# Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Effect of Medium on Deflection Angle of Schwarzschild Black Hole Using Gauss–Bonnet Theorem

#### 2.1. Case 1

#### 2.2. Case 2

#### 2.3. Case 3

## 3. Effect of Medium on Deflection Angle of Schwarzschild-Like Wormhole Using Gauss–Bonnet Theorem

#### 3.1. Case 1

#### 3.2. Case 2

#### 3.3. Case 3

## 4. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett.
**2016**, 116, 061102. [Google Scholar] [CrossRef] - Nutku, Y.; Halil, M. Colliding Impulsive Gravitational Waves. Phys. Rev. Lett.
**1977**, 39, 1379–1382. [Google Scholar] [CrossRef] - Alberdi, A.; Gómez Fernández, J.L.; Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Available online: http://adsabs.harvard.edu/abs/2019ApJ...875L...1E (accessed on 13 May 2019).
- Giddings, S.B.; Psaltis, D. Event Horizon Telescope Observations as Probes for Quantum Structure of Astrophysical Black Holes. Phys. Rev. D
**2018**, 97, 084035. [Google Scholar] [CrossRef] - Barrau, A. Astrophysical and cosmological signatures of Loop Quantum Gravity. Scholarpedia
**2017**, 12, 33321. [Google Scholar] [CrossRef] - Niven, W.D. The Scientific Papers of James Clerk Maxwell; Maxwell’s Original Piece in the Cambridge and Dublin Mathematical Journal for February 1854; Cambridge University Press: Cambridge, UK, 1890; Volume 1, pp. 76–79. [Google Scholar]
- Pendry, J.B. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett.
**2000**, 85, 3966–3969. [Google Scholar] [CrossRef] - Luneburg, R.K. Mathematical Theory of Optics; Brown University: Providence, RI, USA, 1944; pp. 189–213. [Google Scholar]
- Leonhardt, U. Perfect imaging without negative refraction. New J. Phys.
**2009**, 11, 093040. [Google Scholar] [CrossRef] - Leonhardt, U.; Sahebdivan, S. Theory of Maxwell’s fish eye with mutually interacting sources and drains. Phys. Rev. A
**2015**, 92, 053848. [Google Scholar] [CrossRef] - Leonhardt, U. Optical conformal mapping. Science
**2006**, 312, 1777–1780. [Google Scholar] [CrossRef] - Minano, J.C. Perfect imaging in a homogeneous three-dimensional region. Opt. Express
**2006**, 14, 9627–9635. [Google Scholar] [CrossRef] - Tyc, T.; Danner, A. Resolution of Maxwell’s fisheye with an optimal active drain. New J. Phys.
**2014**, 16, 063001. [Google Scholar] [CrossRef] - Liu, Y.; Chen, H. Infinite Maxwell fisheye inside a finite circle. J. Opt.
**2015**, 17, 125102. [Google Scholar] [CrossRef] - Guenneau, S.; Diatta, A.; McPhedran, R.C. Focusing: coming to the point in metamaterials. J. Mod. Opt.
**2010**, 57, 511–527. [Google Scholar] [CrossRef] - Perlick, V. Gravitational Lensing from a Spacetime Perspective. Living Rev. Relat.
**2004**, 7, 9. [Google Scholar] [CrossRef] - Bozza, V. Gravitational Lensing by Black Holes. Gen. Relat. Grav.
**2010**, 42, 2269–2300. [Google Scholar] [CrossRef] - Stefanov, I.Z.; Yazadjiev, S.S.; Gyulchev, G.G. Connection between Black-Hole Quasinormal Modes and Lensing in the Strong Deflection Limit. Phys. Rev. Lett.
**2010**, 104, 251103. [Google Scholar] [CrossRef] - Epps, S.D.; Hudson, M.J. The Weak Lensing Masses of Filaments between Luminous Red Galaxies. Mon. Not. R. Astron. Soc.
**2017**, 468, 2605–2613. [Google Scholar] [CrossRef] - Bartelmann, M.; Schneider, P. Weak gravitational lensing. Phys. Rept.
**2001**, 340, 291–472. [Google Scholar] [CrossRef] - Ade, P.A.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys.
**2016**, 594, A13. [Google Scholar] - Gibbons, G.W.; Werner, M.C. Applications of the Gauss-Bonnet theorem to gravitational lensing. Class. Quant. Grav.
**2008**, 25, 235009. [Google Scholar] [CrossRef] - Gibbons, G.W.; Warnick, C.M. Universal properties of the near-horizon optical geometry. Phys. Rev. D
**2009**, 79, 064031. [Google Scholar] [CrossRef] - Werner, M.C. Gravitational lensing in the Kerr-Randers optical geometry. Gen. Relat. Grav.
**2012**, 44, 3047. [Google Scholar] [CrossRef] - Ishihara, A.; Suzuki, Y.; Ono, T.; Kitamura, T.; Asada, H. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D
**2016**, 94, 084015. [Google Scholar] [CrossRef] - Sakalli, I.; Ovgun, A. Hawking Radiation and Deflection of Light from Rindler Modified Schwarzschild Black Hole. Europhys. Lett.
**2017**, 118, 60006. [Google Scholar] [CrossRef] - Jusufi, K.; Werner, M.C.; Banerjee, A.; Övgün, A. Light Deflection by a Rotating Global Monopole Spacetime. Phys. Rev. D
**2017**, 95, 104012. [Google Scholar] [CrossRef] - Ono, T.; Ishihara, A.; Asada, H. Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes. Phys. Rev. D
**2017**, 96, 104037. [Google Scholar] [CrossRef] - Jusufi, K.; Sakalli, I.; Övgün, A. Effect of Lorentz Symmetry Breaking on the Deflection of Light in a Cosmic String Spacetime. Phys. Rev. D
**2017**, 96, 024040. [Google Scholar] - Ishihara, A.; Suzuki, Y.; Ono, T.; Asada, H. Finitedistance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D
**2017**, 95, 044017. [Google Scholar] [CrossRef] - Jusufi, K.; Övgün, A.; Banerjee, A. Light deflection by charged wormholes in Einstein-Maxwell-dilaton theory. Phys. Rev. D
**2017**, 96, 084036. [Google Scholar] [CrossRef] - Arakida, H. Light deflection and Gauss-Bonnet theorem: Definition of total deflection angle and its applications. Gen. Relat. Grav.
**2018**, 50, 48. [Google Scholar] [CrossRef] - Jusufi, K.; Övgün, A. Gravitational Lensing by Rotating Wormholes. Phys. Rev. D
**2018**, 97, 024042. [Google Scholar] [CrossRef] - Övgün, A.; Sakalli, I.; Saavedra, J. Shadow cast and Deflection angle of Kerr-Newman-Kasuya spacetime. J. Cosmol. Astropart. Phys.
**2018**, 1810, 41. [Google Scholar] [CrossRef] - Övgün, A.; Sakalli, I.; Saavedra, J. Weak gravitational lensing by Kerr-MOG Black Hole and Gauss-Bonnet theorem. arXiv
**2018**, arXiv:1806.06453. [Google Scholar] - Övgün, A.; Gyulchev, G.; Jusufi, K. Weak Gravitational lensing by phantom black holes and phantom wormholes using the Gauss-Bonnet theorem. Ann. Phys.
**2019**, 406, 152–172. [Google Scholar] [CrossRef] - Jusufi, K.; Övgün, A.; Saavedra, J.; Gonzalez, P.A.; Vasquez, Y. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem. Phys. Rev. D
**2018**, 87, 124024. [Google Scholar] [CrossRef] - Övgün, A.; Jusufi, K.; Sakalli, I. Exact traversable wormhole solution in bumblebee gravity. Phys. Rev. D
**2019**, 99, 024042. [Google Scholar] [CrossRef] - Övgün, A.; Jusufi, K.; Sakalli, I. Gravitational lensing under the effect of Weyl and bumblebee gravities: Applications of Gauss–Bonnet theorem. Ann. Phys.
**2018**, 399, 193–203. [Google Scholar] [CrossRef] - Jusufi, K.; Övgün, A. Effect of the cosmological constant on the deflection angle by a rotating cosmic string. Phys. Rev. D
**2018**, 97, 064030. [Google Scholar] [CrossRef] - Javed, W.; Babar, R.; Övgün, A. The effect of the Brane-Dicke coupling parameter on weak gravitational lensing by wormholes and naked singularities. Phys. Rev. D
**2019**, 99, 084012. [Google Scholar] [CrossRef] - Övgün, A. Light deflection by Damour-Solodukhin wormholes and Gauss-Bonnet theorem. Phys. Rev. D
**2018**, 98, 044033. [Google Scholar] [CrossRef] - Ono, T.; Ishihara, A.; Asada, H. Deflection angle of light for an observer and source at finite distance from a rotating wormhole. Phys. Rev. D
**2018**, 98, 044047. [Google Scholar] [CrossRef] - Ono, T.; Ishihara, A.; Asada, H. Deflection angle of light for an observer and source at finite distance from a rotating global monopole. arXiv
**2018**, arXiv:1811.01739. [Google Scholar] - Crisnejo, G.; Gallo, E. Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss-Bonnet theorem. A unified treatment. Phys. Rev. D
**2018**, 97, 124016. [Google Scholar] [CrossRef] - Crisnejo, G.; Gallo, E.; Rogers, A. Finite distance corrections to the light deflection in a gravitational field with a plasma medium. arXiv
**2018**, arXiv:1807.00724. [Google Scholar] - Asada, H. Gravitational lensing by exotic objects. Mod. Phys. Lett. A
**2017**, 32, 1730031. [Google Scholar] [CrossRef] - Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Odegard, N.; et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl.
**2013**, 208, 19. [Google Scholar] [CrossRef] - Feng, J.L. Dark Matter Candidates from Particle Physics and Methods of Detection. Ann. Rev. Astron. Astrophys.
**2010**, 48, 495. [Google Scholar] [CrossRef] - Latimer, D.C. Dispersive Light Propagation at Cosmological Distances: Matter Effects. Phys. Rev. D
**2013**, 88, 063517. [Google Scholar] [CrossRef] - Latimer, D.C. Anapole dark matter annihilation into photons. Phys. Rev. D
**2017**, 95, 095023. [Google Scholar] [CrossRef] - Latimer, D.C. Two-photon interactions with Majorana fermions. Phys. Rev. D
**2016**, 94, 093010. [Google Scholar] [CrossRef] - Kvam, A.K.; Latimer, D.C. Optical dispersion of composite particles consisting of millicharged constituents. J. Phys. G
**2016**, 43, 085002. [Google Scholar] [CrossRef] - Whitcomb, K.M.; Latimer, D.C. Scattering from a quantum anapole at low energies. Am. J. Phys.
**2017**, 85, 932. [Google Scholar] [CrossRef] - Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Gravitational lensing in plasma: Relativistic images at homogeneous plasma. Phys. Rev. D
**2013**, 87, 124009. [Google Scholar] [CrossRef] - Bisnovatyi-Kogan, G.S.; Tsupko, O.Y. Gravitational lensing in a non-uniform plasma. Mon. Not. R. Astron. Soc.
**2010**, 404, 1790–1800. [Google Scholar] [CrossRef] - Bisnovatyi-Kogan, G.S.; Tsupko, O.Y. Gravitational Lensing in Plasmic Medium. Plasma Phys. Rep.
**2015**, 41, 562–581. [Google Scholar] [CrossRef] - Damour, T.; Solodukhin, S.N. Wormholes as black hole foils. Phys. Rev. D
**2007**, 76, 024016. [Google Scholar] [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Övgün, A. Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem. *Universe* **2019**, *5*, 115.
https://doi.org/10.3390/universe5050115

**AMA Style**

Övgün A. Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem. *Universe*. 2019; 5(5):115.
https://doi.org/10.3390/universe5050115

**Chicago/Turabian Style**

Övgün, Ali. 2019. "Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem" *Universe* 5, no. 5: 115.
https://doi.org/10.3390/universe5050115