Collider Searches for Dark Matter (ATLAS + CMS)
Abstract
:1. Introduction
2. Search for Dark Matter at the LHC
- The unprecedented collisions’ center-of-mass energy (13 during Run 2) allows it to be sensitive to the production of new heavy mediators.
- Thanks to the high instantaneous luminosity ( cm s), also rare processes with cross-sections of the order of the fb can be inspected.
- In mono-X searches, a dark matter mediator is produced by the annihilation of a pair of quarks or gluons and then decays to a pair of WIMPs, which escape the experimental device undetected. To trigger this kind of event, the presence of a detectable SM particle in the event is required. The fact that the WIMPs cannot be recorded creates an imbalance in the momentum measured in the transverse plane, called missing transverse energy () or missing transverse momentum (), which is a key property of these searches.
- In mediator searches, the dark matter mediator decays to a pair of quarks or leptons, producing a localized excess of events in the invariant mass spectrum or in specifically chosen angular distributions.
3. Mono-X Searches
3.1. Mono-Jet
3.2. Mono-
3.3. Mono-Z
3.4. Mono-Top
3.5. Mono-Higgs
3.6. + Dark Matter
4. Mediator Searches
4.1. Di-Jet Searches
4.2. Low-Mass Di-Jet Searches
- Save only limited relevant information at the trigger level to enhance the rate of data acquisition. This means that events can be reconstructed faster, and occupy less space, allowing one to lower the jet thresholds, hence being sensitive to lighter mediators. In particular, ATLAS [24] managed to push the sensitivity down to resonances of 450 and CMS [25] to 500 .
- Select events in which the two jets are highly boosted and merged together, due to recoil against an additional hard ISR jet. This means that even for very light resonances, the event presents potentially three high- jets able to pass the standard trigger thresholds. This analysis has been performed by CMS [26] and is sensitive to di-jet invariant masses between 50 and 300 .
4.3. Di-Jet Searches
5. Comparison of Results and Reinterpretation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roberts, M.S.; Rots, A.H. Comparison of Rotation Curves of Different Galaxy Types. Astron. Astrophys. 1973, 26, 483–485. [Google Scholar]
- Clowe, D.; Bradac, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.W.; Jones, C.; Zaritsky, D. A direct empirical proof of the existence of dark matter. Astrophys. J. 2006, 648, L109–L113. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Antchev, G.; Aspell, P.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Boccone, V.; Bottigli, U.; Bozzo, M.; et al. The CMS Experiment at the CERN LHC. J. Instrum. 2008, 3, S08004. [Google Scholar] [CrossRef]
- Aad, G.; Butterworth, J.M.; Thion, J.; Bratzler, U.; Ratoff, P.N.; Nickerson, R.B.; Seixas, J.M.; Grabowska-Bold, I.; Meisel, F. The ATLAS Experiment at the CERN Large Hadron Collider. Jinst 2008, 3, S08003. [Google Scholar] [CrossRef]
- Abercrombie, D.; Akchurin, N.; Akilli, E.; Maestre, J.A.; Allen, B.; Gonzalez, B.A.; Andrea, J.; Arbey, A.; Azuelos, G.; Azzi, P.; et al. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum. arXiv 2015, arXiv:hep-ph/1507.00966, arXiv:hep–ph/150700966. [Google Scholar]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at = 13 TeV. Phys. Rev. D 2018, D97, 092005. [Google Scholar] [CrossRef]
- Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; et al. Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector. J. High Energy Phys. 2018, 1, 126. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; et al. Search for new physics in the monophoton final state in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2017, 10, 73. [Google Scholar] [CrossRef]
- Aaboud, M.; Åkerstedt, H.; Bendtz, K.; Bertoli, G.; Bessidskaia Bylund, O.; Bohm, C.; Carney, R.; Clément, C.; Cribbs, W.A.; Gellerstedt, K.; et al. Search for dark matter at = 13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector. Eur. Phys. J. 2017, C77, 393. [Google Scholar] [CrossRef] [PubMed]
- Sirunyan, A.M. CMS Collaboration.Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton–proton collisions at = 13 TeV. Eur. Phys. J. 2018, C78, 291. [Google Scholar] [CrossRef]
- Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; et al. Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at = 13 TeV with the ATLAS detector. Phys. Lett. 2018, B776, 318–337. [Google Scholar] [CrossRef]
- Search for Dark Matter in Final States with a Top Quark and Missing Transverse Momentum Using New Hadronic Top Quark Tagging Techniques; Technical Report CMS-PAS-EXO-16-051; CERN: Geneva, Switzerland, 2017.
- Search for a Heavy Resonance Decaying into a Vector Boson and a Higgs Boson in Semileptonic Final States at = 13 TeV. Technical Report CMS-PAS-B2G-17-004; CERN: Geneva, Switzerland, 2018.
- Search for Associated Production of Dark Matter with a Higgs Boson That Decays to a Pair of Bottom Quarks; CERN; Technical Report CMS-PAS-EXO-16-050; Geneva, Switzerland, 2018.
- Search for Dark Matter Produced in Association with a Higgs Boson Decaying to γγ or τ+τ− at = 13 TeV with the CMS Detector. Technical Report CMS-PAS-EXO-16-055; CERN: Geneva, Switzerland, 2018.
- Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; et al. Search for Dark Matter Produced in Association with a Higgs Boson Decaying to bb¯ using 36 fb−1 of pp collisions at = 13 TeV with the ATLAS Detector. Phys. Rev. Lett. 2017, 119, 181804. [Google Scholar] [CrossRef] [PubMed]
- Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; et al. Search for dark matter in association with a Higgs boson decaying to two photons at = 13 TeV with the ATLAS detector. Phys. Rev. 2017, D96, 112004. [Google Scholar] [CrossRef]
- Search for Dark Matter Produced in Association with a Top Quark Pair at = 13 TeV. Technical Report CMS-PAS-EXO-16-049; CERN: Geneva, Switzerland, 2018.
- Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; et al. Search for top-squark pair production in final states with one lepton, jets, and missing transverse momentum using 36 fb−1 of = 13 TeV pp collision. J. High Energy Phys. 2018, 6, 108. [Google Scholar] [CrossRef]
- Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; et al. Search for dark matter produced in association with bottom or top quarks in = 13 TeV pp collisions with the ATLAS detector. Eur. Phys. J. 2018, C78, 18. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; CMS Collaboration. Search for narrow and broad dijet resonances in proton-proton collisions at = 13 TeV and constraints on dark matter mediators and other new particles. J. High Energy Phys. 2018, 8, 130. [Google Scholar] [CrossRef]
- Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Search for new phenomena in dijet events using 37 fb−1 of pp collision data collected at = 13 TeV with the ATLAS detector. Phys. Rev. D 2017, D96, 052004. [Google Scholar] [CrossRef]
- Aaboud, M.; Kupco, A.; Webb, S.; Dreyer, T.; Wang, Y.; Jakobs, K.; Spousta, M.; Cobal, M.; Wang, P.; Schmitt, S.; et al. Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at = 13 TeV. Phys. Rev. Lett. 2018, 121, 081801. [Google Scholar] [CrossRef] [PubMed]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Search for new physics in dijet angular distributions using proton-proton collisions at = 13 TeV and constraints on dark matter and other models. arXiv, 2018; arXiv:hep-ex/1803.08030. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2018, 1, 097. [Google Scholar] [CrossRef]
- CMS EXO Summary Plots. Available online: https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsEXO/DM-summary-plots-Jul17.pdf (accessed on 29 October 2018).
- Elliot, A. Dark matter searches with the ATLAS detector. EPJ Web Conf. 2017, 158, 01007. [Google Scholar] [CrossRef]
- Busoni, G.; Buchmueller, O.; Busoni, G.; D’Eramo, F.; De Roeck, A.; De Simone, A.; Doglioni, C.; Dolan, M.J.; Genest, M.H.; Hahn, K.; et al. Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter. arXiv, 2016; arXiv:hep-ex/1603.04156. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trevisani, N. Collider Searches for Dark Matter (ATLAS + CMS). Universe 2018, 4, 131. https://doi.org/10.3390/universe4110131
Trevisani N. Collider Searches for Dark Matter (ATLAS + CMS). Universe. 2018; 4(11):131. https://doi.org/10.3390/universe4110131
Chicago/Turabian StyleTrevisani, Nicolò. 2018. "Collider Searches for Dark Matter (ATLAS + CMS)" Universe 4, no. 11: 131. https://doi.org/10.3390/universe4110131
APA StyleTrevisani, N. (2018). Collider Searches for Dark Matter (ATLAS + CMS). Universe, 4(11), 131. https://doi.org/10.3390/universe4110131