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Abstract: We briefly review the current status of nonlocal gravity (NLG), which is a classical nonlocal
generalization of Einstein’s theory of gravitation based on a certain analogy with the nonlocal
electrodynamics of media. Nonlocal gravity thus involves integro-differential field equations
and a causal constitutive kernel that should ultimately be determined from observational data.
We consider the stationary gravitational field of an isolated rotating astronomical source in the linear
approximation of nonlocal gravity. In this weak-field and slow-motion approximation of NLG,
we describe the gravitomagnetic field associated with the rotating source and compare our results
with gravitoelectromagnetism (GEM) of the standard general relativity theory. Moreover, we briefly
study the energy-momentum content of the GEM field in nonlocal gravity.
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1. Introduction

The standard formulation of general relativity (GR) involves the extension of classical physics
expressed in Minkowski spacetime, with metric dS2 = ηµν dXµ dXν, first to arbitrary curvilinear
(“accelerated") coordinates via the locality postulate and then to curved spacetime, with metric
ds2 = gµν dxµ dxν, by means of Einstein’s principle of equivalence [1–3]. Here, ηαβ is the Minkowski
metric tensor given by diag(−1, 1, 1, 1), Latin indices run from 1 to 3, while Greek indices run from 0
to 3. The theory is thus based on the Levi–Civita connection:

0Γµ
αβ =

1
2

gµν(gνα,β + gνβ,α − gαβ,ν) . (1)

This symmetric connection is torsion free, but has Riemannian curvature:

0Rα
µβν = ∂β

0Γα
νµ − ∂ν

0Γα
βµ + 0Γα

βγ
0Γγ

νµ − 0Γα
νγ

0Γγ
βµ . (2)

A left superscript “0" will be employed throughout to designate all geometric quantities that are related
to the Levi–Civita connection.

In the curved spacetime of general relativity, free test particles and light rays follow timelike
and null geodesics, respectively. The correspondence with Newtonian gravitation is established via
Einstein’s field equations [1]:

0Gµν + Λ gµν = κ Tµν , 0Gµν := 0Rµν −
1
2

gµν
0R , (3)

where 0Gµν is the Einstein tensor, 0Rµν = 0Rα
µαν is the Ricci tensor and 0R = gµν 0Rµν is the scalar

curvature. Moreover, Tµν is the symmetric energy-momentum tensor of matter (and nongravitational
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fields), Λ is the cosmological constant and κ := 8πG/c4. In GR, the gravitational field is identified
with the Riemannian curvature of spacetime; therefore, spacetime is flat when gravity is turned off
and we then work within the framework of the special theory of relativity.

Einstein’s general relativity has significant observational support. Indeed, GR is at present in
good agreement with solar system data as well as data from astronomical binary systems. The recent
detection of gravitation radiation due to binary mergers lends further support to Einstein’s theory
of gravitation. On the other hand, in the current standard model of cosmology, which assumes the
spatial homogeneity and isotropy of the universe, the energy content of the universe consists of about
70% dark energy, about 25% dark matter and about 5% visible matter. Dark energy is a kind of
repulsive energy that permeates the universe and not only counteracts the attraction of matter, but
causes accelerated expansion of the universe. The nature and origin of dark energy are unknown, but
it should have positive energy density and negative pressure. It is uniformly distributed throughout
space and though it exists everywhere, it is extremely difficult to detect locally. A possible candidate
for dark energy is provided by the cosmological constant Λ. The existence of dark energy and dark
matter indicates that we are almost completely ignorant about our universe. Most of the matter in the
universe is currently thought to be in the form of certain elusive particles of dark matter that, despite
much effort, have not been directly detected. The existence and properties of this dark matter have
thus far been deduced only through its gravity. In modern astronomy, dark matter is needed to explain
dynamics of galaxies, clusters of galaxies and structure formation in cosmology. However, it is possible
that there is no dark matter at all, and the theory of gravitation needs to be modified on the scale of
galaxies and beyond in order to take due account of what appears as dark matter in astronomy and
cosmology. A suitably extended theory of gravitation could then account for the observational data
without any need for dark matter. The present paper is about an attempt in this direction; that is, the
nonlocal aspect of gravity in NLG simulates dark matter. The main purpose of this paper is to briefly
present the main features of NLG theory and develop a useful linear perturbation scheme involving
nonlocal gravitoelectromagnetism.

Einstein’s theory of gravitation can be alternatively formulated within the framework of
teleparallelism. In this approach to gravitation, the fundamental fields are the 16 components of
an arbitrary smooth orthonormal tetrad frame eµ

α̂(x). The spacetime metric is then defined via the
orthonormality condition:

gµν = ηα̂β̂ eµ
α̂(x) eν

β̂(x) . (4)

Here, the hatted indices (e.g., α̂) refer to anholonomic tetrad—that is, local Lorentz—indices, while
ordinary indices (e.g., α) refer to holonomic spacetime indices. For instance, in:

ds2 = gµν dxµ dxν = ηα̂β̂ dxα̂ dxβ̂ , dxµ = eµ
α̂ dxα̂ , dxα̂ = eµ

α̂ dxµ , (5)

the tetrad connects (holonomic) spacetime quantities to (anholonomic) local Lorentz quantities.
A coordinate basis is holonomic, while a noncoordinate basis is anholonomic. For instance, given a
coordinate system xµ, four coordinate lines pass through each event and for each µ = 0, 1, 2, 3, the
1-form dxµ is exact and hence integrable. On the other hand, for each α̂ = 0̂, 1̂, 2̂, 3̂, the 1-form dxα̂

in Equation (5) is in general not exact and hence nonintegrable. Holonomic systems are integrable,
while anholonomic systems are nonintegrable. Holonomic and anholonomic indices are raised and
lowered by means of gµν(x) and ηα̂β̂, respectively. To change an anholonomic index of a tensor into
a holonomic index or vice versa, we simply project the tensor onto the corresponding tetrad frame.
We use units such that c = 1, unless specified otherwise.

The chosen tetrad frame is employed to define the Weitzenböck connection [4]:

Γµ
αβ = eµ

ρ̂ ∂α eβ
ρ̂ . (6)
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This nonsymmetric connection is curvature free, but has torsion. It follows from definition (6) that the
tetrad frame is covariantly constant:

∇ν eµ
α̂ = 0 , (7)

where ∇ refers to covariant differentiation with respect to the Weitzenböck connection. Equation (7)
implies that each leg of the tetrad field is parallel to itself throughout the manifold, i.e., for each α̂,
Equation (7) is an expression of the parallel transport of the corresponding vector with respect to
connection (6). Thus, in this theory observers throughout spacetime have access to a global set of
parallel vector fields that constitute the components of the tetrad frame field. This circumstance is the
essence of teleparallelism; for example, two distant vectors can be considered parallel to each other if
they have the same components with respect to the local tetrad frames.

It follows from Equations (4) and (7) that ∇γ gαβ = 0, so that the Weitzenböck connection is
compatible with the metric. Thus, in the framework under consideration here, we have one spacetime
metric and two metric-compatible connections. It is, therefore, possible to introduce the torsion tensor:

Cµν
α = Γα

µν − Γα
νµ = eα

β̂

(
∂µeν

β̂ − ∂νeµ
β̂
)

, (8)

and the contorsion tensor:
Kµν

α = 0Γα
µν − Γα

µν , (9)

which are linearly related. To see this, we note that ∇γ gαβ = 0 implies:

gαβ,γ = Γµ
γα gµβ + Γµ

γβ gµα , (10)

which, via the Levi–Civita connection (1), leads to:

Kµν
α =

1
2

gαβ(Cµβν + Cνβµ − Cµνβ) . (11)

The torsion tensor is antisymmetric in its first two indices by definition; however, the contorsion
tensor turns out to be antisymmetric in its last two indices. The torsion of the Weitzenböck connection
and the curvature of the Levi–Civita connection are complementary aspects of the gravitational field
within the framework of teleparallelism. Thus, it is natural to express Einstein’s field equations in
terms of the torsion tensor. The result is the teleparallel equivalent of general relativity, GR||, to which
we now turn.

1.1. GR||

It follows from Equations (9) and (11) that one can write Einstein’s field equations in terms of the
torsion tensor. To this end, one can prove after much algebra that the Einstein tensor is given by:

0Gµν =
κ√−g

[
eµ

γ̂ gνα
∂

∂xβ
Hαβ

γ̂ −
(

Cµ
ρσHνρσ −

1
4

gµν CαβγHαβγ

)]
, (12)

where we have introduced auxiliary torsion fieldsHµνρ and Cαβγ:

Hµνρ :=
√−g

κ
Cµνρ , Cαβγ := Cα gβγ − Cβ gαγ + Kγαβ . (13)

Here, g := det(gµν),
√−g = det(eµ

α̂) and Cµ is the torsion vector Cµ := Cα
µα = −Cµ

α
α. The Einstein

field equations can thus be written within the framework of teleparallelism as:

∂

∂xν
Hµν

α̂ +

√−g
κ

Λ eµ
α̂ =

√
−g (Tα̂

µ +Tα̂
µ) . (14)
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Here, Tµν is the trace-free energy-momentum tensor of the gravitational field and is given by:

κ Tµν := Cµρσ Cν
ρσ − 1

4
gµν Cρσδ C

ρσδ . (15)

The antisymmetry ofHµν
α̂ in its first two indices can be used to show that the law of conservation

of total energy-momentum tensor in GR||, namely:

∂

∂xµ

[√
−g (Tα̂

µ +Tα̂
µ − Λ

κ
eµ

α̂)
]
= 0 , (16)

follows from the gravitational field equations.
Let us recall here that GR field equations can be derived from an action principle involving a

gravitational Lagrangian given by:

Lg =
c3

16πG
(0R− 2Λ) . (17)

On the other hand, we find:

0R = −1
2

Cαβγ Cαβγ +
2√−g

∂

∂xδ

(√
−g Cδ

)
, (18)

so that the corresponding Lagrangian for GR|| is given by:

Lg = − c3

32πG
(Cαβγ Cαβγ + 4 Λ) . (19)

The special torsion invariant in Equations (18) and (19) can be expressed as a linear combination of the
three independent algebraic invariants of the torsion tensor, namely:

Cαβγ Cαβγ =
1
2

CαβγCαβγ + CαβγCγβα − 2 CαCα . (20)

1.2. GR|| as the Gauge Theory of the Translations Group

Fundamentally, teleparallelism and GR|| can only be understood in the framework of a gauge
theory of gravitation [5]. Presently the strong and the electroweak interactions are described by means
of gauge theories. For gravity, this framework can be used as well.

Consider first matter in a Minkowski space. The source of gravity in Newton’s theory is the mass
density; within special relativity it should be the energy-momentum tensor Tµν instead. For an isolated
material system, energy-momentum is conserved. This is the result of the rigid (often called “global”)
translation invariance of the action function of the material system under consideration.

A rigid invariance contrasts with the idea of field theory. Thus, in adopting the gauge doctrine,
we postulate for the action function the invariance under local translations. This forces us to introduce
1+3 translational gauge potentials (nonholonomic frames) eµ

α̂ thereby deforming the Minkowski space
M4 to a Weitzenböck space W4. Details of this procedure may be found in [6].

In W4, the Lorentz rotations are not gauged, i.e., the action is still invariant under rigid Lorentz

rotations, exactly like in M4. Accordingly, the W4 connection Γβ̂
µα̂ is still flat:

Rα̂
β̂µν := 2

(
∂[µΓα̂

ν]β̂
+ Γα̂

[µ|γ̂Γγ̂

|ν]β̂

)
= 0 . (21)
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This guarantees that in a W4 the parallel transport is still integrable. Accordingly, as in M4, we can
choose all over W4 a suitable frame such that the connection vanishes everywhere:

Γβ̂
µα̂
∗
= 0 (in a suitable frame) . (22)

Instead of the curvature, W4 carries a translational field strength torsion which, in analogy to
electrodynamics, is represented by the curl of the translational potential eµ

α̂:

Tµν
α̂ := 2∇[µeν]

α̂ = 2
(

∂[µeν]
α̂ + Γα̂

[µ|β̂| eν]
β̂
)

. (23)

In the teleparallel frame of Equation (22), we have for the torsion Tµν
α̂ ∗= Cµν

α̂ , see Equation (8), where
Cµν

α̂ is the object of anholonomity of Schouten [7]. The torsion has three irreducible pieces (I)Tµν
α, for

I = 1, 2, 3. With the torsion vector Tµ := −Tµν
ν, we have:

(1)Tµνρ := Tµνρ − (2)Tµνρ − (3)Tµνρ , (2)Tµνρ := −2
3

T[µ gν]ρ , (3)Tµνρ := T[µνρ] . (24)

So far we reminded ourselves of the kinematics of a translational gauge theory (TG). With the
gauge Lagrangian LTG = LTG(∂e, e, Γ, g), we can address the dynamics by defining the gravitational
translational field momentum (or translation excitation):

Hµν
α̂ := − ∂LTG

∂Tµν
α̂

. (25)

Should we investigate a physical system which has no Lagrangian—in the case of irreversibility,
e.g.,—the excitationHµν

α̂ still makes physical sense, as we know, e.g., from electrodynamics and the
inhomogeneous Maxwell equation.

The general quadratic TG Lagrangian carries three independent pieces:

LTG ∼
1
κ

(
a1

(1)Tµν
α
(1)Tµν

α + a2
(2)Tµν

α
(2)Tµν

α + a3
(3)Tµν

α
(3)Tµν

α
)

. (26)

To the Lagrangian (26) we can add a Lagrange multiplier term for enforcing the teleparallel constraint,
see [6]. It turns out that we cannot allow spinning matter (other than as test particles) in such a
teleparallel space. Accordingly, we must decree, see page 52 of [6], that only scalar and electromagnetic
matter be allowed in TG, since they do not carry dynamical spin and have, consequently, symmetric
energy-momentum tensors.

The translational excitation of Lagrangian (26) reads:

Hµν
α = −

√−g
κ

(
a1

(1)Tµν
α + a2

(2)Tµν
α + a3

(3)Tµν
α

)
. (27)

In a teleparallelism theory the three-parametric rigidly Lorentz invariant Lagrangian is a totally
acceptable choice. It corresponds to a gauge theory of the translation group. However, as it so happens,
among these three-parameter Lagrangians, up to an overall constant, there is only one Lagrangian
that is locally Lorentz invariant, see Cho [8]. This theory, which we abbreviate by GR||, is, for scalar and
electromagnetic matter, equivalent to GR. The local Lorentz invariance is imposed from the outside,
it is not necessary in a translational gauge theory. However, it shows that GR can be really understood
as a specific translational gauge theory. A Hilbert-Einstein Lagrangian is equivalent to a definite
torsion square Lagrangian in the teleparallel limit. This is a big step forward in understanding GR.
The constants for GR|| are found to be, see [9]:

a1 = −1 , a2 = 2 , a3 =
1
2

. (28)
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This set of constants is called the Einstein choice. Lagrangian (26), together with Equation (28), and the
attached field momentum (27) were the starting point for a classical nonlocal theory of gravity.

1.3. Nonlocal Gravity

A locality assumption runs through the standard theories of special and general relativity [2,3].
For instance, to render an accelerated system in Minkowski spacetime relativistic, Lorentz
transformations are applied in a pointwise manner all along the world line of the accelerated system.
An accelerated observer is thus assumed to be physically identical with a hypothetical inertial observer
that shares the same state, namely position and velocity. The locality hypothesis originates from the
Newtonian mechanics of classical point particles and its domain of validity is determined by the extent
to which physical phenomena could be reduced to pointlike coincidences. However, wave phenomena
are generally nonlocal by the Huygens principle. Moreover, Bohr and Rosenfeld have shown that
the electromagnetic field measurement requires a certain average over a region of spacetime [10,11].
To go beyond the locality assumption, one must include an average over the past world line of the
accelerated observer. In this way, a nonlocal special relativity theory has been developed [12,13].

Can nonlocal special relativity be extended to include the gravitational interaction by means of
Einstein’s principle of equivalence? Einstein’s principle is extremely local, however, and this approach
encounters severe difficulties and has been abandoned. Instead, we use Einstein’s fundamental insight
regarding the connection between inertia and gravitation as a guiding principle and develop nonlocal
general relativity patterned after the nonlocal electrodynamics of media. To this end, we exploit the
formal analogy between GR|| and electrodynamics and introduce an average of the gravitational field
into the field equations via a causal constitutive kernel [14–16]. In nonlocal gravity, the gravitational
field is local, but satisfies partial integro-differential field equations.

In nonlocal gravity, as in the electrodynamics of media, we retain the gravitational field
equations (14), but change the local constitutive relation (13) to:

Hµνρ =

√−g
κ

(Cµνρ + Nµνρ) , (29)

where the new tensor Nµνρ involves a linear average of the torsion tensor over past events. More
specifically, we assume that:

Nµνρ = −
∫

Ωµµ′Ωνν′Ωρρ′ K(x, x′) Xµ′ν′ρ′(x′)
√
−g(x′) d4x′ , (30)

where Ω(x, x′) is Synge’s world function [17], K is the scalar causal kernel of the nonlocal theory and
Xµνρ(x) is a tensor that is antisymmetric in its first two indices and is given by:

Xµνρ = Cµνρ + p (Čµ gνρ − Čν gµρ) . (31)

Here, p 6= 0 is a constant dimensionless parameter and Čµ is the torsion pseudovector defined via the
Levi–Civita tensor Eαβγδ by:

Čµ :=
1
3!

Cαβγ Eαβγµ . (32)

Finally, the gravitational field equation of nonlocal gravity (NLG) is given by:

∂

∂xν

[√−g
κ

(Cµν
α̂ + Nµν

α̂)
]
+

√−g
κ

Λ eµ
α̂ =

√
−g (Tα̂

µ + Tα̂
µ) , (33)

where the energy-momentum tensor of the gravitational field, Tµν, is now given by:

Tµν = Tµν +
1
κ

(
Cµρσ Nν

ρσ − 1
4

gµν Cδρσ Nδρσ

)
. (34)
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The total energy-momentum conservation law then takes the form:

∂

∂xµ

[√
−g (Tα̂

µ + Tα̂
µ − Λ

κ
eµ

α̂)
]
= 0 . (35)

No exact nontrivial solution of the nonlocal field equation (33) is known. In this connection, the
main source of difficulty appears to be the complicated relation that introduces nonlocality into the
theory, namely Equation (30). In a recent paper [18], a simpler form of Equation (30) has been suggested,
where the bitensor Ωµµ′ is replaced by the parallel propagator −gµµ′ . It remains to determine whether
this simplification could help in generating exact nontrivial solutions of NLG.

The arbitrary tetrad frame we adopted to develop GR|| could be any smooth tetrad frame field
in spacetime. At each event, any two tetrad frame fields are related by an element of the local
Lorentz group. This circumstance agrees with the invariance of Einstein’s GR under the local Lorentz
group, since Einstein’s theory ultimately depends only upon the metric tensor gµν. The introduction of
nonlocality into the theory may remove this pointwise 6-fold degeneracy of GR||. However, as expected,
NLG remains invariant under the global Lorentz group.

2. Nonlocal GEM

We are interested in the stationary gravitational field of a rotating astronomical body, which
is assumed to be confined to a compact region of space. We work in the linear approximation
of nonlocal gravity, since the gravitational field is assumed to be weak. In this regime, a certain
analogy with classical electrodynamics [19] turns out to be fruitful. Indeed, in linearized GR, the
framework of gravitoelectromagnetism (GEM) has proved rather useful in describing and interpreting
the gravitational effects of rotating masses. It is, therefore, interesting to develop this method in NLG.
A preliminary account is already contained in [16] and will be further developed in this paper.

2.1. Linearized NLG

In the weak-field regime, we can write the chosen tetrad frame field in the form:

eµ
α̂ = δ

µ
α − ψµ

α , eµ
α̂ = δα

µ + ψα
µ , (36)

where ψµν(x) is the first-order perturbation away from a background global inertial reference frame in
Minkowski spacetime such that:

eµ
α̂ eµ

β̂ = δ
β
α . (37)

In this linear approximation scheme, the distinction between spacetime and tetrad indices disappears
and it follows from Equation (4) that gµν = ηµν + ψµν + ψνµ. Therefore, we can write:

ψµν = ψ(µν) + ψ[µν] , gµν = ηµν + hµν , hµν := 2 ψ(µν) , φµν := 2 ψ[µν] . (38)

The gravitational perturbation ψµν is thus comprised of a symmetric metric part 1
2 hµν and an

antisymmetric tetrad part 1
2 φµν. In connection with the metric part, it is useful to introduce, as in

GR, the trace-reversed potentials:

hµν = hµν −
1
2

ηµνh , h := ηµνhµν , h = −h . (39)

In the teleparallel approach to gravity, the 16 gravitational potentials consist of ten metric potentials
familiar from GR and six local Lorentz potentials connected with the local choice of the tetrad system
involving three rotations and three boosts. Gravitational potentials are gauge dependent. Under an
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infinitesimal coordinate transformation, xµ 7→ x′µ = xµ − εµ(x), the potentials change to linear order
in accordance with ψµν 7→ ψ′µν = ψµν + εµ,ν. Hence:

h ′µν = hµν + εµ,ν + εν,µ − ηµν εα
,α , h ′ = h− 2 εα

,α , φ′µν = φµν + εµ,ν − εν,µ . (40)

As expected, the linearized gravitational field as well as the corresponding field equations
remains invariant under gauge transformations. For instance, it is straightforward to show that the
torsion tensor:

Cµσν = ∂µψνσ − ∂σψνµ, (41)

and the auxiliary torsion tensor:

Cµσν = −hν[µ,σ] − ην[µhσ]ρ,
ρ +

1
2

φµσ,ν + ην[µφσ]ρ,
ρ (42)

do not change under a gauge transformation. To obtain the field equations of linearized NLG, we set
Λ = 0 and note that Equation (33) reduces in the linear regime to:

∂σ (Cµ
σ

ν + Nµ
σ

ν) = κ Tµν . (43)

Here, Tµν, Tµν
,µ = 0, is the conserved symmetric energy-momentum tensor of matter. We can write:

∂σ Cµ
σ

ν = 0Gµν = −1
2

hµν + h
ρ
(µ,ν)ρ −

1
2

ηµνh
ρσ

,ρσ , (44)

where := ηαβ∂α∂β. Furthermore:

Nµ
σ

ν(x) =
∫
K(x, y)Xµ

σ
ν(y) d4y , (45)

where Xµνρ is given by Equation (31) and K(x, y) reduces to a universal convolution kernel K(x− y)
in the linear approximation [16]. The linearized field equations of NLG thus take the GR form:

0Gµν + ∂σ Nµ
σ

ν = κ Tµν . (46)

For further discussion, see [20–22] and the references cited therein.

2.2. Kernel of Linearized NLG

A detailed discussion of the causal universal convolution kernel K(x − y) and its reciprocal
R(x− y) is contained in [16]. Here, we simply summarize their main properties.

We assume that the convolution kernels K and R are L1 and L2 functions on spacetime. They are
reciprocal of each other and satisfy the reciprocity integral equation:

K(x− y) + R(x− y) +
∫

K(x− z)R(z− y) d4z = 0 . (47)

If K̂(ξ) and R̂(ξ) are Fourier integral transforms of K(x) and R(x), respectively, then, (1+ K̂)(1+ R̂) =
1. Thus, given R̂(ξ), one can in principle determine K from:

K̂(ξ) = − R̂(ξ)
1 + R̂(ξ)

, (48)

provided 1 + R̂(ξ) 6= 0.
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We assume that the reciprocal kernel is given by:

R(x− y) = ν e−ν (x0−y0−|x−y|) Θ
(

x0 − y0 − |x− y|
)

q(x− y) , (49)

where ν−1 is a galactic length scale, Θ is the Heaviside unit step function such that Θ(t) = 0 for t < 0
and Θ(t) = 1 for t ≥ 0. Moreover, the Newtonian reciprocal kernel q(x− y) has been determined
based on the observational data regarding the rotation curves of spiral galaxies. Two possible forms
for q are given by:

q1 =
1

4πλ0

1 + µ0(a0 + r)
r(a0 + r)

e−µ0r (50)

and:

q2 =
1

4πλ0

1 + µ0(a0 + r)
(a0 + r)2 e−µ0r , (51)

where r = |x− y| and λ0, µ0 and a0 are constant parameters such that λ0, the fundamental length scale
of NLG, is expected to be ≈ 3 kpc and µ−1

0 ≈ 17 kpc [23]. The short-distance nonlocality parameter a0

is expected to be much smaller than λ0. From the solar system data for the orbit of Saturn, one expects
approximately that a0 is greater than or about the size of the solar system [24–26].

Let us now return to Equation (49) for the reciprocal kernel and note that:∫
ν e−ν (x0−y0−|x−y|) Θ

(
x0 − y0 − |x− y|

)
dy0 = 1 . (52)

This has an important implication for gravitational fields that are independent of time. For instance,
let Z(y) be a smooth function that is independent of y0, then:∫

R(x− y) Z(y) d4y =
∫

q(x− y) Z(y) d3y . (53)

It follows from the reciprocity relation that:∫
K(x− y) Z(y) d4y =

∫
χ(x− y) Z(y) d3y , (54)

where χ here is the Newtonian kernel reciprocal to q; that is:

χ(x− y) + q(x− y) +
∫

χ(x− z) q(z− y) d3z = 0 . (55)

2.3. GEM in Linearized NLG

Consider the stationary gravitational field of a rotating astronomical source in the linear
approximation. Equation (45) then takes the form:

Nµ
σ

ν(x) =
∫

K(x− y)Xµ
σ

ν(y) d4y =
∫

χ(x− y) Xµ
σ

ν(y) d3y . (56)

Next, from ∂χ/∂xi = −∂χ/∂yi and Gauss’s theorem, we find:

∂σ Nµ
σ

ν =
∫

χ(x− y) ∂i Xµ
i
ν(y) d3y . (57)

It proves convenient to impose the gauge conditions:

h
µν

,ν = 0 , φµν = 0 , (58)
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which correspond to the transverse gauge condition in the metric part and the vanishing of the local
Lorentz potentials. The gauge is not quite fixed, however, since a gauge transformation with εµ = ∂µζ

and ζ = 0 is still possible.
With the imposition of gauge condition (58), the torsion pseudovector vanishes, Čµ = 0,

by Equations (32) and (41); then, the gravitational field equations of linearized NLG for a stationary
source take the form:

0Gµν(x) +
∫

χ(x− y) 0Gµν(y) d3y = κ Tµν , (59)

since Xµ
σ

ν = Cµ
σ

ν and ∂σ Cµ
σ

ν = 0Gµν. Equation (44) implies that with the transverse gauge condition,
we have hµν = −2 0Gµν. It then follows from the temporal independence of gravitational potentials
and the reciprocity relation that:

∇2 hµν(x) = −2κ [Tµν(x) +
∫

q(x− y) Tµν(y) d3y] . (60)

We assume that the source consists of slowly moving matter (|v| � c) of density ρ, pressure P
and matter current j = ρ v. The matter energy-momentum tensor can thus be written as T00 = ρc2,
T0i = −c ji and Tij ∼ ρvivj + Pδij. The corresponding gravitational potentials are h00 = −4Φ/c2,
h0i = −2Ai/c2 and hij = O(c−4). In the gravitational potentials, we neglect all terms of O(c−4). The
static gravitoelectric and gravitomagnetic potentials are thus given by:

∇2Φ(x) = 4πG[ρ(x) + ρD(x)] , ρD(x) =
∫

q(x− y)ρ(y)d3y (61)

and:
∇2 A(x) = −8πG

c
[ j(x) + jD(x)] , jD(x) =

∫
q(x− y) j(y) d3y , (62)

respectively. Here, ρD(x) and jD(x) are the effective dark matter density and current, respectively. The
transverse gauge condition requires that ∇ ·A = 0. On the other hand, ∇ · j = 0 follows from the
energy-momentum conservation law. It follows that the dark matter current is conserved as well; that
is, ∇ · jD = 0.

Let us next introduce the GEM fields Eg = ∇Φ and Bg = ∇×A such that:

∇ · Eg = 4πG ( ρ + ρD) , ∇× Eg = 0 , (63)

∇ · (1
2

Bg) = 0 , ∇× (
1
2

Bg) =
4πG

c
( j + jD) . (64)

We remark in passing that our GEM conventions are in conformity with the gravitational Larmor
theorem [27].

The corresponding GEM metric takes the form:

ds2 = −c2
(

1 + 2
Φ
c2

)
dt2 − 4

c
(A · dx)dt +

(
1− 2

Φ
c2

)
δijdxidxj , (65)

whose geodesics can be employed to investigate the motion of test particles and null rays in nonlocal
GEM. It is possible to show, for instance, the existence of the gravitational analog of the Lorentz
force law [27]. We note that Φ(x) is the gravitoelectric potential of nonlocal gravity in the Newtonian
regime and has been investigated in some detail [16]; therefore, we concentrate here first on the
gravitomagnetic vector potential A(x) = O(c−1).

It is interesting to compare nonlocal GEM with the standard GR treatment [27,28]. In NLG, the
steady-state assumption is rather necessary and leads to great simplification. Thus, topics such as
time-varying gravitomagnetism or gravitational induction that are standard in the GR treatment are
beyond the reach of nonlocal GEM. Furthermore, the steady-state requirement limits any further gauge
freedom; however, it is possible to shift the magnitude of the gravitoelectric potential by a constant in
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metric (65). To this end, let us recall that the remaining gauge freedom is in the form εµ = ∂µζ, where
ζ = 0. With ζ = −β (3t2 + |x|2)/6, metric (65) changes to:

ds2 = − (1 + 2 Φ + 2 β) dt2 − 4 (A · dx) dt +
(

1− 2 Φ− 2
3

β

)
δijdxidxj , (66)

where β is a constant parameter.

3. Gravitomagnetism in Nonlocal GEM

In Equation (62), the gravitomagnetic vector potential depends on the choice of the reciprocal
kernel q. To indicate which Newtonian reciprocal kernel is under consideration, we introduce a
parameter δ such that δ = 1 for q1 and δ = 2 for q2. Let us write the solution of Equation (62) in
the form:

δA(x) =
2 G

c

∫
δA(x− y) j(y) d3y . (67)

Using Equation (62) and the explicit form of the Newtonian reciprocal kernels (50) and (51), we find:

δA(r) = 1
r
[1 + α0

δN(µ0 r)] , (68)

where r = |r|, α0 := 2/(λ0 µ0) ≈ 11 and δN is given by:

δN(u) = 1− e−u +
δ

2
ς eς[E1(ς + u)− E1(ς)] +

1
2

u E1(ς + u) . (69)

Here, E1 is the exponential integral function given by:

E1(x) :=
∫ ∞

x

e−t

t
dt , (70)

so that for x : 0→ ∞, E1(x) is a positive monotonically decreasing function that diverges as− ln x near
x = 0 and falls off exponentially as x → ∞. Moreover, we have introduced a dimensionless quantity ς

such that ς := a0 µ0 < 1. For the exterior of the Earth, we assume that r is less an astronomical unit
and r/a0 is rather small compared to unity as a0 is about the size of the solar system. For r � a0,
we have µ0 r � ς; then, the Taylor expansion of E1(ς + µ0 r) about E1(ς) and repeated differentiation
of Equation (70) result in:

eς E1(ς + µ0 r)− eς E1(ς) =
r
a0
− 1

2
(1 + ς)

r2

a2
0
+ O

(
r3

a3
0

)
. (71)

Putting these results together and neglecting terms of O
(
r3/a3

0
)
, we find:

δA(x− y) =
1

|x− y| +
1

λ0
[2− δ + eς E1(ς)]−

1 + ς

2 λ0 a0
(2− δ) |x− y| . (72)

Assuming |x| > |y|, which is appropriate for the exterior of the source, and expanding |x− y| to
first order in |y|/|x|, we get:

∫ j(y)
|x− y| d3y ≈ 1

|x|

∫
j(y) d3y +

1
|x|3

∫
(x · y) j(y) d3y (73)

and: ∫
|x− y| j(y) d3y ≈ |x|

∫
j(y) d3y− 1

|x|

∫
(x · y) j(y) d3y . (74)
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Let the compact gravitational source reside in the interior of a finite closed spatial domain D that
completely surrounds the source. This means that j vanishes on the surface of D and beyond. Then,
the conservation of matter current implies:∫

D
f (y) (x · y)∇y · j(y) d3y = 0 , (75)

where f (y) is a smooth function. Applying Gauss’s theorem and setting the integral on ∂D equal to
zero, we get: ∫

D
∇y[ f (y) (x · y)] · j(y) d3y = 0 . (76)

For f (y) = 1 and f (y) = yi, we find the following relations:∫
D

j(y) d3y = 0 ,
∫
D
(x · y) ji(y) d3y = −

∫
D

yi x · j(y) d3y , (77)

respectively. Let: ∫
D

y× j(y) d3y = J , (78)

be the total proper angular momentum of the gravitational source. Then, it is straightforward to show
using Equation (77) that: ∫

D
(x · y) j(y) d3y =

1
2

J× x . (79)

It then follows from these results that the gravitomagnetic vector potential is given by:

δA(x) =
G
c

J× x
|x|3

[
1 + (2− δ)

|x|2

L2
N

]
, (80)

where the relevant nonlocality length scale LN is given by:

LN =

(
2 λ0 a0

1 + ς

)1/2
. (81)

The nonlocal contribution to A at the level of approximation under consideration is nonzero for q1 but
vanishes for q2. The length scale LN & 1 pc, so that the nonlocal contribution to A in the exterior of the
Earth is relatively quite small and less than about 10−10 of the standard GR value.

Finally, the gravitomagnetic field can be calculated from Equation (80) and the result is:

δBg(x) =
G
c

3 (J · x) x− J |x|2
|x|5 +

G
c

(
2− δ

L2
N

)
(J · x) x + J |x|2

|x|3 . (82)

The gravitomagnetic field of the Earth has been directly measured via the GP-B experiment and the
GR prediction has been verified to about 19% [29]. The nonlocal contribution to the gravitomagnetic
field of the Earth is at most ten orders of magnitude smaller than the GR value and is thus beyond
current measurement capabilities for the foreseeable future. A similar estimate holds for nonlocal
gravitomagnetic effects in the motion of the Moon. In connection with the lunar laser ranging
experiment, we note that the main relativistic effects in the motion of the Moon are due to the
gravitational field of the Sun and have been calculated in [30,31]. The Earth-Moon system with its
orbital angular momentum acts as an extended gyroscope in the gravitomagnetic field of the Sun.
The nonlocal modification of this field is given by Equation (82) and the corresponding nonlocal
gravitomagnetic effects in the motion of the Moon are then about ten orders of magnitude smaller than
the GR predictions as well. Another consequence of the existence of the gravitomagnetic field is the
Lense–Thirring effect, see [32–34] and the references cited therein.
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3.1. Nonlocal Contributions to the Metric

The spacetime metric (66) in our nonlocal GEM contains gravitoelectric and gravitomagnetic
potentials. The latter is given by Equation (80). It is, therefore, necessary to find the corresponding
gravitoelectric potential δΦ(x), which is given by:

δΦ(x) = −G
∫

δA(x− y) ρ(y) d3y . (83)

To simplify matters, we assume that the gravitational source has a spherically symmetric matter
distribution. This means that ρ(y) = ρ(|y|); then, we go through essentially the same steps as in
Equations (68)–(74), except that: ∫

(x · y) ρ(|y|) d3y = 0 , (84)

as a consequence of spherical symmetry for the matter distribution. Therefore, Equation (72) implies:

δΦ(r) = −GM
r
− GM

λ0
[2− δ + eς E1(ς)] +

GM r
L2

N
(2− δ) (85)

and:
δEg(x) =

GM x
|x|3

[
1 + (2− δ)

|x|2

L2
N

]
. (86)

Here, M is the mass of the spherical rotating source in our linear approximation scheme, namely:

M :=
∫

ρ(|y|) d3y . (87)

We note that Equation (85) here is consistent with Equations (8.39) and (8.40) of [16]. With gravitoelectric
potential (85) and gravitomagnetic potential (80), the GEM metric (65) can now be used consistently in
investigating nonlocal effects in GEM.

3.2. Gravitomagnetic Clock Effect in NLG

There is a special temporal structure around a rotating mass that is best expressed via the
gravitomagnetic clock effect [35–38]. To illustrate this effect in NLG, let us assume that the gravitational
source rotates about the z axis, J = J ẑ, and write the GEM metric in the corresponding spherical polar
coordinates. Under the transformation xµ 7→ (t, r, θ, φ), metric (65) takes the form:

ds2 = gtt dt2 + 2 gtφ dtdφ + dr2 + r2 dθ2 + r2 sin2 θ dφ2 , (88)

where gtt := −1 − 2 Φ, gtφ := −2 r sin θ Aφ and we have neglected in our GEM approach the
contribution of Φ to the spatial part of the metric. In the local theory (GR), we have Φ = −GM/r and
Aφ = (GJ/r2) sin θ. These potentials change in our nonlocal approach as follows:

Φ = −Cδ −
GM

r

[
1− r2

L2
N
(2− δ)

]
, Aφ =

GJ
r2

[
1 +

r2

L2
N
(2− δ)

]
sin θ , (89)

where:
Cδ =

GM
λ0

[2− δ + eς E1(ς)] . (90)

We are interested in the nonlocal modification of Keplerian periods of the equatorial circular orbits in
this spacetime.
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The geodesic equation for the radial coordinate takes the form:

d2r
dτ2 + 0Γr

µν
dxµ

dτ

dxν

dτ
= 0 , (91)

where τ is the proper time. This equation can be solved for r = constant and θ = π/2. The solution in
the linear approximation under consideration is given by:

dt
dφ

= −
gtφ ,r

gtt ,r
+

(
− 2 r

gtt ,r

)1/2

. (92)

Indeed, for θ = π/2, we have:

gtt ,r = −2 Φ,r = −2
GM
r2

[
1 +

r2

L2
N
(2− δ)

]
, gtφ ,r =

2 J
r2

[
1− r2

L2
N
(2− δ)

]
. (93)

It follows from a detailed analysis that, as expected, deviations exist from the standard GR results
for δ = 1, 2. For an equatorial circular orbit with Keplerian frequency ωK = (GM/r3)1/2 and Keplerian
period TK = 2π/ωK, we find for the periods of co-rotating (+) and counter-rotating (-) orbits in terms
of coordinate time:

t± = TK

[
1− r2

2L2
N
(2− δ)

]
± 2π

J
M

[
1− 2

r2

L2
N
(2− δ)

]
(94)

and in terms of proper time:

τ± = TK

(
1− 3M

2r
− ∆M

)
± 2π

J
M

(
1 +

3M
2r
− ∆J

)
. (95)

Here, we work to linear order in perturbation quantities and the nonlocal contributions are given by
terms proportional to r2/L2

N , ∆M and ∆J , where:

∆M = Cδ +
r2

2L2
N
(2− δ) , ∆J = Cδ + 2

r2

L2
N
(2− δ) . (96)

It is interesting to note that the prograde period is longer than the retrograde period, namely:

t+ − t− = 4π
J

M

[
1− 2

r2

L2
N
(2− δ)

]
, τ+ − τ− = 4π

J
M

(
1 +

3M
2r
− ∆J

)
. (97)

In GR, the gravitomagnetic clock effect for circular equatorial orbits around the Earth is given by
τ+ − τ− ≈ 2× 10−7 sec. This prediction of GR has not yet been verified by observation. The GR effect
is indeed rather difficult to measure since the Keplerian period of a near-Earth orbit increases by about
2× 10−7 sec when the orbital radius is increased by 0.015 cm, see [39–47] and the references cited
therein. The magnitude of the nonlocal contribution to the gravitomagnetic clock effect for the Earth is
smaller than about 10−10 of the GR value.

3.3. Gravitational Larmor Theorem in NLG

In classical electrodynamics, Larmor’s theorem establishes a local relation between the motion
of a charged test particle in an electromagnetic field and its motion in the absence of the field, but in
an accelerated system of reference. The gravitational version of this theorem is essentially Einstein’s
principle of equivalence expressed within the GEM framework [27,28]. It is useful to point out that the
theorem extends to nonlocal GEM as well.
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Let us imagine an accelerated observer following a world line X̄µ(τ) in Minkowski spacetime.
Here, τ is the observer’s proper time. The observer carries an orthonormal tetrad frame λµ

α̂(τ) along
its path such that:

d λµ
α̂

dτ
= Ψα̂β̂ λµβ̂ , (98)

where Ψα̂β̂ = −Ψβ̂α̂ is the antisymmetric acceleration tensor. In analogy with the electromagnetic
field tensor, we can decompose Ψα̂β̂ into its “electric" and “magnetic" parts, namely Ψ0̂î = γî and

Ψî ĵ = εî ĵk̂ ωk̂. Here, γ and ω represent the invariant translational and rotational accelerations of
the observer, respectively. Let us now introduce a geodesic coordinate system in the neighborhood
of the accelerated observer. At a given proper time τ, the straight spacelike geodesics normal to
X̄µ(τ) form a Euclidean hyperplane. An event on this hyperplane with inertial coordinates Xµ will be
assigned geodesic (Fermi) coordinates xµ̂ such that x0̂ = τ and Xµ − X̄µ(τ) = xî λµ

î(τ). With these
transformations, dS2 = ηµν dXµ dXν becomes dS2 = gµ̂ν̂ dxµ̂ dxν̂, where:

g0̂0̂ = −(1 + γ · x)2 + (ω× x)2 , (99)

g0̂î = (ω× x)î , gî ĵ = δî ĵ. (100)

A detailed discussion of these local coordinates and their admissibility is contained in [16]. In general,
γ and ω are functions of proper time τ. However, in the present context of steady-state GEM,
we assume that these accelerations are constants and do not vary with proper time.

A comparison of this flat metric at the linear order with metric (66) once we neglect its spatial
curvature reveals that an accelerated observer in Minkowski spacetime is locally equivalent to an
observer in a GEM field provided Φ+ β = γ · x for a suitable choice of the constant β and−2 A = ω× x,
which means that Eg = γ and Bg = −ω, respectively. These GEM fields contain nonlocal effects;
in this way, the gravitational Larmor theorem has been extended to the nonlocal regime.

An interesting application of the gravitational Larmor theorem involves the interaction of spin
with the gravitational field. The coupling of intrinsic spin with the gravitomagnetic field has been
discussed extensively and a brief review of the subject is contained in [27]. The effect is related to
spin-rotation coupling via the gravitational Larmor theorem. The spin-rotation coupling for neutrons
has recently been measured via neutron interferometry [48,49]. The extension of the gravitational
Larmor theorem to the nonlocal regime means that spin-gravity coupling can likewise be extended to
the nonlocal regime.

4. Gravitational Energy-Momentum Tensor

The traceless gravitational energy-momentum tensor Tµν of NLG is given by Equation (34). Let us
first compute the local part of this tensor Tµν, which is traceless as well, for the GEM case. To this end,
we write Equation (15) in the form:

κ Tµν := Cµρσ Cν
ρσ − 1

4
gµν I , I := Cρσδ C

ρσδ , (101)

and express the components of the torsion tensor in terms of the GEM potentials. That is:

c2C0i0 = Φ,i , c2C0ij = Aj,i , c2Cij0 = Ai,j − Aj,i , c2Cijk = δik Φ,j − δjk Φ,i (102)

and:
c2C0i0 = 2 Φ,i , c2C0ij = Aj,i , c2Cij0 = Ai,j − Aj,i , c2Cijk = O(c−2) . (103)

It follows that:

I = 1
c4

[
4 E2

g − 3 B2
g − 2 ∑

i,j
A(i,j) A(i,j)

]
, (104)
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where we have used the relation:

∑
i,j

Ai,j Ai,j =
1
2

B2
g + ∑

i,j
A(i,j) A(i,j) . (105)

It is now possible to compute the components of the traceless energy-momentum tensor, which are:

T00 := − 1
8πG

[
E2

g +
1
4

B2
g −

1
2 ∑

i,j
A(i,j) A(i,j)

]
, (106)

T0i :=
1

8πG
(Eg × Bg)i (107)

and:

Tij :=
1

8πG

[
2 (Ei

g Ej
g −

1
2

δijE2
g) + (Bi

g Bj
g −

1
2

δijB2
g)−Aij

]
, (108)

where:
Aij := ∑

k
Ak,i Ak,j −

1
2

δij ∑
m,n

Am,n Am,n . (109)

These local results must be supplemented with nonlocal terms, i.e., we must go back to
Equation (34) and compute Tµν, which contains nonlocal terms of the form:

Nµνρ(x) =
∫

χ(x− y)Cµνρ(y) d3y , (110)

where χ is the kernel of NLG theory in the Newtonian regime [16]. The explicit calculation of this
kernel is rather complicated and is beyond the scope of this paper.

It is interesting to compare and contrast the local Equations (106) and (109) with those obtained
via the Landau–Lifshitz pseudotensor tµν of GR [50] within the standard GEM framework [27,28].
To this end, it is necessary to assume a steady-state GR configuration (i.e., ∂Φ/∂t = 0 and ∂A/∂t = 0).
Then:

4πG t00 = −7
2

E2
g + ∑

i,j
A(i,j)A(i,j) , (111)

4πG t0i = 2 (Eg × Bg)i , (112)

4πG tij =

(
Ei

gEj
g −

1
2

δijE2
g

)
+

(
Bi

gBj
g +

1
2

δijB2
g

)
. (113)

The similarity between these different gravitational results and the corresponding electromagnetic
ones is noteworthy. In particular, imagine a steady-state configuration involving a rotating astronomical
source with mass M and angular momentum J = J ẑ. Then, it follows from the gravitational Poynting
vector that there is a steady circulation of gravitational energy in the same sense as the rotation of the
source with an azimuthal flow speed given in spherical polar coordinates by:

vg ∝
J

Mr
sin θ . (114)

The proportionality constant depends on the underlying theory of gravitation [27,28].

5. Discussion

We have developed gravitoelectromagnetism (GEM) within the framework of nonlocal gravity
(NLG). Except for the trivial solution of field equations involving flat spacetime, NLG has no other
known exact solution at present. We must therefore resort to the linearized theory, where GEM
is possible for steady-state configurations. We have examined the nonlocal GEM corrections to
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the stationary gravitational field of an isolated rotating mass in the weak-field and slow-motion
approximations. Due to the existence of galactic length scales in NLG, the nonlocal GEM effects
around the Earth or the Sun turn out to be at most about ten orders of magnitude smaller than the
corresponding GR effects.
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