Spatio-Temporal Analysis of Dust Storm Activity in Chryse Planitia Using MGS-MOC Observations from Mars Years 24–28
Abstract
:1. Introduction
2. Data and Methods
2.1. MOC Mars Daily Global Maps
2.2. Dust Storm Detection
2.3. Planet-Encircling Dust Event
3. Temporal Probability of Dust Storm Activity in Chryse
3.1. Dust Storm Activity of a Martian Year
3.2. Latitudinal Distribution of Dust Storms within Chryse’s 1600 km-Radius Ring
3.3. Dust Storm Probability during the EDL Season of Mars Landing Missions
4. Spatial Distribution of Dust Storm Activity in the Chryse Planitia
5. Spatial and Seasonal Pattern of Dust Storm Activity in Chryse
6. Summaries
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gifford, F.A. A study of Martian yellow clouds that display movement. Mon. Weather Rev. 1964, 92, 435–440. [Google Scholar] [CrossRef]
- Peterfreund, A.R.; Kieffer, H.H. Thermal infrared properties of the martian atmosphere. 3. Local dust storms. J. Geophys. Res. 1979, 84, 2853–2863. [Google Scholar] [CrossRef]
- Zurek, R.W.; Martin, L.J. Interannual variability of planet-encircling dust storms on Mars. J. Geophys. Res. 1993, 98, 3247–3259. [Google Scholar] [CrossRef]
- Cantor, B.A.; James, P.B.; Caplinger, M.; Wolff, M.J. Martian dust storms: 1999 Mars orbiter camera observations. J. Geophys. Res. 2001, 106, 23653–23687. [Google Scholar] [CrossRef]
- Cantor, B.A. Moc observations of the 2001 mars planet-encircling dust storm. Icarus 2007, 186, 60–96. [Google Scholar] [CrossRef]
- Montabone, L.; Forget, F.; Millour, E.; Wilson, R.J.; Wolff, M.J. Eight-year climatology of dust optical depth on mars. Icarus 2015, 251, 65–95. [Google Scholar] [CrossRef] [Green Version]
- Heavens, N.G.; McCleese, D.J.; Richardson, M.I.; Kass, D.M.; Kleinböhl, A.; Schofield, J.T. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars climate sounder: 2. Implications of the thermal structure and aerosol distributions for the mean meridional circulation. J. Geophys. Res. 2011, 116, E01010. [Google Scholar] [CrossRef]
- Cantor, B.A.; Wolff, M.J.; James, P.B.; Higgs, E. Recession of the Martian north polar cap: 1990–1997 Hubble Space Telescope observations. Icarus 1998, 136, 175–191. [Google Scholar] [CrossRef]
- James, P.B.; Cantor, B.A. Martian north polar cap regression: 2000 Mars Orbiter Camera observations. Icarus 2001, 154, 131–144. [Google Scholar] [CrossRef]
- Martin, L.J.; Zurek, R.W. An analysis of the history of dust storm activity on Mars. J. Geophys. Res. 1993, 98, 3221–3246. [Google Scholar] [CrossRef]
- Wang, H.; Richardson, M.I. The origin, evolution, and trajectory of large dust storms on mars during mars years 24–30 (1999–2011). Icarus 2015, 251, 112–127. [Google Scholar] [CrossRef]
- Fonseca, R.M.; Zorzano, M.-P.; Martín-Torres, J. MARSWRF prediction of entry descent landing profiles: Applications to Mars exploration. Earth Space Sci. 2019, 6, 1440–1459. [Google Scholar] [CrossRef]
- Ryan, J.A.; Henry, R.M. Mars atmospheric phenomena during major dust storms, as measured at surface. J. Geophys. Res. 1979, 84, 2821–2829. [Google Scholar] [CrossRef]
- Smith, M.D. Interannual variability in TES atmospheric observations of mars during 1999–2003. Icarus 2004, 167, 148–165. [Google Scholar] [CrossRef]
- Vasavada, A.R.; Chen, A.; Barnes, J.R.; Burkhart, P.D.; Cantor, B.A.; Dwyer-Cianciolo, A.M.; Fergason, R.L.; Hinson, D.P.; Justh, H.L.; Kass, D.M.; et al. Assessment of environments for mars science laboratory entry, descent, and surface operations. Space Sci. Rev. 2012, 170, 793–835. [Google Scholar] [CrossRef] [Green Version]
- Desai, P.N.; Knocke, P.C. Mars exploration rovers entry, descent, and landing trajectory analysis. J. Astronaut. Sci. 2007, 55, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Martin-Mur, T.J.; Kruizingas, G.L.; Burkhart, P.D.; Wong, M.C.; Abilleira, F. Mars science laboratory navigation results. In Proceedings of the 23rd International Symposium Space Flight Dynamics, Pasadena, CA, USA, 29 October–2 November 2012. [Google Scholar]
- Cantor, B.A.; Pickett, N.B.; Malin, M.C.; Lee, S.W.; Wolff, M.J.; Caplinger, M.A. Martian dust storm activity near the mars 2020 candidate landing sites: Mro-marci observations from mars years 28–34. Icarus 2019, 321, 161–170. [Google Scholar] [CrossRef]
- Yao, P.; Li, C.; Wang, B.; Li, B.; Zhang, J.; Ling, Z.; Chen, S. Evaluating the dust storm probability inIsidis-Elysium Planitia, a tentative landing area of China’s first Mars mission (Tianwen-1). Earth Space Sci. 2020, 7, e2020EA001242. [Google Scholar] [CrossRef]
- Komatsu, G.; Okubo, C.H.; Wray, J.J.; Ojha, L.; Cardinale, M.; Murana, A.; Orosei, R.; Chan, M.A.; Ormö, J.; Gallagher, R. Small edifice features in chryseplanitia, mars: Assessment of a mud volcano hypothesis. Icarus 2016, 268, 56–75. [Google Scholar] [CrossRef]
- Malin, M.C.; Danielson, G.E.; Ingersoll, A.P.; Masursky, H.; Veverka, J.; Ravine, M.A.; Soulanille, T.A. Mars Observer Camera. J. Geophys. Res. 1992, 97, 7699–7718. [Google Scholar] [CrossRef]
- Wang, H.; Ingersoll, A.P. Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera. J. Geophys. Res. 2002, 107, 5078. [Google Scholar] [CrossRef]
- James, P.B. Martian local dust storms. In Recent Advances in Planetary Meteorology; Hunt, G., Ed.; Cambridge University Press: New York, NY, USA, 1985; pp. 85–100. [Google Scholar]
- Shirley, J.H.; Mischna, M.A. Orbit-spin coupling and the interannual variability of global-scale dust storm occurrence on mars. Planet. Space Sci. 2017, 139, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, S. The Great Yellow Cloud and the Atmosphere of Mars: Report of Visual Observations during the 1956 Opposition. Contrib. Inst. Astrophys. Kwasan Obs. 1957. Available online: https://books.google.rs/books?id=ze27j5sSJVEC&pg=PA1418&lpg=PA1418&dq=Miyamoto,+S.+The+Great+Yellow+Cloud+and+the+Atmosphere+of+Mars:+Report+of+Visual+Observations+during+the+1956+Opposi-tion.+Contrib.+Inst.+Astrophys.+Kwasan+Obs.+1957&source=bl&ots=4I4fC_QX9y&sig=ACfU3U3Y6SaV5anD8-FG2kbNBpeJXxDf4g&hl=en&sa=X&ved=2ahUKEwi-pqLFypL0AhXB-6QKHcltBgEQ6AF6BAgEEAM#v=onepage&q=Miyamoto%2C%20S.%20The%20Great%20Yellow%20Cloud%20and%20the%20Atmosphere%20of%20Mars%3A%20Report%20of%20Visual%20Observations%20during%20the%201956%20Opposi-tion.%20Contrib.%20Inst.%20Astrophys.%20Kwasan%20Obs.%201957&f=false (accessed on 20 August 2021).
- Martin, L.J. The major martian dust storms of 1971 and 1973. Icarus 1974, 23, 108115. [Google Scholar] [CrossRef]
- Martin, L.J. 1973 dust storm: Maps from hourly photographs. Icarus 1976, 29, 363–380. [Google Scholar] [CrossRef] [Green Version]
- Briggs, G.A.; Baum, W.A.; Barnes, J. Viking orbiter imaging observations of dust in the martian atmosphere. J. Geophys. Res. 1979, 84, 2795–2820. [Google Scholar] [CrossRef]
- Ryan, J.A.; Sharman, R.D. Two major dust storms, one Mars year apart: Comparison from Viking data. J. Geophys. Res. 1981, 86, 3247–3254. [Google Scholar] [CrossRef]
- Montabone, L.; Forget, F. On Forecasting Dust Storms on Mars. LPI Contrib. 2016. Available online: https://ttu-ir.tdl.org/bitstream/handle/2346/72982/ICES_2017_175.pdf (accessed on 20 August 2021).
- Tamppari, L.K.; Barnes, J.; Bonfiglio, E.; Cantor, B.A.; Friedson, A.J.; Ghosh, A.; Grover, M.R.; Kass, D.; Martin, T.Z.; Mellon, M.; et al. Expected atmospheric environment for the Phoenix landing season and location. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Lemmon, M.T.; Wolff, M.J.; Bell, J.F., III; Smith, M.D.; Cantor, B.A.; Smith, P.H. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 2015, 251, 96–111. [Google Scholar] [CrossRef] [Green Version]
- Hollingsworth, J.L.; Haberle, R.M.; Schaeffer, J. Seasonal variations of storm zoneson Mars. Adv. Space Res. 1979, 19, 1237–1240. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Toigo, A.D.; Wang, H. An investigation of dust storms observed with the mars color imager. Icarus 2017, 289, 199–213. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Toigo, A.D.; Kulowski, L.; Wang, H. Mars Orbiter Camera climatology of textured dust storms. Icarus 2015, 258, 1–13. [Google Scholar] [CrossRef]
- Ye, P.J.; Sun, Z.Z.; Rao, W.; Meng, L.Z. Mission overview and key technologies of the first, Mars probe of China. Sci. China Technol. Sci. 2017, 60, 649–657. [Google Scholar] [CrossRef]
- Hinson, D.P.; Wang, H. Further observations of regional dust storms andbaroclinic eddies in the northern hemisphere of Mars. Icarus 2010, 206, 290–305. [Google Scholar] [CrossRef]
- Newman, C.E.; Lewis, S.R.; Read, P.L.; Forget, F. Modeling the martiandustcycle. 2. Multiannual radiatively active dust transport simulations. J. Geophys. Res. 2002, 107, 7-1–7-15. [Google Scholar]
- Mulholland, D.P.; Read, P.L.; Lewis, S.R. Simulating the interannual variability ofmajor dust storms on Mars using variable lifting thresholds. Icarus 2013, 223, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zurek, R.W.; Richardson, M.I. Relationship between frontal duststorms and transient eddy activity in the northern hemisphere of Mars asobserved by Mars Global Surveyor. J. Geophys. Res. 2005, 110. [Google Scholar]
- Lorenz, E. Empirical Orthogonal Functions and Statisticalweather Prediction; Tech. Rep. 1, Statistical Forecasting Project; Department of Meteorology, Massachusetts Institute of Technology: Cambridge, MA, USA, 1956; 49p. [Google Scholar]
- Kaihatu, J.M.; Handler, R.A.; Marmorino, G.O.; Shay, L.K. Empirical orthogonal function analysis of ocean surface currents using complex and real-vector methods. J. Atmos. Ocean. Technol. 1998, 15, 927–941. [Google Scholar] [CrossRef] [Green Version]
- Leovy, C.E.; Zurek, R.W.; Pollack, J.B. Mechanisms for Mars dust storms. J. Atmos. Sci. 1973, 30, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Toigo, A.D.; Richardson, M.I.; Wilson, R.J.; Wang, H.; Ingersoll, A.P. A first lookat dust lifting and dust storms near the south pole of Mars with a mesoscalemodel. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Wang, H.; Fisher, J.A. North polar frontal clouds and dust storms on Marsduring spring and summer. Icarus 2009, 204, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Strausberg, M.J.; Wang, H.; Richardson, M.I.; Ewald, S.P.; Toigo, A.D. Observations of the initiation and evolution of the 2001 Mars global dust storm. J. Geophys. Res. 2005, 110, E02006. [Google Scholar] [CrossRef] [Green Version]
- Battalio, M.; Wang, H. The Aonia-Solis-Valles dust storm track in the southern hemisphere of Mars. Icarus 2019, 321, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Battalio, M.; Wang, H. The Mars Dust Activity Database (MDAD): A comprehensive statistical study of dust storm sequences. Icarus 2021, 354, 114059. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Yue, Z.; Qu, S.; Yao, P.; Fu, X.; Ling, Z.; Chen, S. Spatio-Temporal Analysis of Dust Storm Activity in Chryse Planitia Using MGS-MOC Observations from Mars Years 24–28. Universe 2021, 7, 433. https://doi.org/10.3390/universe7110433
Li B, Yue Z, Qu S, Yao P, Fu X, Ling Z, Chen S. Spatio-Temporal Analysis of Dust Storm Activity in Chryse Planitia Using MGS-MOC Observations from Mars Years 24–28. Universe. 2021; 7(11):433. https://doi.org/10.3390/universe7110433
Chicago/Turabian StyleLi, Bo, Zongyu Yue, Shaojie Qu, Peiwen Yao, Xiaohui Fu, Zongcheng Ling, and Shengbo Chen. 2021. "Spatio-Temporal Analysis of Dust Storm Activity in Chryse Planitia Using MGS-MOC Observations from Mars Years 24–28" Universe 7, no. 11: 433. https://doi.org/10.3390/universe7110433
APA StyleLi, B., Yue, Z., Qu, S., Yao, P., Fu, X., Ling, Z., & Chen, S. (2021). Spatio-Temporal Analysis of Dust Storm Activity in Chryse Planitia Using MGS-MOC Observations from Mars Years 24–28. Universe, 7(11), 433. https://doi.org/10.3390/universe7110433