Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem
Abstract
1. Introduction
2. Effect of Medium on Deflection Angle of Schwarzschild Black Hole Using Gauss–Bonnet Theorem
2.1. Case 1
2.2. Case 2
2.3. Case 3
3. Effect of Medium on Deflection Angle of Schwarzschild-Like Wormhole Using Gauss–Bonnet Theorem
3.1. Case 1
3.2. Case 2
3.3. Case 3
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Nutku, Y.; Halil, M. Colliding Impulsive Gravitational Waves. Phys. Rev. Lett. 1977, 39, 1379–1382. [Google Scholar] [CrossRef]
- Alberdi, A.; Gómez Fernández, J.L.; Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Available online: http://adsabs.harvard.edu/abs/2019ApJ...875L...1E (accessed on 13 May 2019).
- Giddings, S.B.; Psaltis, D. Event Horizon Telescope Observations as Probes for Quantum Structure of Astrophysical Black Holes. Phys. Rev. D 2018, 97, 084035. [Google Scholar] [CrossRef]
- Barrau, A. Astrophysical and cosmological signatures of Loop Quantum Gravity. Scholarpedia 2017, 12, 33321. [Google Scholar] [CrossRef]
- Niven, W.D. The Scientific Papers of James Clerk Maxwell; Maxwell’s Original Piece in the Cambridge and Dublin Mathematical Journal for February 1854; Cambridge University Press: Cambridge, UK, 1890; Volume 1, pp. 76–79. [Google Scholar]
- Pendry, J.B. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef]
- Luneburg, R.K. Mathematical Theory of Optics; Brown University: Providence, RI, USA, 1944; pp. 189–213. [Google Scholar]
- Leonhardt, U. Perfect imaging without negative refraction. New J. Phys. 2009, 11, 093040. [Google Scholar] [CrossRef]
- Leonhardt, U.; Sahebdivan, S. Theory of Maxwell’s fish eye with mutually interacting sources and drains. Phys. Rev. A 2015, 92, 053848. [Google Scholar] [CrossRef]
- Leonhardt, U. Optical conformal mapping. Science 2006, 312, 1777–1780. [Google Scholar] [CrossRef]
- Minano, J.C. Perfect imaging in a homogeneous three-dimensional region. Opt. Express 2006, 14, 9627–9635. [Google Scholar] [CrossRef]
- Tyc, T.; Danner, A. Resolution of Maxwell’s fisheye with an optimal active drain. New J. Phys. 2014, 16, 063001. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H. Infinite Maxwell fisheye inside a finite circle. J. Opt. 2015, 17, 125102. [Google Scholar] [CrossRef]
- Guenneau, S.; Diatta, A.; McPhedran, R.C. Focusing: coming to the point in metamaterials. J. Mod. Opt. 2010, 57, 511–527. [Google Scholar] [CrossRef][Green Version]
- Perlick, V. Gravitational Lensing from a Spacetime Perspective. Living Rev. Relat. 2004, 7, 9. [Google Scholar] [CrossRef]
- Bozza, V. Gravitational Lensing by Black Holes. Gen. Relat. Grav. 2010, 42, 2269–2300. [Google Scholar] [CrossRef]
- Stefanov, I.Z.; Yazadjiev, S.S.; Gyulchev, G.G. Connection between Black-Hole Quasinormal Modes and Lensing in the Strong Deflection Limit. Phys. Rev. Lett. 2010, 104, 251103. [Google Scholar] [CrossRef]
- Epps, S.D.; Hudson, M.J. The Weak Lensing Masses of Filaments between Luminous Red Galaxies. Mon. Not. R. Astron. Soc. 2017, 468, 2605–2613. [Google Scholar] [CrossRef]
- Bartelmann, M.; Schneider, P. Weak gravitational lensing. Phys. Rept. 2001, 340, 291–472. [Google Scholar] [CrossRef]
- Ade, P.A.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Gibbons, G.W.; Werner, M.C. Applications of the Gauss-Bonnet theorem to gravitational lensing. Class. Quant. Grav. 2008, 25, 235009. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Warnick, C.M. Universal properties of the near-horizon optical geometry. Phys. Rev. D 2009, 79, 064031. [Google Scholar] [CrossRef]
- Werner, M.C. Gravitational lensing in the Kerr-Randers optical geometry. Gen. Relat. Grav. 2012, 44, 3047. [Google Scholar] [CrossRef]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Kitamura, T.; Asada, H. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D 2016, 94, 084015. [Google Scholar] [CrossRef]
- Sakalli, I.; Ovgun, A. Hawking Radiation and Deflection of Light from Rindler Modified Schwarzschild Black Hole. Europhys. Lett. 2017, 118, 60006. [Google Scholar] [CrossRef]
- Jusufi, K.; Werner, M.C.; Banerjee, A.; Övgün, A. Light Deflection by a Rotating Global Monopole Spacetime. Phys. Rev. D 2017, 95, 104012. [Google Scholar] [CrossRef]
- Ono, T.; Ishihara, A.; Asada, H. Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes. Phys. Rev. D 2017, 96, 104037. [Google Scholar] [CrossRef]
- Jusufi, K.; Sakalli, I.; Övgün, A. Effect of Lorentz Symmetry Breaking on the Deflection of Light in a Cosmic String Spacetime. Phys. Rev. D 2017, 96, 024040. [Google Scholar]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Asada, H. Finitedistance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D 2017, 95, 044017. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A.; Banerjee, A. Light deflection by charged wormholes in Einstein-Maxwell-dilaton theory. Phys. Rev. D 2017, 96, 084036. [Google Scholar] [CrossRef]
- Arakida, H. Light deflection and Gauss-Bonnet theorem: Definition of total deflection angle and its applications. Gen. Relat. Grav. 2018, 50, 48. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A. Gravitational Lensing by Rotating Wormholes. Phys. Rev. D 2018, 97, 024042. [Google Scholar] [CrossRef]
- Övgün, A.; Sakalli, I.; Saavedra, J. Shadow cast and Deflection angle of Kerr-Newman-Kasuya spacetime. J. Cosmol. Astropart. Phys. 2018, 1810, 41. [Google Scholar] [CrossRef]
- Övgün, A.; Sakalli, I.; Saavedra, J. Weak gravitational lensing by Kerr-MOG Black Hole and Gauss-Bonnet theorem. arXiv 2018, arXiv:1806.06453. [Google Scholar]
- Övgün, A.; Gyulchev, G.; Jusufi, K. Weak Gravitational lensing by phantom black holes and phantom wormholes using the Gauss-Bonnet theorem. Ann. Phys. 2019, 406, 152–172. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A.; Saavedra, J.; Gonzalez, P.A.; Vasquez, Y. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem. Phys. Rev. D 2018, 87, 124024. [Google Scholar] [CrossRef]
- Övgün, A.; Jusufi, K.; Sakalli, I. Exact traversable wormhole solution in bumblebee gravity. Phys. Rev. D 2019, 99, 024042. [Google Scholar] [CrossRef]
- Övgün, A.; Jusufi, K.; Sakalli, I. Gravitational lensing under the effect of Weyl and bumblebee gravities: Applications of Gauss–Bonnet theorem. Ann. Phys. 2018, 399, 193–203. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A. Effect of the cosmological constant on the deflection angle by a rotating cosmic string. Phys. Rev. D 2018, 97, 064030. [Google Scholar] [CrossRef]
- Javed, W.; Babar, R.; Övgün, A. The effect of the Brane-Dicke coupling parameter on weak gravitational lensing by wormholes and naked singularities. Phys. Rev. D 2019, 99, 084012. [Google Scholar] [CrossRef]
- Övgün, A. Light deflection by Damour-Solodukhin wormholes and Gauss-Bonnet theorem. Phys. Rev. D 2018, 98, 044033. [Google Scholar] [CrossRef]
- Ono, T.; Ishihara, A.; Asada, H. Deflection angle of light for an observer and source at finite distance from a rotating wormhole. Phys. Rev. D 2018, 98, 044047. [Google Scholar] [CrossRef]
- Ono, T.; Ishihara, A.; Asada, H. Deflection angle of light for an observer and source at finite distance from a rotating global monopole. arXiv 2018, arXiv:1811.01739. [Google Scholar]
- Crisnejo, G.; Gallo, E. Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss-Bonnet theorem. A unified treatment. Phys. Rev. D 2018, 97, 124016. [Google Scholar] [CrossRef]
- Crisnejo, G.; Gallo, E.; Rogers, A. Finite distance corrections to the light deflection in a gravitational field with a plasma medium. arXiv 2018, arXiv:1807.00724. [Google Scholar]
- Asada, H. Gravitational lensing by exotic objects. Mod. Phys. Lett. A 2017, 32, 1730031. [Google Scholar] [CrossRef]
- Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Odegard, N.; et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl. 2013, 208, 19. [Google Scholar] [CrossRef]
- Feng, J.L. Dark Matter Candidates from Particle Physics and Methods of Detection. Ann. Rev. Astron. Astrophys. 2010, 48, 495. [Google Scholar] [CrossRef]
- Latimer, D.C. Dispersive Light Propagation at Cosmological Distances: Matter Effects. Phys. Rev. D 2013, 88, 063517. [Google Scholar] [CrossRef]
- Latimer, D.C. Anapole dark matter annihilation into photons. Phys. Rev. D 2017, 95, 095023. [Google Scholar] [CrossRef]
- Latimer, D.C. Two-photon interactions with Majorana fermions. Phys. Rev. D 2016, 94, 093010. [Google Scholar] [CrossRef]
- Kvam, A.K.; Latimer, D.C. Optical dispersion of composite particles consisting of millicharged constituents. J. Phys. G 2016, 43, 085002. [Google Scholar] [CrossRef]
- Whitcomb, K.M.; Latimer, D.C. Scattering from a quantum anapole at low energies. Am. J. Phys. 2017, 85, 932. [Google Scholar] [CrossRef]
- Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Gravitational lensing in plasma: Relativistic images at homogeneous plasma. Phys. Rev. D 2013, 87, 124009. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S.; Tsupko, O.Y. Gravitational lensing in a non-uniform plasma. Mon. Not. R. Astron. Soc. 2010, 404, 1790–1800. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S.; Tsupko, O.Y. Gravitational Lensing in Plasmic Medium. Plasma Phys. Rep. 2015, 41, 562–581. [Google Scholar] [CrossRef]
- Damour, T.; Solodukhin, S.N. Wormholes as black hole foils. Phys. Rev. D 2007, 76, 024016. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Övgün, A. Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem. Universe 2019, 5, 115. https://doi.org/10.3390/universe5050115
Övgün A. Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem. Universe. 2019; 5(5):115. https://doi.org/10.3390/universe5050115
Chicago/Turabian StyleÖvgün, Ali. 2019. "Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem" Universe 5, no. 5: 115. https://doi.org/10.3390/universe5050115
APA StyleÖvgün, A. (2019). Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem. Universe, 5(5), 115. https://doi.org/10.3390/universe5050115