High Speed Cylindrical Gravitational Collapse with Anisotropic Pressure
Abstract
:1. Introduction
2. Field Equations
3. Null Dust Solution
4. High Speed Approximation Scheme
5. Results
5.1. and or
5.2. and
- (i)
- When and then and, when , the conclusion can be drawn that the velocity V is infinite and the high speed approximation scheme fails.
- (ii)
- When , then initially we check for .
- (iii)
- When and , then , whereas , then the V is finite and the high speed approximation may work for the above values and an NS is formed.
- (iv)
- When and , then and, when , then again the velocity perturbation V is finite and the same result has been obtained.
- (v)
- When and then and, when then the high-speed approximation scheme fails.
- (vi)
- When and then and, when then the V is not finite and the high-speed approximation scheme fails.
5.3.
- (i)
- When , and , then it does not depend on , i.e., for both and , if , then velocity perturbation V becomes infinite and high speed approximation scheme is not applicable.
- (ii)
- When , and it gives us , then it depends upon the value of . When and at , it gives us that V is finite, hence the high speed approximation scheme can then be applied; as a result, an NS is formed.
- (iii)
- when , and , then and when , then the velocity perturbation V becomes infinite and high speed approximation scheme fail.
- (iv)
- When and . First, we check for and . When , and , the velocity perturbation V depends upon the value of , when , and symmetry axis approaches zero i.e., , then the velocity perturbation V is finite, hence the same results have been obtained.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bower, R.L.; Liang, E.P.T. Anisotropic spheres in general relativity. Astrophys. J. 1974, 188, 657–665. [Google Scholar] [CrossRef]
- Herrera, L.; Santos, N.O. Local anisotropy in self-gravitating systems. Phys. Rep. 1997, 286, 53–130. [Google Scholar] [CrossRef]
- Mak, M.K.; Harko, T. Anisotropic stars in general relativity. Proc. R. Soc. Lond. A 2003, 459, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Shah, H.H.; Iqbal, Q. Gravitational collapse of dark matter interacting with dark energy: Black hole formation. Int. J. Mod. Phys. D 2017, 26, 1750142. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bandyopadhyay, T. Collapse dynamics of a star of dark matter and dark energy. Gravit. Cosmol. 2010, 16, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Shah, H.H. Black hole formation due to collapsing dark matter in a presence of dark energy in the brane-world scenario. Int. J. Mod. Phys. D 2018, 27, 1850020. [Google Scholar] [CrossRef]
- Ahmad, F. Cylindrically Symmetric, Asymptotically Flat, Petrov Type D Spacetime with a Naked Curvature Singularity and Matter Collapse. Adv. High Energy Phys. 2017, 2017, 7943649. [Google Scholar] [CrossRef]
- Penrose, R.; Hawking, S.W. General Relativity, An Einstein Centenary Survey; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Herrera, L.; Di Prisco, A.; Hernndez-Pastora, J.L.; Santos, N.O. On the role of density inhomogeneity and local anisotropy in the fate of spherical collapse. Phys. Lett. A 1998, 237, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, J.R.; Snyder, H. On Continued Gravitational Contraction. Phys. Rev. 1939, 56, 455–459. [Google Scholar] [CrossRef]
- Wang, A. Critical collapse of a cylindrically symmetric scalar field in four-dimensional Einstein’s theory of gravity. Phys. Rev. D 2003, 68, 064006. [Google Scholar] [CrossRef]
- Cai, R.-G.; Wang, A. Black hole formation from collapsing dust fluid in a background of dark energy. Phys. Rev. D 2006, 73, 063005. [Google Scholar] [CrossRef]
- Ahmad, Z.; Shah, H.H. Gravitational Collapse of Dust Cloud with Dark Energy. Int. J. Theor. Phys. 2013, 52, 1490–1503. [Google Scholar] [CrossRef]
- Nakao, K.; Morisawa, Y. High-Speed Cylindrical Collapse of Perfect Fluid. Prog. Theor. Phys. 2005, 113, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Nakao, K.; Morisawa, Y. High speed dynamics of collapsing cylindrical dust fluid. Class. Quantum Gravity 2004, 21, 2101. [Google Scholar] [CrossRef]
- Goncalves, S.; Jhingan, S. A NOTE ON THE CYLINDRICAL COLLAPSE OF COUNTER-ROTATING DUST. Int. J. Mod. Phys. D 2002, 11, 1469. [Google Scholar] [CrossRef]
- Periera, P.R.C.T.; Wang, A. Gravitational collapse of cylindrical shells made of counterrotating dust particles. Phys. Rev. D 2000, 62, 124001. [Google Scholar] [CrossRef] [Green Version]
- Sarma, D.; Ahmed, F.; Patgiri, M. Axially Symmetric, Asymptotically Flat Vacuum Metric with a Naked Singularity and Closed Timelike Curves. Adv. High Energy Phys. 2016, 2016, 2546186. [Google Scholar] [CrossRef]
- Ahmed, F. Axially Symmetric Null Dust Space-Time, Naked Singularity, and Cosmic Time Machine. Adv. High Energy Phys. 2017, 2017, 3587018. [Google Scholar] [CrossRef]
- Chiba, T. Cylindrical Dust Collapse in General Relativity: Toward Higher Dimensional Collapse. Prog. Theor. Phys. 1996, 95, 321–338. [Google Scholar] [CrossRef] [Green Version]
- Senovilla, J.M.M.; Vera, R. Cylindrically symmetric dust spacetime. Class. Quantum Gravity 2000, 17, 2843. [Google Scholar] [CrossRef]
- Bondi, H. The mass of cylindrical systems in general relativity. Proc. R. Soc. Lond. A 1990, 427, 259–264. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chakraborty, S. Gravitational collapse of dissipative fluid as a source of gravitational waves. Ann. Phys. 2016, 364, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, T.; Shah, S.M.; Abbas, G. Gravitational collapse and expansion of charged anisotropic cylindrical source. Astrophys. Space Sci. 2015, 357, 1. [Google Scholar] [CrossRef]
- Herrera, L.; le Denmat, G.; Marcilhacy, G.; Santos, N.O. Static cylindrical symmetry and conformal flatness. Int. J. Mod. Phys. D 2005, 14, 657–666. [Google Scholar] [CrossRef]
- Ahmad, Z.; Imtiaz, B. High-Speed Cylindrical Collapse of Type-I Matter. Braz. J. Phys. 2013, 43, 57–63. [Google Scholar] [CrossRef]
- Penrose, R. Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett. 1965, 14, 57–59. [Google Scholar] [CrossRef]
- Hawking, S.W. The occurrence of singularities in cosmology. III. Causality and singularities. Proc. R. Soc. Lond. 1967, 300, 187–201. [Google Scholar] [CrossRef]
- Hawking, S.W.; Penrose, R. The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. 1970, 314, 529–548. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structre of Spacetime; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Di Prisco, A.; Herrera, L.; MacCallum, M.A.H.; Santos, N.O. Shearfree cylindrical gravitational collapse. Phys. Rev. D 2009, 80, 064031. [Google Scholar] [CrossRef]
- Kramer, D.; Stephani, H.; MacCallum, M.A.H.; Herlt, E. Exact Solutions of Einsteins Field Equation; Cambridge University Press: Cabridge, UK, 1980. [Google Scholar]
- Bičák, J.; Kuchař, K. Null dust in canonical gravity. Phys. Rev. D 1997, 56, 4878–4895. [Google Scholar] [Green Version]
- Sharif, M.; Ahmad, Z. High-speed cylindrical collapse of two perfect fluids. Gen. Relativ. Gravit. 2007, 39, 1331–1344. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Z.; Harada, T.; Nakao, K.; Sharif, M. High-speed collapse of a hollow sphere of type I matter. Class. Quantum Gravity 2009, 26, 035007. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, Q.; Shah, H.H.; Ahmad, Z. High Speed Cylindrical Gravitational Collapse with Anisotropic Pressure. Universe 2018, 4, 70. https://doi.org/10.3390/universe4060070
Iqbal Q, Shah HH, Ahmad Z. High Speed Cylindrical Gravitational Collapse with Anisotropic Pressure. Universe. 2018; 4(6):70. https://doi.org/10.3390/universe4060070
Chicago/Turabian StyleIqbal, Quaid, Hasrat Hussain Shah, and Zahid Ahmad. 2018. "High Speed Cylindrical Gravitational Collapse with Anisotropic Pressure" Universe 4, no. 6: 70. https://doi.org/10.3390/universe4060070
APA StyleIqbal, Q., Shah, H. H., & Ahmad, Z. (2018). High Speed Cylindrical Gravitational Collapse with Anisotropic Pressure. Universe, 4(6), 70. https://doi.org/10.3390/universe4060070