On a Model of Magnetically Charged Black Hole with Nonlinear Electrodynamics
Abstract
1. Introduction
2. Field Equations of NLED
3. Magnetized Black Holes
4. Thermodynamics and Phase Transitions
5. Conclusions
Funding
Conflicts of Interest
References
- Hawking, S.W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Bardeen, J.M.; Carter, B.; Hawking, S.W. The four laws of black hole mechanics. Commun. Math. Phys. 1973, 31, 161–170. [Google Scholar] [CrossRef]
- Wald, R.M. The thermodynamics of black holes. Living Rev. Rel. 2001, 4, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Davies, P.C.W. Thermodynamics of black holes. Rep. Prog. Phys. 1978, 41, 1313–1355. [Google Scholar] [CrossRef]
- Hut, P. Charged black holes and phase transitions. Mon. Not. R. Astr. Soc. 1977, 180, 379–389. [Google Scholar] [CrossRef]
- Born, M.; Infeld, L. Foundations of the New Field Theory. Proc. Royal Soc. A 1934, 144, 425–451. [Google Scholar] [CrossRef]
- Gitman, D.M.; Shabad, A.E. A note on “Electron self-energy in logarithmic electrodynamics” by P. Gaete and J. Helayël-Neto. Eur. Phys. J. C 2014, 74, 3186–3187. [Google Scholar] [CrossRef]
- Kruglov, S.I. A model of nonlinear electrodynamics. Ann. Phys. 2015, 353, 299–306. [Google Scholar] [CrossRef]
- Kruglov, S.I. Nonlinear arcsin-electrodynamics. Ann. Phys. 2015, 527, 397–401. [Google Scholar] [CrossRef]
- Kruglov, S.I. Modified nonlinear model of arcsin-electrodynamics. Commun. Theor. Phys. 2016, 66, 59–65. [Google Scholar] [CrossRef]
- Costa, C.V.; Gitman, D.M.; Shabad, A.E. Finite field-energy of a point charge in QED. Phys. Scripta 2015, 90, 074012. [Google Scholar] [CrossRef]
- Kruglov, S.I. Remarks on Heisenberg–Euler-type electrodynamics. Mod. Phys. Lett. A 2017, 32, 1750092. [Google Scholar] [CrossRef]
- Gitman, D.M.; Shabad, A.E.; Shishmarev, A.A. Moving point charge as a soliton. arXiv 2016, arXiv:1509.06401[hep-th]. [Google Scholar]
- Adorno, T.C.; Gitman, D.M.; Shabad, A.E.; Shishmarev, A.A. Quantum Electromagnetic Nonlinearity Affecting Charges and Dipole Moments. Russ. Phys. J. 2017, 59, 177–1787. [Google Scholar] [CrossRef]
- Heisenberg, W.; Euler, H. Folgerungen aus der diracschen theorie des positrons. Z. Phys. 1936, 98, 714–732. [Google Scholar] [CrossRef]
- Schwinger, J. On Gauge Invariance and Vacuum Polarization. Phys. Rev. 1951, 82, 664–679. [Google Scholar] [CrossRef]
- Adler, S.L. Photon splitting and photon dispersion in a strong magnetic field. Ann. Phys. 1971, 67, 599–647. [Google Scholar] [CrossRef]
- García-Salcedo, R.; Breton, N. Born-Infeld cosmologies. Int. J. Mod. Phys. A 2000, 15, 4341–4354. [Google Scholar] [CrossRef]
- Camara, C.S.; de Garcia Maia, M.R.; Carvalho, J.C.; Lima, J.A.S. Nonsingular FRW cosmology and nonlinear electrodynamics. Phys. Rev. D 2004, 69, 123504. [Google Scholar] [CrossRef]
- Elizalde, E.; Lidsey, J.E.; Nojiri, S.; Odintsov, S.D. Born-Infeld quantum condensate as dark energy in the universe. Phys. Lett. B 2003, 574, 1–7. [Google Scholar] [CrossRef]
- Novello, M.; Perez Bergliaffa, S.E.; Salim, J.M. Nonlinear electrodynamics and the acceleration of the universe. Phys. Rev. D 2004, 69, 127301. [Google Scholar] [CrossRef]
- Novello, M.; Goulart, E.; Salim, J.M.; Perez Bergliaffa, S.E. Cosmological effects of nonlinear electrodynamics. Class. Quant. Grav. 2007, 24, 3021–3036. [Google Scholar] [CrossRef]
- Vollick, D.N. Homogeneous and isotropic cosmologies with nonlinear electromagnetic radiation. Phys. Rev. D 2008, 78, 063524. [Google Scholar] [CrossRef]
- Kruglov, S.I. Universe acceleration and nonlinear electrodynamics. Phys. Rev. D 2015, 92, 123523. [Google Scholar] [CrossRef]
- Kruglov, S.I. Nonlinear electromagnetic fields as a source of universe acceleration. Int. J. Mod. Phys. A 2016, 31, 1650058. [Google Scholar] [CrossRef]
- Kruglov, S.I. Acceleration of Universe by Nonlinear Electromagnetic Fields. Int. J. Mod. Phys. D 2016, 25, 1640002. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 2001, 63, 044005. [Google Scholar] [CrossRef]
- Myung, Y.S.; Kim, Y.-W.; Park, Y.-J. Thermodynamics of regular black hole. Gen. Relativ. Grav. 2009, 41, 1051–1067. [Google Scholar] [CrossRef]
- Breton, N.; Bergliaffa, S.E.P. On the thermodynamical stability of black holes in nonlinear electrodynamics. Ann. Phys. 2015, 354, 440–454. [Google Scholar] [CrossRef]
- Bardeen, J.M. Non-singular general-relativistic gravitational collapse. In Proceedings of the 5th International Conference on Gravitation and the Theory of Relativity, Tbilisi, Georgia, 9–13 September 1968. [Google Scholar]
- Dymnikova, I. Vacuum nonsingular black hole. Gen. Rev. Grav. 1992, 24, 235–242. [Google Scholar] [CrossRef]
- Bousso, R.; Hawking, S.W. Pair creation of black holes during inflation. Phys. Rev. D 1996, 54, 6312–6322. [Google Scholar] [CrossRef]
- Bousso, R.; Hawking, S.W. (Anti-)Evaporation of Schwarzschild-de Sitter Black Holes. Phys. Rev. D 1998, 57, 2436–2442. [Google Scholar] [CrossRef]
- Ayón-Beato, E.; Garćia, A. Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics. Phys. Rev. Lett. 1998, 80, 5056–5059. [Google Scholar] [CrossRef]
- Breton, N. Born-Infeld black hole in the isolated horizon framework. Phys. Rev. D 2003, 67, 124004. [Google Scholar] [CrossRef]
- Breton, N. Stability of nonlinear magnetic black holes. Phys. Rev. D 2005, 72, 044015. [Google Scholar] [CrossRef]
- Hayward, S.A. Formation and evaporation of regular black holes. Phys. Rev. Lett. 2006, 96, 031103. [Google Scholar] [CrossRef] [PubMed]
- Lemos, J.P.S.; Zanchin, V.T. Regular black holes: Electrically charged solutions, Reissner-Nordstróm outside a de Sitter core. Phys. Rev. D 2011, 83, 124005. [Google Scholar] [CrossRef]
- Flachi, A.; Lemos, J.P.S. Quasinormal modes of regular black holes. Phys. Rev. D 2013, 87, 024034. [Google Scholar] [CrossRef]
- Hendi, S.H. Asymptotic Reissner-Nordstroem black holes. Ann. Phys. 2013, 333, 282–289. [Google Scholar] [CrossRef]
- Balart, L.E.; Vagenas, C. Regular black holes with a nonlinear electrodynamics source. Phys. Rev. D 2014, 90, 124045. [Google Scholar] [CrossRef]
- Kruglov, S.I. Asymptotic Reissner-Nordström solution within nonlinear electrodynamics. Phys. Rev. D 2016, 94, 044026. [Google Scholar] [CrossRef]
- Kruglov, S.I. Corrections to Reissner-Nordström black hole solution due to exponential nonlinear electrodynamics. Europhys. Lett. 2016, 115, 60006. [Google Scholar] [CrossRef]
- Kruglov, S.I. Nonlinear arcsin-electrodynamics and asymptotic Reissner-Nordström black holes. Ann. Phys. 2016, 528, 588–596. [Google Scholar] [CrossRef]
- Kruglov, S.I. Black hole as a magnetic monopole within exponential nonlinear electrodynamics. Ann. Phys. 2017, 378, 59–70. [Google Scholar] [CrossRef]
- Kruglov, S.I. Born-Infeld-type electrodynamics and magnetic black holes. Ann. Phys. 2017, 383, 550–559. [Google Scholar] [CrossRef]
- Kruglov, S.I. Magnetically charged black hole in framework of nonlinear electrodynamics model. Int. J. Mod. Phys. A 2018, 33, 1850023. [Google Scholar] [CrossRef]
- Frolov, V.P. Notes on nonsingular models of black holes. Phys. Rev. D 2016, 94, 104056. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Rasheed, D. Electric-magnetic duality rotations in nonlinear electrodynamics. Nucl. Phys. B 1995, 454, 185–206. [Google Scholar] [CrossRef]
- Arraut, I.; Batic, D.; Nowakowski, M. Maximal extension of the Schwarzschild spacetime inspired by noncommutative geometry. J. Math. Phys. 2010, 51, 022503. [Google Scholar] [CrossRef]
- Arraut, I.; Chelabi, K. Non-linear massive gravity as a gravitational σ-model. Europhys. Lett. 2016, 115, 31001. [Google Scholar] [CrossRef]
- Nowakowski, M.; Arraut, I. The Minimum and Maximum Temperature of Black Body Radiation. Mod. Phys. Lett. A 2009, 24, 2133–2137. [Google Scholar] [CrossRef]
- Arraut, I. The Astrophysical Scales Set by the Cosmological Constant, Black-Hole Thermodynamics and Non-Linear Massive Gravity. Universe 2017, 3, 45. [Google Scholar] [CrossRef]
- Arraut, I.; Batic, D.; Nowakowski, M. Comparing two approaches to Hawking radiation of Schwarzschild-de Sitter black holes. Class. Quant. Grav. 2009, 26, 125006. [Google Scholar] [CrossRef]
b | 0.05 | 0.1 | 0.15 | 0.2 | 0.25 | 0.27 | 0.2784 |
---|---|---|---|---|---|---|---|
0.4453 | 0.5654 | 0.6864 | 0.8347 | 1.0714 | 1.2680 | 1.5350 | |
18.9453 | 8.8784 | 5.4589 | 3.6705 | 2.4554 | 1.9702 | 1.5946 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruglov, S.I. On a Model of Magnetically Charged Black Hole with Nonlinear Electrodynamics. Universe 2018, 4, 66. https://doi.org/10.3390/universe4050066
Kruglov SI. On a Model of Magnetically Charged Black Hole with Nonlinear Electrodynamics. Universe. 2018; 4(5):66. https://doi.org/10.3390/universe4050066
Chicago/Turabian StyleKruglov, Sergey I. 2018. "On a Model of Magnetically Charged Black Hole with Nonlinear Electrodynamics" Universe 4, no. 5: 66. https://doi.org/10.3390/universe4050066
APA StyleKruglov, S. I. (2018). On a Model of Magnetically Charged Black Hole with Nonlinear Electrodynamics. Universe, 4(5), 66. https://doi.org/10.3390/universe4050066