Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in f (T,B) Gravity with Observational Constraints
Abstract
:1. Introduction
2. Teleparallel Gravity and its Extension to Gravity
3. The Weak-Field Approximation
3.1. The Field Equations
3.2. Solving the Field Equations
3.3. Analogy with Gravitoelectromagnetism (GEM)
3.4. Comparison with a Spherically Symmetric Metric: The Schwarzchild Solution
4. Perturbations on a Static Spherically Symmetric Metric: Gravity
4.1. Perturbations on the Schwarzchild Solution
4.2. An Alternative Approach for a Weak-Field Limit
5. Observational Constraints
5.1. Geodetic Effect
5.2. Lense-Thirring Precession
5.3. Shapiro Time Delay
5.4. Light Bending
5.5. Perihelion Precession
6. Numerical Results
6.1. Geodetic Effect
6.2. Classical Solar System Constraints
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Solution for p = 3
References
- Abbott, B.P.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of cold dark matter halos. Astrophys. J. 1996, 462, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E. Principles of Physical Cosmology; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L.; Ruggiero, M.L. Constraining some r−n extra-potentials in modified gravity models with LAGEOS-type laser-ranged geodetic satellites. JCAP 2018, 1810, 021. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L.; Ruggiero, M.L.; Radicella, N.; Saridakis, E.N. Constraining the Schwarzschild–de Sitter solution in models of modified gravity. Phys. Dark Univ. 2016, 13, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.-M.; Xie, Y. Improved upper bounds on Kaluza–Klein gravity with current Solar System experiments and observations. Eur. Phys. J. 2015, C75, 539. [Google Scholar] [CrossRef] [Green Version]
- Weitzenböock, R. Invariantentheorie; Noordhoff: Gronningen, The Netherlands, 1923. [Google Scholar]
- Cai, Y.-F.; Capozziello, S.; de Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krssak, M.; van den Hoogen, R.J.; Pereira, J.G.; Böhmer, C.G.; Coley, A.A. Teleparallel theories of gravity: Illuminating a fully invariant approach. Class. Quant. Gravity 2019, 36, 183001. [Google Scholar] [CrossRef] [Green Version]
- Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys. 2013, 525, 339–357. [Google Scholar] [CrossRef]
- Nakahara, M. Geometry, Topology and Physics; IOP Publishing: Bristol, UK, 2003. [Google Scholar]
- Ortín, T. Gravity and Strings; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498–501. [Google Scholar] [CrossRef]
- Gonzalez, P.A.; Vasquez, Y. Teleparallel Equivalent of Lovelock Gravity. Phys. Rev. 2015, D92, 124023. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Dialektopoulos, K.F.; Said, J.L. Can Horndeski Theory be recast using Teleparallel Gravity? Phys. Rev. 2019, D100, 064018. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. 2007, D75, 084031. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime. Phys. Rev. 2008, D78, 124019. [Google Scholar] [CrossRef] [Green Version]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. 2009, D79, 124019. [Google Scholar] [CrossRef] [Green Version]
- Linder, E.V. Einstein’s Other Gravity and the Acceleration of the Universe. Phys. Rev. 2010, D81, 127301. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Cosmological perturbations in f(T) gravity. Phys. Rev. 2011, D83, 023508. [Google Scholar]
- Farrugia, G.; Said, J.L.; Ruggiero, M.L. Solar System tests in f(T) gravity. Phys. Rev. 2016, D93, 104034. [Google Scholar]
- Iorio, L.; Saridakis, E.N. Solar system constraints on f(T) gravity. Mon. Not. R. Astron. Soc. 2012, 427, 1555. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, M.L.; Radicella, N. Weak-Field Spherically Symmetric Solutions in f (T) gravity. Phys. Rev. 2015, D91, 104014. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.-M. Probing f(T) gravity with gravitational time advancement. Class. Quant. Gravity 2018, 35, 175013. [Google Scholar] [CrossRef]
- Finch, A.; Said, J.L. Galactic Rotation Dynamics in f(T) gravity. Eur. Phys. J. 2018, C78, 560. [Google Scholar] [CrossRef] [Green Version]
- Nesseris, S.; Basilakos, S.; Saridakis, E.N.; Perivolaropoulos, L. Viable f (T) models are practically indistinguishable from ΛCDM. Phys. Rev. 2013, D88, 103010. [Google Scholar]
- Farrugia, G.; Said, J.L. Stability of the flat FLRW metric in f (T) gravity. Phys. Rev. 2016, D94, 124054. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.M.; Mashhoon, B. Standard clocks, interferometry, and gravitomagnetism. Phys. Rev. Lett. 1993, A181, 353. [Google Scholar] [CrossRef]
- Hartle, J.B. Gravity: An Introduction to Einstein’s General Relativity, Illustrate ed.; Benjamin Cummings: San Francisco, CA, USA, 2003. [Google Scholar]
- Mashhoon, B.; Hehl, F.W. Nonlocal Gravitomagnetism. Universe 2019, 5, 195. [Google Scholar] [CrossRef] [Green Version]
- Lichtenegger, H.I.M.; Iorio, L.; Mashhoon, B. The Gravitomagnetic clock effect and its possible observation. Ann. Phys. 2006, 15, 868–876. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B. Gravitoelectromagnetism: A Brief Review. arXiv 2003, arXiv:gr-qc/0311030. [Google Scholar]
- Iorio, L. Analytically calculated post-Keplerian range and range-rate perturbations: The solar Lense–Thirring effect and BepiColombo. Mon. Not. R. Astron. Soc. 2018, 476, 1811–1825. [Google Scholar] [CrossRef] [Green Version]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Number pt. 3 in Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Thomas, L.H. The motion of a spinning electron. Nature 1926, 117, 514. [Google Scholar] [CrossRef]
- Lense, J.; Thirring, H. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 1918, 19, 156. [Google Scholar]
- Schiff, L.I. Possible new experimental test of general relativity theory. Phys. Rev. Lett. 1960, 4, 215–217. [Google Scholar] [CrossRef]
- Bertotti, B.; Ciufolini, I.; Bender, P.L. New test of general relativity: Measurement of de sitter geodetic precession rate for lunar perigee. Phys. Rev. Lett. 1987, 58, 1062–1065. [Google Scholar] [CrossRef]
- Shapiro, I.I.; Reasenberg, R.D.; Chandler, J.F.; Babcock, R.W. Measurement of the de sitter precession of the moon: A relativistic three-body effect. Phys. Rev. Lett. 1988, 61, 2643–2646. [Google Scholar] [CrossRef]
- Dickey, J.O.; Bender, P.L.; Faller, J.E.; Newhall, X.X.; Ricklefs, R.L.; Ries, J.G.; Shelus, P.J.; Veillet, C.; Whipple, A.L.; Wiant, J.R.; et al. Lunar laser ranging: A continuing legacy of the apollo program. Science 1994, 265, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Everitt, C.W.F.; DeBra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity probe b: Final results of a space experiment to test general relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef]
- Tartaglia, A. General relativistic corrections to the Sagnac effect. Phys. Rev. 1998, D58, 064009. [Google Scholar] [CrossRef] [Green Version]
- Said, J.L.; Sultana, J.; Adami, K.Z. Gravitomagnetic effects in conformal gravity. Phys. Rev. 2013, D88, 087504. [Google Scholar] [CrossRef] [Green Version]
- Finch, A.; Said, J.L. Gravitomagnetic effects in quadratic gravity with a scalar field. Phys. Rev. 2016, D94, 084010. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, K.; Ishihara, H. Geodetic Precession in Squashed Kaluza-Klein Black Hole Spacetimes. Phys. Rev. 2009, D80, 104037. [Google Scholar] [CrossRef] [Green Version]
- Ciufolini, I.; Pavlis, E.C. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 2004, 431, 958–960. [Google Scholar] [CrossRef]
- Ciufolini, I.; Matzner, R.A. (Eds.) General relativity and John Archibald Wheeler; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Iorio, L. A note on the evidence of the gravitomagnetic field of mars. Class. Quantum Gravity 2006, 23, 5451–5454. [Google Scholar] [CrossRef]
- Iorio, L. On the lense-thirring test with the mars global surveyor in the gravitational field of mars. Cent. Eur. J. Phys. 2010, 8, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Constraining the angular momentum of the sun with planetary orbital motions and general relativity. Sol. Phys. 2012, 281, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, M.L.; Tartaglia, A. Test of gravitomagnetism with satellites around the Earth. Eur. Phys. J. Plus 2019, 134, 205. [Google Scholar] [CrossRef]
- Tartaglia, A.; di Virgilio, A.; Belfi, J.; Beverini, N.; Ruggiero, M.L. Testing general relativity by means of ring lasers. Eur. Phys. J. Plus 2017, 132, 73. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, M.L.; Tartaglia, A. Gravitomagnetic effects. Nuovo Cimento 2002, B117, 743–768. [Google Scholar]
- di Virgilio, A.; Belfi, J.; Bosi, F.; Morsani, F.; Terreni, G.; Beverini, N.; Carelli, G.; Giacomelli, U.; Maccioni, E.; Ortolan, A.; et al. The GINGER Project. Nucl. Part. Phys. Proc. 2017, 291–293, 140–145. [Google Scholar] [CrossRef]
- Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D 1979, 19, 3524–3553. [Google Scholar] [CrossRef]
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Ne’eman, Y. Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 1995, 258, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity; Springer: Dordrecht, The Netherlands, 2013; Volume 173. [Google Scholar]
- Krššák, M.; Pereira, J.G. Spin Connection and Renormalization of Teleparallel Action. Eur. Phys. J. 2015, C75, 519. [Google Scholar] [CrossRef] [Green Version]
- Maluf, J.W. Localization of energy in general relativity. J. Math. Phys. 1995, 36, 4242–4247. [Google Scholar] [CrossRef] [Green Version]
- Maluf, J.W. Hamiltonian formulation of the teleparallel description of general relativity. J. Math. Phys. 1994, 35, 335–343. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Pereira, J.G.; Vu, K.H. Gravitation without the equivalence principle. Gen. Relativ. Gravity 2004, 36, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Koivisto, T.; Hohmann, M.; Marzola, L. An Axiomatic Purification of Gravity. arXiv 2019, arXiv:1909.10415. [Google Scholar]
- Farrugia, G.; Said, J.L.; Gakis, V.; Saridakis, E.N. Gravitational Waves in Modified Teleparallel Theories. Phys. Rev. 2018, D97, 124064. [Google Scholar] [CrossRef] [Green Version]
- Abedi, H.; Capozziello, S. Gravitational waves in modified teleparallel theories of gravity. Eur. Phys. J. 2018, C78, 474. [Google Scholar] [CrossRef] [PubMed]
- Bahamonde, S.; Böhmer, C.G.; Wright, M. Modified teleparallel theories of gravity. Phys. Rev. 2015, D92, 104042. [Google Scholar] [CrossRef]
- Capozziello, S.; Capriolo, M.; Transirico, M. The gravitational energy-momentum pseudotensor: The cases of f (R) and f (T) gravity. Int. J. Geom. Methods Mod. Phys. 2018. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Capozziello, S. Noether Symmetry Approach in f (T,B) teleparallel cosmology. Eur. Phys. J. 2017, C77, 107. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A. de Sitter and Scaling solutions in a higher-order modified teleparallel theory. JCAP 2017, 1708, 027. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Zubair, M.; Abbas, G. Thermodynamics and cosmological reconstruction in f (T,B) gravity. Phys. Dark Univ. 2018, 19, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Wright, M. Conformal transformations in modified teleparallel theories of gravity revisited. Phys. Rev. 2016, D93, 103002. [Google Scholar] [CrossRef] [Green Version]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f (T) gravity. Class. Quant. Gravity 2016, 33, 115009. [Google Scholar] [CrossRef] [Green Version]
- Golovnev, A.; Koivisto, T.; Sandstad, M. On the covariance of teleparallel gravity theories. Class. Quant. Gravity 2017, 34, 145013. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; De Laurentis, M.; Nojiri, S.; Sáez-Gómez, D. No further gravitational wave modes in f (T) gravity. Phys. Lett. 2013, B727, 194–198. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Huang, Q.-G. Growth factor in f (T) gravity. JCAP 2011, 1103, 002. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Cardone, V.F.; Farajollahi, H.; Ravanpak, A. Cosmography in f(T)-gravity. Phys. Rev. 2011, D84, 043527. [Google Scholar]
- Capozziello, S.; Stabile, A.; Troisi, A. The Newtonian Limit of f(R) gravity. Phys. Rev. 2007, D76, 104019. [Google Scholar]
- Capozziello, S.; Corda, C.; de Laurentis, M.F. Massive gravitational waves from f(R) theories of gravity: Potential detection with LISA. Phys. Lett. 2008, B669, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Corda, C. Massive relic gravitational waves from f(R) theories of gravity: Production and potential detection. Eur. Phys. J. 2010, C65, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Berry, C.P.L.; Gair, J.R. Linearized f(R) Gravity: Gravitational Radiation and Solar System Tests. Phys. Rev. 2011, D83, 104022. [Google Scholar]
- Yang, L.; Lee, C.-C.; Geng, C.-Q. Gravitational Waves in Viable f(R) Models. JCAP 2011, 1108, 029. [Google Scholar] [CrossRef] [Green Version]
- Kausar, H.R.; Philippoz, L.; Jetzer, P. Gravitational Wave Polarization Modes in f (R) Theories. Phys. Rev. 2016, D93, 124071. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Gong, Y.; Hou, S.; Liu, Y. Polarizations of gravitational waves in f (R) gravity. Phys. Rev. 2017, D95, 104034. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Hou, S. Gravitational Wave Polarizations in f (R) Gravity and Scalar-Tensor Theory. EPJ Web Conf. 2018, 168, 01003. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Hou, S. The Polarizations of Gravitational Waves. Universe 2018, 4, 85. [Google Scholar] [CrossRef] [Green Version]
- Myung, Y.S. Propagating Degrees of Freedom in f (R) Gravity. Adv. High Energy Phys. 2016, 2016, 3901734. [Google Scholar] [CrossRef] [Green Version]
- Dass, A.; Liberati, S. Gravitoelectromagnetism in metric f (R) and Brans–Dicke theories with a potential. Gen. Relativ. Gravity 2019, 51, 84. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B.; Gronwald, F.; Lichtenegger, H.I.M. Gravitomagnetism and the clock effect. Lect. Notes Phys. 2001, 562, 83–108. [Google Scholar]
- DeBenedictis, A.; Ilijic, S. Spherically symmetric vacuum in covariant f (T) = T + T2 + O(Tγ) gravity theory. Phys. Rev. 2016, D94, 124025. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Flathmann, K.; Pfeifer, C. Photon sphere and perihelion shift in weak f (T) gravity. Phys. Rev. 2019, D100, 084064. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Basilakos, S.; Saridakis, E.N.; Capozziello, S.; Atazadeh, K.; Darabi, F.; Tsamparlis, M. New Schwarzschild-like solutions in f(T) gravity through Noether symmetries. Phys. Rev. 2014, D89, 104042. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Camci, U. Exact Spherically Symmetric Solutions in Modified Teleparallel gravity. Symmetry 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Ualikhanova, U.; Hohmann, M. Parametrized post-Newtonian limit of general teleparallel gravity theories. Phys. Rev. 2019, D100, 104011. [Google Scholar] [CrossRef] [Green Version]
- Rindler, W. Relativity: Special, General, and Cosmological; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Aldrovandi, R.; Guillen, L.C.T.; Pereira, J.G.; Vu, K.H. Bringing Together Gravity and the Quanta. AIP Conf. Proc. 2006, 861, 277–284. [Google Scholar]
- Aldrovandi, R.; Lucas, T.G.; Pereira, J.G. Does a Tensorial Energy-Momentum Density for Gravitation Exist? arXiv 2008, arXiv:0812.0034. [Google Scholar]
- Shapiro, I.I. Fourth Test of General Relativity. Phys. Rev. Lett. 1964, 13, 789–791. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology; John Wiley and Sons: New York, NY, USA, 1972. [Google Scholar]
- Bodenner, J.; Will, C.M. Deflection of light to second order: A tool for illustrating principles of general relativity. Am. J. Phys. 2003, 71, 770–773. [Google Scholar] [CrossRef] [Green Version]
- Rindler, W.; Ishak, M. Contribution of the cosmological constant to the relativistic bending of light revisited. Phys. Rev. 2007, D76, 043006. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Panchenko, A.; Scalia, M.; Cattani, C.; Nandi, K.K. Light bending in the galactic halo by Rindler-Ishak method. JCAP 2010, 1009, 004. [Google Scholar] [CrossRef] [Green Version]
- Ishak, M.; Rindler, W. The Relevance of the Cosmological Constant for Lensing. Gen. Relativ. Gravity 2010, 42, 2247–2268. [Google Scholar] [CrossRef] [Green Version]
1. | |
2. | A factor of 2 has been included to correctly match with the definition of used in those works. |
p | ||
---|---|---|
2 | ||
3 |
p | ||
---|---|---|
2 | ∼ | |
3 | ∼ |
p | |
---|---|
Shapiro Time Delay | |
2 | |
3 | |
Light Bending | |
2 | |
3 | |
Perihelion Precession | |
2 | |
3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrugia, G.; Said, J.L.; Finch, A. Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in f (T,B) Gravity with Observational Constraints. Universe 2020, 6, 34. https://doi.org/10.3390/universe6020034
Farrugia G, Said JL, Finch A. Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in f (T,B) Gravity with Observational Constraints. Universe. 2020; 6(2):34. https://doi.org/10.3390/universe6020034
Chicago/Turabian StyleFarrugia, Gabriel, Jackson Levi Said, and Andrew Finch. 2020. "Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in f (T,B) Gravity with Observational Constraints" Universe 6, no. 2: 34. https://doi.org/10.3390/universe6020034
APA StyleFarrugia, G., Said, J. L., & Finch, A. (2020). Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in f (T,B) Gravity with Observational Constraints. Universe, 6(2), 34. https://doi.org/10.3390/universe6020034