herrero-Valea, M.; Sibiryakov, S.M.; Steinwatchs, C.F. Renormalization of gauge theories in the background-field approach. JHEP
**2018**, 1807, 035. [Google Scholar] [CrossRef] [Green Version] - Stelle, K.S. Classical gravity with higher derivatives. Gen. Rel. Grav.
**1978**, 9, 353. [Google Scholar] [CrossRef] - Larin, S.A. Higher derivative relativistic quantum gravity. Mod. Phys. Lett. A
**2018**, 33, 1850028. [Google Scholar] [CrossRef] [Green Version] - Larin, S.A. Renormalizable and unitary model of quantum gravity. Symmetry
**2019**, 11, 1334. [Google Scholar] [CrossRef] [Green Version] - Wilson, K.G.; Fisher, M.E. Critical exponents in 3.99 dimensions. Phys. Rev. Lett.
**1972**, 28, 240. [Google Scholar] [CrossRef] - ’t Hooft, G.; Veltman, M.J.G. Regularization and renormalization of gauge fields. Nucl. Phys. B
**1972**, 44, 189. [Google Scholar] [CrossRef] [Green Version] - Bollini, C.G.; Giambiagi, J.J. Lowest order divergent graphs in nu-dimensional space. Phys. Lett. B
**1972**, 40, 566. [Google Scholar] [CrossRef] - Ashmore, J.F. A method of gauge invariant regularization. Nuovo Cimento Lett.
**1972**, 4, 289. [Google Scholar] [CrossRef] - Cicuta, G.M.; Montaldi, E. Analytic renormalization via continuous space dimension. Nuovo Cimento Lett.
**1972**, 4, 329. [Google Scholar] [CrossRef] - Larin, S.A. The renormalization of the axial anomaly in dimensional regularization. Phys. Lett. B
**1993**, 303, 113. [Google Scholar] [CrossRef] [Green Version] - Salvio, A.; Strumia, A. Agravity. arXiv
**2014**, arXiv:1403.4226. [Google Scholar] - Faddeev, L.D.; Popov, V.N. Feynman diagrams for the Yang-Mills field. Phys. Lett. B
**1967**, 25, 29. [Google Scholar] [CrossRef] - Faddeev, L.D.; Slavnov, A.A. Gauge fields. Introduction to quantum theory. Front. Phys.
**1990**, 83, 1. [Google Scholar] [CrossRef] - Pais, A.; Uhlenbeck, G.E. On field theories with nonlocalized action. Phys. Rev.
**1950**, 79, 145. [Google Scholar] [CrossRef] - Smilga, A. Classical and quantum dynamics of higher-derivative systems. Int. J. Mod. Phys.
**2017**, A32, 1730025. [Google Scholar] [CrossRef] [Green Version] - Bogolubov, N.N.; Shirkov, D.V. Introduction to the Theory of Quantized Fields; Nauka: Moscow, Russia, 1976. [Google Scholar]
- Lee, T.D.; Wick, G.C. Negative metric and the unitarity of the S matrix. Nucl. Phys. B
**1969**, 9, 209. [Google Scholar] [CrossRef] - Lee, T.D.; Wick, G.C. Unitarity in the NΘΘ sector of soluble model with indefinite metric. Nucl. Phys. B
**1969**, 10, 1. [Google Scholar] [CrossRef] - Lee, T.D.; Wick, G.C. Finite theory of Quantum Electrodynamics. Phys. Rev. D
**1970**, 2, 1033. [Google Scholar] [CrossRef] - Lee, T.D.; Wick, G.C. Questions of Lorentz invariance in field theories with indefinite metric. Phys. Rev. D
**1971**, 3, 1046. [Google Scholar] [CrossRef] - Cutcosky, R.E.; Landshoff, P.V.; Olive, D.I.; Polkinghome, J.C. A non-analytic S matrix. Nucl. Phys. B
**1969**, 12, 281. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshits, E.M. Quantum Mechanics: Non-Relativistic Theory, Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1991; Volume 3. [Google Scholar]
- Fradkin, E.S.; Tseytlin, A.A. Renormalizable asymptotically free quantum theory of gravity. Phys. Lett. B
**1981**, 104, 377. [Google Scholar] [CrossRef] - Fradkin, E.S.; Tseytlin, A.A. Renormalizable asymptotically free quantum theory of gravity. Nucl. Phys. B
**1982**, 201, 469. [Google Scholar] [CrossRef] - Avramidi, I.G.; Barvinsky, A.O. Asymptotic freedom in higher derivative Quantum Gravity. Phys. Lett. B
**1985**, 159, 269. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Larin, S.A.
Renormalizable and Unitary Lorentz Invariant Model of Quantum Gravity. *Universe* **2021**, *7*, 435.
https://doi.org/10.3390/universe7110435

**AMA Style**

Larin SA.
Renormalizable and Unitary Lorentz Invariant Model of Quantum Gravity. *Universe*. 2021; 7(11):435.
https://doi.org/10.3390/universe7110435

**Chicago/Turabian Style**

Larin, Sergey A.
2021. "Renormalizable and Unitary Lorentz Invariant Model of Quantum Gravity" *Universe* 7, no. 11: 435.
https://doi.org/10.3390/universe7110435