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Abstract: With the vast breakthrough brought by the Event Horizon Telescope, the theoretical analysis
of various black holes has become more critical than ever. In this paper, the second-order asymptotic
analytical solution of the charged dilaton black hole flow in the spinodal region is constructed from
the perspective of dynamics by using the two-timing scale method. Through a numerical comparison
with the original charged dilaton black hole system, it is found that the constructed analytical
solution is highly consistent with the numerical solution. In addition, several quasi-periodic motions
of the charged dilaton black hole flow are numerically obtained under different groups of irrational
frequency ratios, and the phase portraits of the black hole flow with sufficiently small thermal
parameter perturbation display good stability. Finally, the final evolution state of black hole flow
over time is studied according to the obtained analytical solution. The results show that the smaller
the integral constant of the system, the greater the periodicity of the black hole flow.

Keywords: charged dilaton black hole; analytical solution; quasi-periodic behavior; extended phase space;
two-timing scale method

1. Introduction

The black hole is a spacetime region where the gravity is so strong that any particle
(including photons) close to it can be dragged to its center. The earliest paper can be traced
back to the pioneering work of Oppenheimer and Snyder [1] in 1939. Visual observation
of a real black hole is highly challenging, because it does not reflect light and is too far
away from us. Therefore, plenty of researchers have investigated invisible companion
stars, namely black holes, based on the visible companion stars of binary systems [2–4].
Nowadays, the research on black holes has involved gravitational waves, wormholes,
modified gravitational theory, quantum regime, and several other related fields [5–14].

Black holes can emit thermal radiation. Researchers found a significant analogy be-
tween the mathematical form of their physical laws and the laws of thermodynamics as
early as the 1970s [15,16], and then the thermodynamic properties of black holes received a
lot of attention [17–22]. The similarity between their thermodynamic phase structure and
van der Waals fluid system was further proven [23,24]. Moreover, there are a great number
of studies on the phase transition of black holes [25–46]. The critical behaviors of different
black holes were discussed by depicting the P-V diagrams [25–33]. From these diagrams,
one can identify the occurrence of the phase transition and the spinodal region, where
the small-black-hole (SBH) and large-black-hole (LBH) coexist. Furthermore, the related
homoclinic orbits in the extended phase space were also analyzed. Zhao et al. [34] mainly
studied the phase transition process and demonstrated the SBH-LBH-phase coexistence
curves’ boundary with different parameters in the charged topological dilaton AdS black
hole. For the black holes in a higher dimension, such as Gauss-Bonnet-Born-Infeld AdS
black holes, some interpretations on their critical behavior can be found in Refs. [35,44].
Dozens of researchers have studied the related critical behavior for the black hole in the
extended phase space, where there are prosperous phase structures [11,27,35,43]. Further-

Universe 2021, 7, 377. https://doi.org/10.3390/universe7100377 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-9194-049X
https://orcid.org/0000-0003-2933-1017
https://doi.org/10.3390/universe7100377
https://doi.org/10.3390/universe7100377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/universe7100377
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe7100377?type=check_update&version=2


Universe 2021, 7, 377 2 of 18

more, from the perspective of phase transition, some properties of the microstructure of
the charged AdS black hole can be found in [46].

In order to identify the chaos motions of the Kerr-AdS black hole, Born-Infeld-AdS
black hole, charged AdS and dilaton black hole, and charged Gauss-Bonnet AdS black hole,
Chen et al. used the Melnikov method to study the temporal and spatial chaos of these
black holes [47–51]. They found a critical value δc of the perturbation amplitude, which
depends on other parameters in the black hole system; the temporal chaos exists in the case
δ > δc, while the spatial chaos exists whatever the value of δ is. For the Schwarzschild black
hole under the minimal length effects, the same method was also applied to investigate its
chaotic behavior [52]. Moreover, there are several references on the chaos motion of the
particles around the black holes, including the analyses of the dynamic behavior of the
particles, Poincaré surface of section, and innermost stable circular orbits [53–55].

Inspired by the similarity of thermal phase structure and van der Waals fluid sys-
tem and the literature of different black hole solutions, this paper will mainly use the
two-timing scale method (see [56] for more details) and analysis techniques to study the
dynamic behavior of a charged dilaton black hole and construct the corresponding analyti-
cal solutions from the perspective of dynamics. The two-timing scale method is one of the
most effective methods in the quantitative analysis of nonlinear dynamics. It can describe
periodic motion and disclose the attenuated vibration of the dissipative system. From
the references mentioned earlier, there exist non-chaotic regions under certain conditions.
Therefore, considering the temporal thermal perturbation, the quasi-periodic behavior
of the charged dilaton black hole flow in the spinodal region will also be discussed and
analyzed in the following sections. The layout of this paper is as follows. In Section 2, the
equation model of the charged dilaton black hole will be introduced in the extended phase
space. In Section 3, the two-timing scale method will be used to solve the dynamic equation
of the black hole flow, and the numerical comparison will be carried out in Section 4, where
there is a quasi-periodic motion. Accordingly, several kinds of quasi-periodic motion will
be shown in Section 5, and the paper ends with the discussion and conclusion.

2. Thermodynamics and Dynamics in the Extended Phase Space
2.1. Equation of State

This section reviews the thermodynamic definition of a charged dilaton black hole
solution in the extended phase space. The action of Einstein-Maxwell-dilation gravity in a
four-dimensional spacetime is given by [25,37,48,57,58]

I =
1

16π

∫
d4x
√
−g
[

R− 2(∇φ)2 − 2Λe2αφ − 2α2

b2(α2 − 1)
e2φ/α − e−2αφFµνFµν

]
, (1)

where R is the Ricci scalar, φ is the scalar field of dilaton, Λ is the cosmological constant,
Fµν is the electromagnetic tensor related to vector potential Aν. The coupling parameter
between the Maxwell and dilaton fields is defined by α, and b is an arbitrary positive
constant.

Following the action (1), the metric element describing the spherical symmetric black
hole solution can be obtained, i.e., [48,57]

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2R(r)2(dθ2 + sin2 θdφ2), (2)

with

f (r) =− α2 + 1
α2 − 1

(
b
r

)−2γ

− m
r1−2γ

−
3
(
α2 + 1

)2r2

l2(α2 − 3)

(
b
r

)2γ

+
q2(α2 + 1

)
r2

(
b
r

)−2γ

,
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φ(r) =
α

α2 + 1
ln
(

b
r

)
, R(r) =

(
b
r

)γ

,

where q is the charge of the black hole, m is related to the ADM mass M of (2) via
m = 2(α2 + 1)b−2γ M, and γ = α2/(α2 + 1). Note that when α = 0, the metric (2) simplifies
to the R-N AdS black hole.

In the extended thermodynamic phase space, the thermodynamic pressure P and the
volume V, which is the conjugate quantity of P, take the form

P = − (3 + α2)b2γΛ

8π(3− α2)r2γ
+

, (3)

V =
4π(1 + α2)b2γ

3 + α2 r
3+α2

1+α2
+ , (4)

where r+ represents the largest root of f (r) = 0, which is the event horizon radius of the
black hole. Concerning the first law of thermodynamics, P and V can be written as

P = − Λ
8π

, V =
4πr3

+

3
. (5)

Identifying the specific volume v with the event horizon radius of the charged dilaton
black hole with

v =
2(1 + α2)(3− α2)

(3 + α2)
r+, (6)

then the equation of state P(v, T) becomes

P(v, T) =
T
v
+

b−2γ

22γπv2(1−γ)(α2 + 1)2(γ−2)

×
[ (

3− α2)1−2γ

2(α2 − 1)(α2 + 1)2
(3 + α2)

1−2γ
+

2q2(3 + α2)2γ−3

v2(3− α2)
2γ−3

]
. (7)

It describes the relationship between the three thermodynamic parameters (namely
pressure P, specific volume v and Hawking temperature T) when the matter is in thermo-
dynamic equilibrium. Note that there is a critical temperature

Tcrit =
(

α2 + 1
)(

3 + α2
) 2γ−3

2 /[
πb2γq1−2γ(1− α2)(α2 + 2)

1−2γ
2

]
,

where the second-order phase transition happens (see Refs. [25,48] for more details). For
T0 < Tcrit, P(v, T) have the characteristics:

(i) Pv(v, T) < 0 when v ∈ (0, vα) ∪ (vβ, ∞);
(ii) Pv(v, T) > 0 when v ∈ (vα, vβ);
(iii) Pv(vα, T0) = Pv

(
vβ, T0

)
= 0.

2.2. Equation of Dynamics

Combined with the equation of state of the charged dilaton black hole, the thermo-
dynamic equation of the black hole flow is considered in the spinodal region, which is
affected by the temporal-periodic perturbation. Thus, the absolute temperature T with a
weak time-periodic fluctuation is written as

T = T0 + ε δ cos(ω t) cos M, (8)
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where ε(0 < ε� 1) is a thermal perturbation parameter, δ is the perturbation amplitude
relative to the small viscosity, ω is frequency of the absolute temperature, and T0 value will
be smaller than Tcrit value.

According to [48–50], there is a charged dilaton black hole flow, which is thermoelastic,
slightly viscous, and isotropic, passes along the Eulerian coordinate x-axis in a tube with
a fixed volume and unit cross-section. Moreover, the position x of the black hole is
a function of the time t and the mass M of the column of fluid of unit cross-section
between a fluid particle and the reference fluid particle. Thus, v(M, t) = ∂x(M, t)/∂M
and u(M, t) = ∂x(M, t)/∂t are the specific volume and the velocity, respectively. Then, x
satisfies the following equation

∂2x
∂t2 = −∂P(v, T)

∂M
+ εµ0s

∂2u
∂M2 − As2 ∂3v

∂M3 , (9)

where the expression of P(v, T) is shown as (10), µ0 is a positive parameter related to
the viscosity, s is a positive parameter, and A is a positive constant (see Ref. [48] for
more details).

P(v, T) =P(v0, T0) + Pv(v0, T0)(v− v0) + PT(v0, T0)(T − T0)

+ PvT(v0, T0)(v− v0)(T − T0) +
Pvvv(v0, T0)

3!
(v− v0)

3

+
PvvT(v0, T0)

2
(v− v0)

2(T − T0) + · · · , (10)

with

PT(v0, T0) =
1
v0

, PvT(v0, T0) = −
1
v2

0
, PvvT(v0, T0) =

2
v3

0
,

Pv(v0, T0) =−
T0

v2
0
+

[(
3− α2)(α2 + 1

)] 1−α2

α2+1

π(1− α2)4
α2

α2+1 b
2α2

α2+1 (α2 + 3)
α2+3
α2+1 v

3α2+5
α2+1

0

×
[

4
(

α4 + α2 − 2
)(

α4 − 2α2 − 3
)2

q2 +
(

α2 + 3
)2

v2
0

]
,

Pvvv(v0, T0) =−
6T0

v4
0
+

2
(
3− α2) 1−α2

1+α2
(
α2 + 2

)
π(1− α2)4

α2
α2+1 b

2α2
α2+1 (α2 + 1)

3α2+1
α2+1 (α2 + 3)

α2+3
α2+1 v

5α2+7
α2+1

0

×
[(

α2 + 3
)3

v2
0 + 4

(
α2 − 1

)(
2α2 + 3

)(
3α2 + 5

)(
α4 − 2α2 − 3

)2
q2
]

.

where v0 is the inflection point in the spinodal region, which satisfies ∂2P/∂2v = 0 at v0.
Expand the functions v(M, t) and u(M, t) in Fourier series with respect to M ∈ [0, 2π]

near v0 as

v(M, t) = v0 + x1(t) cos M + x2(t) cos 2M + x3(t) cos 3M + . . ., (11)

u(x, t) = u1(t) sin M + u2(t) sin 2M + u3(t) sin 3M + . . ., (12)

where xi(t) and ui(t) are regarded as the position and velocity of the hydrodynamical
modes, respectively (see [49,50,59,60] for details). Consider the first two modes, i.e.,
xn(t) = un(t) = 0 when n ≥ 3, the Equation (9) become (omit (v0, T0))



Universe 2021, 7, 377 5 of 18

ẋ1 =u1,

ẋ2 =u2,

u̇1 =
(

Pv − As2
)

x1 + ε

(
PT +

PvT
2

x2 +
3PvvT

8
x2

1 +
PvvT

4
x2

2

)
δ cos ωt

+
Pvvv

8

(
x3

1 + 2x1x2
2

)
− εµ0su1,

u̇2 =
(

Pv − 4As2
)

x2 + ε

(
PvT
2

x1 +
PvvT

2
x1x2

)
δ cos ωt

+
Pvvv

8

(
x3

2 + 2x2
1x2

)
− 4εµ0su2.

(13)

Now we transform the dynamical equations of the charged dilaton black hole (13) into
the form of second-order differential equations

ẍ1 + εµ0sẋ1 +
(

As2 − Pv

)
x1 −

Pvvv

8
x3

1 −
Pvvv

4
x1x2

2

= ε

(
PT +

PvT
2

x2 +
3PvvT

8
x2

1 +
PvvT

4
x2

2

)
δ cos ωt,

ẍ2 + 4εµ0sẋ2 +
(

4As2 − Pv

)
x2 −

Pvvv

8
x3

2 −
Pvvv

4
x2

1x2

= ε

(
PvTx1 +

PvvT
2

x1x2

)
δ cos ωt.

(14)

3. Two-Timing Scale Method Solution

In this section, the asymptotic analytical solutions of the charged dilaton black hole
are studied by using the two-timing scale method [56]. Suppose that the approximate
solutions of the system (14) take the form

x1(t, ε) = ε x11(T1, T2) + ε2 x12(T1, T2),

x2(t, ε) = ε x21(T1, T2) + ε2 x22(T1, T2),
(15)

where the two-timing scales are defined as T1 = t and T2 = ε t, respectively.
Denote

ẋij =
∂xij

∂T1

∂T1

∂t
+

∂xij

∂T2

∂T2

∂t

=
∂xij

∂T1
+ ε

∂xij

∂T2

, ∂T1 xij + ε ∂T2 xij, (16)

ẍij =
∂

∂t

(
∂xij

∂T1
+ ε

∂xij

∂T2

)
=

∂2xij

∂T2
1

∂T1

∂t
+

∂2xij

∂T1T2

∂T2

∂t
+ ε

∂2xij

∂T2T1

∂T1

∂t
+ ε

∂2xij

∂T2
2

∂T2

∂t

, ∂T1T1 xij + 2ε ∂T1T2 xij + ε2 ∂T2T2 xij, (17)

where i, j = 1, 2. Then, substituting Equations (15)–(17) into Equation (14) and comparing
the coefficients of powers of ε, one obtains

ε1 : ∂T1T1 x11 +
(

As2 − Pv

)
x11 − PTδ cos ωT1 = 0,

∂T1T1 x21 +
(

4As2 − Pv

)
x21 = 0, (18)

ε2 : ∂T1T1 x12 +
(

As2 − Pv

)
x12 + 2∂T1T2 x11 + µ0s∂T1 x11 −

PvT
2

x21δ cos ωT1 = 0,
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∂T1T1 x22 +
(

4As2 − Pv

)
x22 + 2∂T1T2 x21 + 4µ0s∂T1 x21 − PvTx11δ cos ωT1 = 0, (19)

ε3 : ∂T1T1 x13 +
(

As2 − Pv

)
x13 + ∂T2T2 x11 + 2∂T1T2 x12 + µ0s

(
∂T2 x11 + ∂T1 x12

)
−
(

PvT
2

x22 +
3PvvT

8
x2

11 +
PvvT

4
x2

21

)
δ cos ωT1 −

Pvvv

8
x3

11 −
Pvvv

4
x11x2

21 = 0,

∂T1T1 x23 +
(

4As2 − Pv

)
x23 + ∂T2T2 x21 + 2∂T1T2 x22 + 4µ0s

(
∂T2 x21 + ∂T1 x22

)
−
(

PvTx12 +
PvvT

2
x11x21

)
δ cos ωT1 −

Pvvv

8
x3

21 −
Pvvv

4
x2

11x21 = 0. (20)

Note that the works of temporal and spatial chaos of system (14) had been done in
Ref. [59] when Pv

4A < s2 < Pv
A . We now consider the case s2 ≥ Pv

A , i.e., As2− Pv ≥ 0, and take
the case of non-resonance into consideration, i.e., ω2 6= λ2

i (i = 1, 2) and | λ1 ± λ2 |6= ω.
Let λ1 =

√
As2 − Pv, λ2 =

√
4As2 − Pv. Then, Equation (18) have the general solutions

x11(T1, T2) =G1(T2)eiλ1T1 + G1(T2)e−iλ1T1 − PTδ

2
(
ω2 − λ2

1
)(eiωT1 + e−iωT1

)
,

x21(T1, T2) =G2(T2)eiλ2T1 + G2(T2)e−iλ2T1 , (21)

where Gi(i = 1, 2) is a function of the time-scale T2 and Gi denotes the conjugate quantity
of Gi. Substituting Equation (21) into Equation (19), yields

∂T1T1 x12 + λ2
1x12 =− 2iλ1eiλ1T1 ∂T2 G1 + 2iλ1e−iλ1T1 ∂T2 G1 − µ0s

[
iλ1G1eiλ1T1

− PTδiω
2
(
ω2 − λ2

1
) eiωT1 − iλ1G1e−iλ1T1 − PTδiω

2
(
ω2 − λ2

1
) e−iωT1

]

+
PvTδ

4

[
G2ei(λ2+ω)T1 + G2ei(λ2−ω)T1 + G2ei(ω−λ2)T1

+G2e−i(λ2+ω)T1
]
,

∂T1T1 x22 + λ2
2x22 =− 2iλ2eiλ2T1 ∂T2 G2 + 2iλ2e−iλ2T1 ∂T2 G2 − 4µ0s

(
iλ2eiλ2T1 G2

−iλ2e−iλ2T1 G2

)
+

PvTδ

2

[
G1ei(λ1+ω)T1 + G1ei(λ1−ω)T1

− PTδ

2
(
ω2 − λ2

1
) e2iωT1 − PTδ

2
(
ω2 − λ2

1
) + G1ei(−λ1+ω)T1

+G1e−i(λ1+ω)T1 − PTδ

2
(
ω2 − λ2

1
) − PTδ

2
(
ω2 − λ2

1
) e−2iωT1

]
. (22)

To eliminate the secular terms of the above equations, let

−2iλ1∂T2 G1 − µ0siλ1G1 = 0,

−2iλ2∂T2 G2 − 4µ0siλ2G2 = 0.

Then the coefficients G1 and G2 are

G1(T2) = c1e−
µ0s

2 T2 ,

G2(T2) = c2e−2µ0sT2 ,
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where c1 and c2 are integration constants. Thus, the special solutions of Equation (18)
become

x11(T1, T2) = 2c1e−
µ0s

2 T2 cos λ1T1 −
PTδ

ω2 − λ2
1

cos ωT1,

x22(T1, T2) = 2c2e−2µ0sT2 cos λ2T1. (23)

Therefore, Equation (22) are reduced to

∂T1T1 x12 + λ2
1x12 =

µ0sPTδiω
2
(
ω2 − λ2

1
)(eiωT1 − e−iωT1

)
+

c2PvTδe−2µ0sT2

4
×[

ei(λ2+ω)T1 + ei(λ2−ω)T1 + ei(ω−λ2)T1 + e−i(λ2+ω)T1
]
,

∂T1T1 x22 + λ2
2x22 =

c1PvTδe
−µ0s

2 T2

2

[
ei(λ1+ω)T1 + ei(λ1−ω)T1 + ei(ω−λ1)T1

+e−i(λ1+ω)T1
]
− PvT PTδ2

4
(
ω2 − λ2

1
)(e2iωT1 + e−2iωT1 + 2

)
. (24)

Similarly, suppose that the solutions of Equation (24) are

x12(T1, T2) =K1(T2)eiλ1T1 + K1(T2)e−iλ1T1 − µ0sPTδiω

2
(
λ2

1 −ω2
)2

(
eiωT1 − e−iωT1

)
+

c2PTδe−2µ0sT2

4
[
λ2

1 − (λ2 + ω)2
] [ei(λ2+ω)T1 + e−i(λ2+ω)T1

]

+
c2PTδe−2µ0sT2

4
[
λ2

1 − (λ2 −ω)2
] [ei(λ2−ω)T1 + ei(ω−λ2)T1

]
,

x22(T1, T2) =K2(T2)eiλ2T1 + K2(T2)e−iλ2T1 +
c1PvTδe−

µ0s
2 T2

4
[
λ2

2 − (λ1 + ω)2
] [ei(λ1+ω)T1

+e−i(λ1+ω)T1
]
+

c1PvTδe−
µ0s

2 T2

4
[
λ2

2 − (λ1 −ω)2
] [ei(λ1−ω)T1 + ei(ω−λ1)T1

]

− PvT PTδ2

4
(
ω2 − λ2

1
)(

λ2
2 − 4ω2

)(e2iωT1 + e−2iωT1
)
− PvT PTδ2

4
(
ω2 − λ2

1
)
λ2

2
. (25)

Substituting Equations (23) and (25) into Equation (20), it follows

∂T1T1 x13 + λ2
1x13 = −

c1µ2
0s2e−

µ0s
2 T2

4

(
eiλ1T1 + e−iλ1T1

)
− 2iλ1∂T2 K1eiλ1T1

+ 2iλ1∂T2 K1e−iλT1 +
c2PTδµ0si(λ2 + ω)e−2µ0sT2

λ2
1 − (λ2 + ω)2

[
ei(λ2+ω)T1 − e−i(λ2+ω)T1

]
+

c2PTδµ0si(λ2 −ω)e−2µ0sT2

λ2
1 − (λ2 −ω)2

[
ei(λ2−ω)T1 − ei(ω−λ2)T1

]
− µ0s

{
iλ1K1eiλ1T1

−iλ1K1e−iλ1T1 − c1µ0se−
µ0s

2 T2

2

(
eiλ1T1 + e−iλ1T1

)
+

µ0sPTδω2

2
(
λ2

1 −ω2
)2 ×(

eiωT1 + e−iωT1
)
+

c2PTδi(λ2 + ω)e−2µ0sT2

4
[
λ2

1 − (λ2 + ω)2
] [

ei(λ2+ω)T1 − e−i(λ2+ω)T1
]
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+
c2PTδi(λ2 −ω)e−2µ0sT2

4
[
λ2

1 − (λ2 −ω)2
] [

ei(λ2−ω)T1 − ei(ω−λ2)T1
]

+
PvTδ

4

(
eiωT1 + e−iωT1

){
K2eiλ2T1 + K2e−iλ2T1 − PvT PTδ2

4
(
ω2 − λ2

1
)
λ2

2

− PvT PTδ2

4
(
ω2 − λ2

1
)(

λ2
2 −ω2

)(e2iωT1 + e−2iωT1
)

+
c1PvTδe−

µ0s
2 T2

4
[
λ2

2 − (λ1 −ω)2
] [ei(λ1−ω)T1 + ei(ω−λ1)T1

]

+
c1PvTδe−

µ0s
2 T2

4
[
λ2

2 − (λ1 + ω)2
] [ei(λ1+ω)T1 + e−i(λ1+ω)T1

]
+

3PvvTδ

16

(
eiωT1 + e−iωT1

){
c2

1e−µ0sT2
(

e2iλ1T1 + e−2iλ1T1 + 2
)

− c1PTδe−
µ0s

2 T2

ω2 − λ2
1

[
ei(λ1+ω)T1 + ei(λ1−ω)T1 + ei(ω−λ1)T1 + e−i(λ1+ω)T1

]
+

P2
Tδ2

4
(
ω2 − λ2

1
)2

(
e2iωT1 + e−2iωT1 + 2

)}
+

c2
2PvvTδe−4µ0sT2

8

(
eiωT1 + e−iωT1

)
×

(
e2iλ2T1 + e−2iλ2T1 + 2

)
+

Pvvv

8
x3

11 −
Pvvv

4
x11x2

21,

∂T1T1 x23 + λ2
2x23 = −4c2µ2

0s2e−2µ0sT2
(

eiλ2T1 + e−iλ2T1
)
− 2iλ2∂T2 K2eiλ2T1

+ 2iλ2∂T2 K2e−iλ2T1 +
c1PvTδµ0si(λ1 + ω)e−

µ0s
2 T2

4
[
λ2

2 − (λ1 + ω)2
] [

ei(λ1+ω)T1 − e−i(λ1+ω)T1
]

+
c1PvTδµ0si(λ1 −ω)e−

µ0s
2 T2

4
[
λ2

2 − (λ1 −ω)2
] [

ei(λ1−ω)T1 − ei(ω−λ1)T1
]

− 4µ0s
{

iλ2K2eiλ2T1 − iλ2K2e−iλ2T1 − 2c2µ0se−2µ0sT2
(

eiλ2T1 + e−iλ2T1
)

+
c1PvTδi(λ1 + ω)e−

µ0s
2 T2

4
[
λ2

2 − (λ1 + ω)2
] [

ei(λ1+ω)T1 − e−i(λ1+ω)T1
]

+
c1PvTδi(λ1 −ω)e−

µ0s
2 T2

4
[
λ2

2 − (λ1 −ω)2
] [

ei(λ1−ω)T1 − e−i(ω−λ1)T1
]

− PvT PTδ2iω
2
(
ω2 − λ2

1
)(

λ2
2 − 4ω2

)(e2iωT1 − e−2iωT1
)}

+
PvTδ

2

(
eiωT1 + e−iωT1

)
×K1eiλ1T1 + K1e−iλ1T1 +

c2PTδe−2µ0sT2

4
[
λ2

1 − (λ2 + ω)2
] [ei(λ2+ω)T1 + e−i(λ2+ω)T1

]

+
c2PTδe−2µ0sT2

4
[
λ2

1 − (λ2 −ω)2
] [ei(λ2−ω)T1 + ei(ω−λ2)T1

]
− µ0sPTδiω

2
(
λ2

1 −ω2
)2

(
eiωT1 − e−iωT1

)
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+
c2PvvTδe−2µ0sT2

4

(
ei(λ2+ω)T1 + ei(λ2−ω)T1 + ei(ω−λ2)T1 + e−i(λ2+ω)T1

)
×[

c1e−
µ0s

2 T2
(

eiλ1T1 + e−iλ1T1
)
− Pvδ

2
(
ω2 − λ2

1
)(eiωT1 + e−iωT1

)]

+
c3

2Pvvve−6µ0sT2

8

(
e3iλ2T1 + 3eiλ2T1 + 3e−iλ2T1 + e−3iλ2T1

)
+

Pvvv

4
x2

11x21, (26)

where the complex expressions of x3
11, x11x2

21 and x2
11x21 are shown in Appendix A.

To eliminate the secular terms of the Equation (26), we take

K1(T2) = c3e−
µ0s

2 T2 ,

K2(T2) = c4e−2µ0sT2 ,

where c3 and c4 are integration constants. Thus, it leads to the special solutions of
Equation (19) as

x12(T1, T2) =2c3e−
µ0s

2 T2 cos λ1T1 +
µ0sPTδω(
λ2

1 −ω2
)2 sin ωT1

+
c2PTδe−2µ0sT2

2
[
λ2

1 − (λ2 + ω)2
] cos (λ2 + ω)T1

+
c2PTδe−2µ0sT2

2
[
λ2

1 − (λ2 −ω)2
] cos (λ2 −ω)T1,

x22(T1, T2) =2c4e−2µ0sT2 cos λ2T1 −
PvT PTδ2

4
(
ω2 − λ2

1
)
λ2

2

− PvT PTδ2

2
(
ω2 − λ2

1
)(

λ2
2 − 4ω2

) cos 2ωT1

+
c1PvTδe−

µ0s
2 T2

2
[
λ2

2 − (λ1 + ω)2
] cos (λ1 + ω)T1

+
c1PvTδe−

µ0s
2 T2

2
[
λ2

2 − (λ1 −ω)2
] cos (λ1 −ω)T1. (27)

Submitting the Equations (23) and (27) into the Equation (15), the solutions of the
original system (14) can be obtained as follows

x1 =ε

(
2c1e−

µ0s
2 T2 cos λ1T1 −

PTδ

ω2 − λ2
1

cos ωT1

)
+ ε2

{
2c3e−

µ0s
2 T2 cos λ1T1

+
µ0sPTδω(
λ2

1 −ω2
)2 sin ωT1 +

c2PTδe−2µ0sT2

2[λ2
1 − (λ2 + ω)2]

cos(λ2 + ω)T1

+
c2PTδe−2µ0sT2

2[λ2
1 − (λ2 −ω)2]

cos(λ2 −ω)T1

}
,

x2 =ε
(

2c2e−2µ0sT2 cos λ2T1

)
+ ε2

{
2c4e−2µ0sT2 cos λ2T1 −

PvT PTδ2

4
(
ω2 − λ2

1
)
λ2

2

+
c1PvTδe−

µ0s
2 T2

2
[
λ2

2 − (λ1 + ω)2
] cos(λ1 + ω)T1 −

PvT PTδ2

2
(
ω2 − λ2

1
)(

λ2
2 − 4ω2

) cos 2ωT1
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+
c1PvTδe−

µ0s
2 T2

2
[
λ2

2 − (λ1 −ω)2
] cos(λ1 −ω)T1

. (28)

4. Numerical Comparison

In order to verify the validity of the calculation results, a numerical comparison is
carried out in this section. Consider the case T0 = 0.0315 and ε = 0.001, and conse-
quently v0 = 3.652. The initial value of the charged dilaton black hole system is selected as
[x1(0), u1(0), x2(0), u2(0)] = [0.02345, 0, 0.02021, 0], and take the aforementioned integra-
tion constants c1 = c2 = 0.1 and c3 = c4 = 10000. As shown in Figure 1, the solution (28)
obtained by the two-timing scale method is almost the same as the solution of the original
system (14) (so-called “exact solution”) at each time. Meantime, these two solutions display
the same trend as time evolves. In summary, these reveal that the two-timing scale method
effectively describes this complex nonlinear charged dilaton black hole system, and the
obtained asymptotic solutions are resultful with some parameter values.

Figure 1. A comparison between the two-timing scale method solution and the “exact solution” for
q = 1, α = 0.01, b = 1, A = 0.3703, s = 0.04, µ0 = 0.1, ω = 0.01, δ = 0.004 and ε = 0.001.

Moreover, at the same values of the above parameter, the phase portrait of the asymp-
totic solution is plotted as shown in Figure 2. Combining Figure 1 with Figure 2, it can be
found that there exists a quasi-periodic motion, which is worthy of further study in the
next section.

-0.04 -0.02 0 0.02 0.04
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Figure 2. Phase portrait of the two-timing scale method solution.
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In order to explore the final state of the black hole flow, the following equations are
considered by neglecting the non-periodic terms in the Equation (28), which are denoted
by the “asymptotic periodic solutions”

x1 =− εPTδ

ω2 − λ2
1

cos ωT1 +
ε2µ0sPTδω(
λ2

1 −ω2
)2 sin ωT1,

x2 =− ε2PvT PTδ2

2
(
ω2 − λ2

1
)(

λ2
2 − 4ω2

) cos 2ωT1 −
ε2PvT PTδ2

4
(
ω2 − λ2

1
)
λ2

2
. (29)

Take c1 = c2 = c3 = c4 = 10−6, a comparison between the asymptotic solution and
asymptotic periodic solution is shown in Figure 3. It is clear that the non-periodic terms in
Equation (28) have barely any effect on the obtained solutions when the order of magnitude
of integration constants is small.

(a)

(b)
Figure 3. A comparison between the asymptotic solution and asymptotic periodic solution for
A = 0.3703, s = 0.04, µ0 = 0.1, ω = 0.01, δ = 0.004 and ε = 0.001: (a) Time-history diagram in
x1-direction, (b) Time-history diagram in x2-direction.

5. Quasi-Periodic Behavior

Quasi-periodicity is a new type of long-term behavior, which is different from fixed
point, homoclinic orbit, heteroclinic orbit, and periodic orbit. In deep space exploration,
the Lissajous orbit and quasi-halo orbit near the Lagrangian points that have practical
applications are also quasi-periodic. Mathematically, the frequencies in different directions
are incommensurable, which implies that when the value of λ1/λ2 in Section 3 is an
irrational number, the corresponding trajectory is said to be quasi-periodic. Then, as time
evolves, the trajectory will never close into itself, which means that time-domain solutions
will never be repeated. This is because any closed trajectory is bound to rotate an integer
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circle about λ1 and λ2, the frequency ratio must be a rational number. On the contrary,
each trajectory will be dense as time flows.

Based on the results in Section 4, it is worthy of studying the qualitative behavior
of the “exact solution” of the charged dilaton black hole system (14). The quasi-periodic
behavior characterized by the black hole flow is further studied in this section with different
values of the parameters (see Table 1) and initial values of the black hole system. Note that
the denominator of Pv contains the irrational number π; then, it is obvious that there are
constants T0, v0, q, α and b to make Pv an irrational number. Therefore,

λ1

λ2
=

√
As2 − Pv√

4As2 − Pv
=

√
1− 3

4− Pv
As2

is an irrational number for any rational constant As2(> Pv). Then, several quasi-periodic
motions are found and shown in Figures 4 and 5. For example, take T0 = 0.0315, v0 = 3.652,
ε = 0.001, µ0 = 0.1, ω = 0.01, δ = 0.004, q = 1, α = 0.01, b = 0.019836, A = 0.2 and s = 0.04,
and the initial value of the system as [x1(0), u1(0), x2(0), u2(0)] = [−0.03226, 0, 0.01, 0]. Then,
the phase portrait shows a “reticular shape” in Figure 4a, which characterizes the quasi-
periodic motion of the black hole flow. In addition, seven more quasi-periodic motions are
shown below, which are similar to “V-shape”, “8-shape” and “pillow-shape” and so on.

Table 1. Parameter values in the charged dilaton black hole flow.

Parameters q α b A s

Group (a) 1 0.01 0.019836 0.2 0.04
Group (b) 1 0.01 1 0.3703 0.04
Group (c) 1 0.01 1 0.4884 0.04
Group (d) 1.0319 0.01 1 0.2 0.04
Group (e) 1 0.3 1 0.2 0.8
Group (f) 1 1.732 10,000 0.2 0.04

-0.04 -0.02 0 0.02 0.04
-0.01

-0.005

0

0.005

0.01

(a)
Figure 4. Cont.
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Figure 4. Cont.
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-0.04 -0.02 0 0.02 0.04
-0.02

-0.01

0

0.01

0.02

(e)

-0.04 -0.02 0 0.02 0.04
-0.01

-0.005

0

0.005

0.01

(f)

Figure 4. (a–f) Phase portraits of the charged dilaton black hole system corresponding to the six
groups in Table 1 when ε = 0.001.

Considering that the value of the thermal perturbation parameter ε is 0.000001, the
related phase portraits of the system corresponding to the aforementioned Group (b) and
Group (c) are shown in Figure 5. The phase trajectories of the system tend to be stable
as time goes on. Moreover, the system’s motion tends to be periodic, and the vibration
amplitude tends to be constant simultaneously.

-0.04 -0.02 0 0.02 0.04
-0.01

-0.005

0

0.005

0.01

(a)
Figure 5. Cont.
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-0.04 -0.02 0 0.02 0.04
-0.01

-0.005

0

0.005

0.01

(b)
Figure 5. (a,b) Phase portraits of the charged dilaton black hole system for different λ1/λ2 with
ε = 0.000001.

6. Discussion and Conclusions

In this paper, the qualitative and quantitative analysis of charged dilation black holes
is investigated. The two-timing scale method is applied to analyze the black hole flow
equation and construct the second-order asymptotic analytical solution. According to
these solutions, a numerical comparison with different system parameters values is carried
out. By doing so, it can be found that these asymptotic solutions effectively describe the
dynamical behavior of the black hole flow for a long time. At the same time, the relevant
phase portraits are drawn to show quasi-periodic motion.

According to the obtained quasi-periodic motion, the quasi-periodic behavior of the
black hole flow in the spinodal region is further studied when the frequency of λ1/λ2 is
an irrational number. Several quasi-periodic motions with different parameter values are
found. It is worth mentioning that when the thermal parameter perturbation takes a small
value, the phase portraits of the black hole system exhibit better stability than the large
value, and the vibration amplitude tends to be constant simultaneously.

Furthermore, to understand the final evolution state of the thermal dynamics of the
black hole flow, the periodic solution is found according to the constructed analytical
solution. The numerical comparison of these two solutions shows that they agree well for
the small integral constant. In other words, the smaller the integral constant, the greater
the extent of the black hole flow’s motion tends to be periodic.

Author Contributions: Conceptualization, F.G.; Formal analysis, R.W.; software, R.W.; writing-
original draft, R.W.; writing—review and editing, F.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC)
through grant nos. 12172322 and 11672259, the China Scholarship Council through grant No.
201908320086, the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_3190).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are very grateful to the anonymous reviewers whose comments and sugges-
tions helped improve and clarify this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Universe 2021, 7, 377 16 of 18

Appendix A

x3
11 =c1

3e−
3µ0 sT2

2

(
e3 iλ1 T1 + e−3 iλ1 T1 + 3 eiλ1 T1 + 3 e−iλ1 T1

)
− 3c1

2PT δ e−µ0 sT2

2
(

ω2 − λ1
2
) [

2 eiω T1 + 2 e−iω T1 + ei(2 λ1+ω)T1

+e−i(2 λ1+ω)T1 + ei(2 λ1−ω)T1 + ei(ω−2 λ1)T1
]

+
3c1 PT

2δ2e−
µ0 s

2 T2

4
(

ω2 − λ1
2
)2

[
ei(λ1+2 ω)T1 + e−i(λ1+2 ω)T1 + ei(λ1−2 ω)T1

+ei(2 ω−λ1)T1 + 2 eiλ1 T1 + 2 e−iλ1 T1
]
− PT

3δ3

8
(

ω2 − λ1
2
)3

(
e3 iω T1

+e−3 iω T1 + 3 eiω T1 + 3 e−iω T1
)

,

x11x2
21 =c1 c2

2e−
9 µ0 sT2

2

[
ei(λ1+2 λ2)T1 + e−i(λ1+2 λ2)T1 + ei(λ1−2 λ2)T1

+ei(2 λ2−λ1)T1 + 2 eiλ1 T1 + 2 e−iλ1 T1
]
− c2

2PT δ e−4 µ0 sT2

2
(

ω2 − λ1
2
) ×

[
ei(ω+2 λ2)T1 + ei(ω−2 λ2)T1 + 2 eiω T1 + 2 e−iω T1 + e−i(ω+2 λ2)T1

+ei(2 λ2−ω)T1
]
,

x2
11x21 =c1

2c2e−3 µ0 sT2
[
ei(2 λ1+λ2)T1 + ei(2 λ1−λ2)T1 + ei(λ2−2 λ1)T1

+e−i(2 λ1+λ2)T1
]
+ 2 c1

2 c2e−3 µ0 sT2
(

eiλ2 T1 + e−iλ2 T1
)

− c1 c2 PT δ e−
5µ0 sT2

2

ω2 − λ1
2

[
ei(ω+λ1+λ2)T1 + e−i(ω+λ1+λ2)T1

+ei(ω+λ1−λ2)T1 + ei(λ1+λ2−ω)T1 + ei(λ1−λ2−ω)T1

+ei(ω−λ1+λ2)T1 + ei(ω−λ1−λ2)T1 + ei(λ2−ω−λ1)T1
]

+
c2 PT

2δ2e−2 µ0 sT2

4
(

ω2 − λ1
2
)2

[
2 eiλ2 T1 + 2 e−iλ2 T1 + ei(λ2+2 ω)T1

+e−i(λ2+2 ω)T1 + ei(λ2−2 ω)T1 + ei(2 ω−λ2)T1
]
.

References
1. Oppenheimer, J.R.; Snyder, H. On continued gravitational contraction. Phys. Rev. 1939, 56, 455–459. [CrossRef]
2. Webster, B.L.; Murdin, P. Cygnus X-1-a spectroscopic binary with a heavy companion? Nature 1972, 235, 37–38. [CrossRef]
3. Campanelli, M.; Lousto, C.; Zlochower, Y.; Merritt, D. Large merger recoils and spin flips from generic black-hole binaries.

Astrophys. J. 2007, 659, L5–L8. [CrossRef]
4. Podsiadlowski, P.; Rappaport, S.; Han, Z. On the formation and evolution of black hole binaries. Mon. Not. R. Astron. Soc. 2010,

341, 385–404. [CrossRef]
5. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,

R.X.; et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [CrossRef]
6. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,

R.X.; et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett.
2016, 116, 241103. [CrossRef]

7. Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al.
Observation of gravitational waves from two neutron star-black hole coalescences. Astrophys. J. Lett. 2021, 915, L5. [CrossRef]

8. Alexeyev, S.; Sendyuk, M. Black holes and wormholes in extended gravity. Universe 2020, 6, 25. [CrossRef]

http://doi.org/10.1103/PhysRev.56.455
http://dx.doi.org/10.1038/235037a0
http://dx.doi.org/10.1086/516712
http://dx.doi.org/10.1046/j.1365-8711.2003.06464.x
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.241103
http://dx.doi.org/10.3847/2041-8213/ac082e
http://dx.doi.org/10.3390/universe6020025


Universe 2021, 7, 377 17 of 18

9. Stuchlík, Z.; Vrba, J. Epicyclic oscillations around Simpson-Visser regular black holes and wormholes. Universe 2021, 7, 279.
[CrossRef]
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