# Small Black/White Hole Stability and Dark Matter

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Remnants

## 2. White Holes

## 3. Quantum Processes and Time Scales

## 4. Timescales

## 5. Stability

## 6. Black and White Hole Processes

- Black hole volume increase and white hole volume decrease$$\begin{array}{ccc}\hfill |B,m,v\rangle & \to & |B,m,v+\delta v\rangle ,\hfill \end{array}$$$$\begin{array}{ccc}\hfill |W,m,v\rangle & \to & |W,m,v-\delta v\rangle .\hfill \end{array}$$This is simply determined by the Einstein’s equations if nothing else happens. The variation is computed in [26] to be governed by$$\frac{dv}{d\mathrm{t}}=\pm 3\sqrt{3}\pi {m}_{o}^{2}.$$
- White to black instability$$|W,m,v\rangle \to |B,m,v\rangle .$$This process is allowed by classical general relativity in the absence of any perturbation when there is a second asymptotic region, as it is apparent from the Left panel of Figure 3; but it can also be triggered by an external perturbation [25]. Notice that the volume does not change: this is due to the fact that this is a local process in the horizon region, which does not modify the interior. The lifetime of a white hole under decay to a black hole has been estimated to be proportional to its Schwarzschild radius [25]:$${\tau}_{\phantom{\rule{0.166667em}{0ex}}W\to B}\sim m.$$This is equivalent to a transition probability per unit of time$$p\sim {m}^{-1}.$$
- Hawking evaporation$$|B,m,v\rangle \to |B,m-\delta m,v\rangle .$$This is a process that decreases the mass of a black hole, produced by negative energy entering the hole when a Hawking quantum is radiated. It is a phenomenon described by the classical backreaction on the geometry of the dynamics of a quantum field. Hawking radiation theory gives$$\frac{dm}{d\mathrm{t}}=\frac{\hslash}{{m}^{2}}.$$Giving the lifetime for a massive black hole$${\tau}_{B}\sim \frac{{m}^{3}}{\hslash}.$$
- Black to white tunnelling$$|B,m,v\rangle \to |W,m,v\rangle .$$This is a genuine quantum gravitational process [11,16,30]. Its probability per unit of time is still unclear. We take here the conservative estimate derived in [15] using covariant Loop Quantum Gravity [31], which agrees with the semiclassical expectation for tunnelling phenomena, namely that this probability is suppressed by the semiclassical standard tunnelling factor$${e}^{-\frac{S}{\hslash}}\sim {e}^{-\frac{{m}^{2}}{\hslash}}$$$$p\sim {e}^{-\frac{{m}^{2}}{\hslash}}/m$$

## 7. Dynamical Evolution

## 8. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- MacGibbon, J.H. Can Planck-mass relics of evaporating black holes close the Universe? Nature
**1987**, 329, 308–309. [Google Scholar] [CrossRef] - Barrow, J.D.; Copeland, E.J.; Liddle, A.R. The cosmology of black hole relics. Phys. Rev. D
**1992**, 46, 645–657. [Google Scholar] [CrossRef] - Carr, B.J.; Gilbert, J.H.; Lidsey, J.E. Black hole relics and inflation: Limits on blue perturbation spectra. Phys. Rev.
**1994**, D50, 4853–4867. [Google Scholar] [CrossRef] - Liddle, A.R.; Green, A.M. Primordial Black Holes and Early Cosmology. arXiv, 1997; arXiv:astro-ph/9710235. [Google Scholar]
- Alexeyev, S.; Barrau, A.; Boudoul, G.; Khovanskaya, O.; Sazhin, M. Black-hole relics in string gravity: Last stages of Hawking evaporation. Class. Quant. Gravity
**2002**, 19, 314. [Google Scholar] [CrossRef] - Chen, P.; Adler, R.J. Black hole remnants and dark matter. Nucl. Phys. Proc. Suppl.
**2003**, 124, 103–106. [Google Scholar] [CrossRef] [Green Version] - Barrau, A.; Blais, D.; Boudoul, G.; Polarski, D. Peculiar relics from primordial black holes in the inflationary paradigm. Ann. Phys.
**2004**, 13, 115–123. [Google Scholar] [CrossRef] - Chen, P. Inflation Induced Planck-Size Black Hole Remnants As Dark Matter. New Astron. Rev.
**2005**, 49, 233–239. [Google Scholar] [CrossRef] - Nozari, K.; Mehdipour, S.H. Gravitational Uncertainty and Black Hole Remnants. Modern Phys. Lett. A
**2008**, 20, 2937–2948. [Google Scholar] [CrossRef] - Carr, B.; Kuhnel, F.; Sandstad, M. Primordial Black Holes as Dark Matter. Phys. Rev. D
**2016**, 94, 083504. [Google Scholar] [CrossRef] - Rovelli, C.; Vidotto, F. Planck stars. Int. J. Mod. Phys. D
**2014**, 23, 1442026. [Google Scholar] [CrossRef] [Green Version] - Haggard, H.M.; Rovelli, C. Black hole fireworks: Quantum-gravity effects outside the horizon spark black to white hole tunneling. Phys. Rev.
**2015**, D92, 104020. [Google Scholar] [CrossRef] - De Lorenzo, T.; Perez, A. Improved black hole fireworks: Asymmetric black-hole-to-white-hole tunneling scenario. Phys. Rev. D
**2016**, I, 124018. [Google Scholar] [CrossRef] - Christodoulou, M.; Rovelli, C.; Speziale, S.; Vilensky, I. Planck star tunneling time: An astrophysically relevant observable from background-free quantum gravity. Phys. Rev. D
**2016**, 94, 084035. [Google Scholar] [CrossRef] [Green Version] - Christodoulou, M.; D’Ambrosio, F. Characteristic Time Scales for the Geometry Transition of a Black Hole to a White Hole from Spinfoams. arXiv, 2018; arXiv:1801.03027. [Google Scholar]
- Bianchi, E.; Christodoulou, M.; D’Ambrosio, F.; Haggard, H.M.; Rovelli, C. White Holes as Remnants: A Surprising Scenario for the End of a Black Hole. arXiv, 2018; arXiv:1802.04264. [Google Scholar]
- D’Ambrosio, F.; Rovelli, C. Crossing Schwarzschild’s Central Singularity. arXiv, 2018; arXiv:1803.05015. [Google Scholar]
- Rovelli, C.; Martin-Dussaud, P. Interior metric and ray-tracing map in the firework black-to-white hole transition. arXiv, 2018; arXiv:1803.06330. [Google Scholar]
- Rovelli, C.; Vidotto, F. White-hole dark matter and the origin of past low-entropy. arXiv, 2018; arXiv:1804.04147. [Google Scholar]
- Gregory, R.; Laflamme, R. Black strings and p-branes are unstable. Phys. Rev. Lett.
**1993**, 70, 2837–2840. [Google Scholar] [CrossRef] [PubMed] - Casadio, R.; Harms, B. Black hole evaporation and large extra dimensions. Phys. Lett.
**2000**, B487, 209–214. [Google Scholar] [CrossRef] - Casadio, R.; Harms, B. Black hole evaporation and compact extra dimensions. Phys. Rev.
**2001**, D64, 24016. [Google Scholar] [CrossRef] - Emparan, R.; Garcia-Bellido, J.; Kaloper, N. Black hole astrophysics in AdS brane worlds. JHEP
**2003**, 79. [Google Scholar] [CrossRef] - Kol, B.; Sorkin, E. On black-brane instability in an arbitrary dimension. Class. Quant. Grav.
**2004**, 21, 4793–4804. [Google Scholar] [CrossRef] - Frolov, V.; Novikov, I. Black Hole Physics: Basic Concepts and New Developments; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Christodoulou, M.; Rovelli, C. How big is a black hole? Phys. Rev. D
**2015**, 91, 064046. [Google Scholar] [CrossRef] [Green Version] - Bengtsson, I.; Jakobsson, E. Black holes: Their large interiors. Mod. Phys. Lett. A
**2015**, 30, 1550103. [Google Scholar] [CrossRef] [Green Version] - Ong, Y.C. Never Judge a Black Hole by Its Area. J. Cosmol. Astropart. Phys.
**2015**, 2015, 11. [Google Scholar] [CrossRef] - Christodoulou, M.; de Lorenzo, T. Volume inside old black holes. Phys. Rev. D
**2016**, 94, 104002. [Google Scholar] [CrossRef] [Green Version] - Rovelli, C. Lorentzian Connes Distance, Spectral Graph Distance and Loop Gravity. arXiv, 2014; arXiv:1408.3260. [Google Scholar]
- Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Barrau, A.; Rovelli, C. Planck Star Phenomenology. Phys. Lett. Sec. B Nucl. Elem. Part High-Energy Phys.
**2014**, 739, 405–409. [Google Scholar] [CrossRef] [Green Version] - Barrau, A.; Rovelli, C.; Vidotto, F. Fast Radio Bursts and White Hole Signals. Phys. Rev.
**2014**, D90, 127503. [Google Scholar] [CrossRef] - Barrau, A.; Bolliet, B.; Vidotto, F.; Weimer, C. Phenomenology of bouncing black holes in quantum gravity: A closer look. JCAP
**2016**, 1602, 022. [Google Scholar] [CrossRef] - Barrau, A.; Bolliet, B.; Schutten, M.; Vidotto, F. Bouncing black holes in quantum gravity and the Fermi gamma-ray excess. Phys. Lett.
**2017**, B772, 58–62. [Google Scholar] [CrossRef] - Vidotto, F.; Barrau, A.; Bolliet, B.; Schutten, M.; Weimer, C. Quantum Gravity Phenomenology with Primordial Black Holes; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Barrau, A.; Moulin, F.; Martineau, K. Fast radio bursts and the stochastic lifetime of black holes in quantum gravity. arXiv, 2018; arXiv:1801.03841. [Google Scholar]
- Vidotto, F. Measuring the last burst of non-singular black holes. Foundations of Physics Special Issue on Black Holes, Gravitational Waves and Spacetime Singularities. arXiv, 2018; arXiv:1803.02755. [Google Scholar]
- Rovelli, C. Loop quantum gravity: The first twenty five years. Class. Quant. Grav.
**2011**, 28, 153002. [Google Scholar] [CrossRef] - Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys.
**1995**, B442, 593–622. [Google Scholar] [CrossRef] - Ashtekar, A.; Barrau, A. Loop quantum cosmology: From pre-inflationary dynamics to observations. Class. Quant. Gravity
**2015**, 32, 234001. [Google Scholar] [CrossRef] - Barceló, C.; Carballo-Rubio, R.; Garay, L.J.; Jannes, G. The lifetime problem of evaporating black holes: Mutiny or resignation. Class. Quant. Gravity
**2015**, 32, 035012. [Google Scholar] [CrossRef] - Barceló, C.; Carballo-Rubio, R.; Garay, L.J. Black holes turn white fast, otherwise stay black: No half measures. J. High Energy Phys.
**2016**, 2016, 1–21. [Google Scholar] [CrossRef] - Garay, L.J.; Barceló, C.; Carballo-Rubio, R.; Jannes, G. Do stars die too long? In The Fourteenth Marcel Grossmann Meeting; World Scientific Press: Singapore, 2017; Volume 2, pp. 1718–1723. [Google Scholar]
- Rovelli, C.; Speziale, S. Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction. Phys. Rev.
**2003**, D67, 64019. [Google Scholar] [CrossRef] - Rovelli, C.; Speziale, S. Lorentz covariance of loop quantum gravity. Phys. Rev. D
**2011**, D83, 64019. [Google Scholar] [CrossRef] - Rovelli, C. Forget time. Found. Phys.
**2011**, 41, 1475. [Google Scholar] [CrossRef] - Rovelli, C.; Vidotto, F. Pre-big-bang black-hole remnants and the past low entropy. arXiv, 2018; arXiv:1805.03224. [Google Scholar]

**Figure 1.**

**Left:**in the extended Schwarzschild spacetime, which is stationary, the (light grey) region outside $r=2m+\u03f5$ (dotted line) is equally the outside of a black and a white hole.

**Center:**A collapsing star (dark grey) replaces the white hole region ( WH) in the non-stationary collapse metric.

**Right:**The time revered process. The difference between the last two can only be detected looking at the past, or the future.

**Figure 3.**

**Left:**Cauchy surfaces in extended Schwarzschild spacetime below and above the central sphere.

**Center:**Internal portion of a Cauchy surface describing a black hole formed by a collapsed star.

**Right:**Its time reversal, or white hole.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rovelli, C.; Vidotto, F.
Small Black/White Hole Stability and Dark Matter. *Universe* **2018**, *4*, 127.
https://doi.org/10.3390/universe4110127

**AMA Style**

Rovelli C, Vidotto F.
Small Black/White Hole Stability and Dark Matter. *Universe*. 2018; 4(11):127.
https://doi.org/10.3390/universe4110127

**Chicago/Turabian Style**

Rovelli, Carlo, and Francesca Vidotto.
2018. "Small Black/White Hole Stability and Dark Matter" *Universe* 4, no. 11: 127.
https://doi.org/10.3390/universe4110127