Analytical Solution and Quasi-Periodic Behavior of a Charged Dilaton Black Hole
Abstract
:1. Introduction
2. Thermodynamics and Dynamics in the Extended Phase Space
2.1. Equation of State
- (i)
- when ;
- (ii)
- when ;
- (iii)
- .
2.2. Equation of Dynamics
3. Two-Timing Scale Method Solution
4. Numerical Comparison
5. Quasi-Periodic Behavior
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Oppenheimer, J.R.; Snyder, H. On continued gravitational contraction. Phys. Rev. 1939, 56, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Webster, B.L.; Murdin, P. Cygnus X-1-a spectroscopic binary with a heavy companion? Nature 1972, 235, 37–38. [Google Scholar] [CrossRef]
- Campanelli, M.; Lousto, C.; Zlochower, Y.; Merritt, D. Large merger recoils and spin flips from generic black-hole binaries. Astrophys. J. 2007, 659, L5–L8. [Google Scholar] [CrossRef] [Green Version]
- Podsiadlowski, P.; Rappaport, S.; Han, Z. On the formation and evolution of black hole binaries. Mon. Not. R. Astron. Soc. 2010, 341, 385–404. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Observation of gravitational waves from two neutron star-black hole coalescences. Astrophys. J. Lett. 2021, 915, L5. [Google Scholar] [CrossRef]
- Alexeyev, S.; Sendyuk, M. Black holes and wormholes in extended gravity. Universe 2020, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Stuchlík, Z.; Vrba, J. Epicyclic oscillations around Simpson-Visser regular black holes and wormholes. Universe 2021, 7, 279. [Google Scholar] [CrossRef]
- Kiritsis, E.; Kofinas, G. On Hořava-Lifshitz “black holes”. J. High Energy Phys. 2010, 2010, 122. [Google Scholar] [CrossRef] [Green Version]
- Poshteh, M.B.J.; Riazi, N. Phase transition and thermodynamic stability in extended phase space and charged Hořava-Lifshitz black holes. Gen. Relativ. Gravit. 2017, 49, 64. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.B.; Llibre, J. Global dynamics of Hořava-Lifshitz cosmology with non-zero curvature and a wide range of potentials. Eur. Phys. J. 2020, 80, 137. [Google Scholar] [CrossRef]
- Król, J.; Klimasara, P. Black holes and complexity via constructible universe. Universe 2020, 6, 198. [Google Scholar] [CrossRef]
- Marto, J. Hawking radiation and black hole gravitational back reaction—A quantum geometrodynamical simplified model. Universe 2021, 7, 297. [Google Scholar] [CrossRef]
- Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hawking, S.W. Black holes and thermodynamics. Phys. Rev. D 1976, 13, 55–97. [Google Scholar] [CrossRef]
- Hawking, S.W.; Page, D.N. Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 1983, 87, 577–588. [Google Scholar] [CrossRef]
- Wald, R.M. The thermodynamics of black holes. Living Rev. Relativ. 2001, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Hayward, S.A. Unified first law of black-hole dynamics and relativistic thermodynamics. Class. Quantum Gravity 1998, 15, 3147–3162. [Google Scholar] [CrossRef]
- Hendi, S.H.; Sajadi, S.N.; Khademi, M. Physical properties of a regular rotating black hole: Thermodynamics, stability, and quasinormal modes. Phys. Rev. D 2021, 103, 064016. [Google Scholar] [CrossRef]
- Gallerati, A. New black hole solutions in N=2 and N=8 gauged supergravity. Universe 2021, 7, 187. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, Y.; Feng, H.Y.; Zhu, C.R. Black hole solutions and thermodynamics in the infinite derivative theory of gravity. Phys. Rev. D 2021, 103, 044064. [Google Scholar] [CrossRef]
- Chamblin, A.; Emparan, R.; Johnson, C.V.; Myers, R.C. Holography, thermodynamics, and fluctuations of charged AdS black holes. Phys. Rev. D 1999, 60, 104026. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.N. Multicritical phenomena of Reissner-Nordström anti-de Sitter black holes. Phys. Rev. D 2000, 62, 124023. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Kamrani, S.; Sheykhi, A. P-V criticality of charged dilatonic black holes. Phys. Rev. D 2014, 90, 104020. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yang, Z.Y.; Zou, D.C.; Xu, W.; Yue, R.H. P-V criticality of AdS black hole in the Einstein-Maxwell-power-Yang- Mills gravity. Gen. Relativ. Gravit. 2014, 47, 14. [Google Scholar] [CrossRef]
- Hu, Y.P.; Zeng, H.A.; Jiang, Z.M.; Zhang, H. P-V criticality in the extended phase space of black holes in Einstein- Horndeski gravity. Phys. Rev. D 2019, 100, 084004. [Google Scholar] [CrossRef] [Green Version]
- Hendi, S.H.; Dehghani, A. Criticality and extended phase space thermodynamics of AdS black holes in higher curvature massive gravity. Eur. Phys. J. C 2019, 79, 227. [Google Scholar] [CrossRef]
- Sharif, M.; Ama-Tul-Mughani, Q. P-V criticality and phase transition of the Kerr-Sen-AdS black hole. Eur. Phys. J. Plus 2021, 136, 284. [Google Scholar] [CrossRef]
- Liang, J. The P-v criticality of a noncommutative geometry-inspired Schwarzschild-AdS black hole. Chin. Phys. Lett. 2017, 34, 080402. [Google Scholar] [CrossRef]
- Chen, S.B.; Liu, X.F.; Liu, C.Q. P-V criticality of an AdS black hole in f(R) gravity. Chin. Phys. Lett. 2013, 30, 060401. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Guan, Z.H.; Liu, Y.C.; Liu, B. P-v criticality in the extended phase space of a noncommutative geometry inspired Reissner-Nordström black hole in AdS space-time. Gen. Relativ. Gravit. 2017, 49, 29. [Google Scholar] [CrossRef]
- Li, R.; Wang, J. Hawking radiation and P-v criticality of charged dynamical (Vaidya) black hole in anti-de Sitter space. Phys. Lett. B 2021, 813, 136035. [Google Scholar] [CrossRef]
- Zhao, H.H.; Zhang, L.C.; Zhao, R. Two-phase equilibrium properties in charged topological dilaton AdS black holes. Adv. High Energy Phys. 2016, 2016, 2021748. [Google Scholar] [CrossRef]
- Sherkatghanad, Z.; Mirza, B.; Mirzaiyan, Z.; Mansoori, S.A.H. Critical behaviors and phase transitions of black holes in higher order gravities and extended phase spaces. Int. J. Mod. Phys. D 2017, 26, 1750017. [Google Scholar] [CrossRef] [Green Version]
- Hendi, S.H.; Nemati, A.; Lin, K.; Jamil, M. Instability and phase transitions of a rotating black hole in the presence of perfect fluid dark matter. Eur. Phys. J. C 2020, 80, 296. [Google Scholar] [CrossRef] [Green Version]
- Dehyadegari, A.; Sheykhi, A.; Montakhab, A. Novel phase transition in charged dilaton black holes. Phys. Rev. D 2017, 96, 084012. [Google Scholar] [CrossRef] [Green Version]
- Liang, K.; Wang, P.; Wu, H.; Yang, M. Phase structures and transitions of Born-Infeld black holes in a grand canonical ensemble. Eur. Phys. J. C 2020, 80, 187. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhang, Y.; Zhang, L.; Wu, L.; Gao, Y.; Cao, S.; Pan, Y. Phase transition and entropic force of de Sitter black hole in massive gravity. Eur. Phys. J. C 2021, 81, 42. [Google Scholar] [CrossRef]
- Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K. Phase transitions and geothermodynamics of black holes in dRGT massive gravity. Eur. Phys. J. C 2019, 79, 342. [Google Scholar] [CrossRef]
- Hendi, S.H.; Azari, F.; Rahimi, E.; Elahi, M.; Owjifard, Z.; Armanfard, Z. Thermodynamics and the phase transition of topological dilatonic Lifshitz-like black holes. Ann. Der Phys. 2020, 532, 2000162. [Google Scholar] [CrossRef]
- Wang, P.; Wu, H.W.; Yang, H.T. Thermodynamics and phase transition of a nonlinear electrodynamics black hole in a cavity. J. High Energy Phys. 2019, 2019, 002. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Wu, H.W.; Yang, H.T. Thermodynamics and phase transitions of nonlinear electrodynamics black holes in an extended phase space. J. Cosmol. Astropart. Phys. 2019, 2019, 052. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.C.; Ma, M.S.; Zhao, H.H.; Zhao, R. Thermodynamics of phase transition in higher-dimensional Reissner-Nordström-de Sitter black hole. Eur. Phys. J. C 2014, 74, 3052. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.H.; Gao, C.J. Constructing higher-dimensional exact black holes in Einstein-Maxwell-scalar theory. Universe 2020, 6, 148. [Google Scholar] [CrossRef]
- Guo, X.Y.; Li, H.F.; Zhang, L.C.; Zhao, R. Continuous phase transition and microstructure of charged AdS black hole with quintessence. Eur. Phys. J. C 2020, 80, 168. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, H.T.; Zhang, S.J. Chaos in Born-Infeld-AdS black hole within extended phase space. Gen. Relativ. Gravit. 2019, 51, 134. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.Q.; Chen, S.B.; Jing, J.L. Thermal chaos of a charged dilaton-AdS black hole in the extended phase space. Eur. Phys. J. C 2020, 80, 245. [Google Scholar] [CrossRef]
- Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.; Zhizeh, S. Chaos in charged AdS black hole extended phase space. Phys. Lett. B 2018, 78, 316–321. [Google Scholar] [CrossRef]
- Mahish, S.; Bhamidipati, C. Chaos in charged Gauss-Bonnet AdS black holes in extended phase space. Phys. Rev. D 2019, 99, 106012. [Google Scholar] [CrossRef] [Green Version]
- Tang, B. Temporal and spatial chaos in the Kerr-AdS black hole in an extended phase space. Chin. Phys. C 2021, 45, 055101. [Google Scholar] [CrossRef]
- Guo, X.; Liang, K.; Mu, B.; Wang, P.; Yang, M. Chaotic motion around a black hole under minimal length effects. Eur. Phys. J. C 2020, 80, 745. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, S.B.; Jing, J.L. Chaotic motion of scalar particle coupling to Chern-Simons invariant in Kerr black hole spacetime. Eur. Phys. J. C 2021, 81, 233. [Google Scholar] [CrossRef]
- Shafiq, S.; Hussain, S.; Ozair, M.; Aslam, A.; Hussain, T. Charged particle dynamics in the surrounding of Schwarzschild anti-de Sitter black hole with topological defect immersed in an external magnetic field. Eur. Phys. J. C 2020, 80, 744. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, I.; Jamil, M. Dynamics of a charged particle around a slowly rotating Kerr black hole immersed in magnetic field. Eur. Phys. J. C 2014, 74, 3210. [Google Scholar] [CrossRef] [Green Version]
- Strogatz, S.H. Nonlinear Dynamics and Chaos; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar]
- Sheykhi, A. Thermodynamics of charged topological dilaton black holes. Phys. Rev. D 2007, 76, 124025. [Google Scholar] [CrossRef] [Green Version]
- Sheykhi, A. Topological Born-Infeld-dilaton black holes. Phys. Lett. B 2008, 662, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Slemrod, M.; Marsden, J.E. Temporal and spatial chaos in a van der Waals fluid due to periodic thermal fluctuations. Adv. Appl. Math. 1985, 6, 135–158. [Google Scholar] [CrossRef] [Green Version]
- Melnikov, V.K. On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 1963, 12, 3–52. [Google Scholar]
Parameters | q | b | A | s | |
---|---|---|---|---|---|
Group (a) | 1 | 0.01 | 0.019836 | 0.2 | 0.04 |
Group (b) | 1 | 0.01 | 1 | 0.3703 | 0.04 |
Group (c) | 1 | 0.01 | 1 | 0.4884 | 0.04 |
Group (d) | 1.0319 | 0.01 | 1 | 0.2 | 0.04 |
Group (e) | 1 | 0.3 | 1 | 0.2 | 0.8 |
Group (f) | 1 | 1.732 | 10,000 | 0.2 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Gao, F. Analytical Solution and Quasi-Periodic Behavior of a Charged Dilaton Black Hole. Universe 2021, 7, 377. https://doi.org/10.3390/universe7100377
Wang R, Gao F. Analytical Solution and Quasi-Periodic Behavior of a Charged Dilaton Black Hole. Universe. 2021; 7(10):377. https://doi.org/10.3390/universe7100377
Chicago/Turabian StyleWang, Ruifang, and Fabao Gao. 2021. "Analytical Solution and Quasi-Periodic Behavior of a Charged Dilaton Black Hole" Universe 7, no. 10: 377. https://doi.org/10.3390/universe7100377
APA StyleWang, R., & Gao, F. (2021). Analytical Solution and Quasi-Periodic Behavior of a Charged Dilaton Black Hole. Universe, 7(10), 377. https://doi.org/10.3390/universe7100377