Effective Field Theory of Loop Quantum Cosmology
Abstract
:1. Introduction
2. Averaging Volume
2.1. Infrared Renormalization
2.2. Models of Loop Quantum Gravity
3. Covariance
3.1. Problem of States
3.2. Space–Time Structure
3.3. Covariance from Hypersurface Deformations
3.4. Model
3.5. Signature Change
4. Further Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Bojowald, M. Loop Quantum Cosmology. Living Rev. Relativ. 2008, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M. Quantum cosmology: A review. Rep. Prog. Phys. 2015, 78, 023901. [Google Scholar] [CrossRef]
- Bojowald, M.; Brahma, S. Minisuperspace models as infrared contributions. Phys. Rev. D 2015, 92, 065002. [Google Scholar] [CrossRef]
- Bojowald, M. The BKL scenario, infrared renormalization, and quantum cosmology. J. Cosmol. Astropart. Phys. 2019, 2019, 026. [Google Scholar] [CrossRef]
- Polchinski, J. Comment on [arXiv:1106.1417] “Small Lorentz violations in quantum gravity: Do they lead to unacceptably large effects?”. Class. Quant. Grav. 2011, 29, 088001. [Google Scholar] [CrossRef]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang: An Analytical and Numerical Investigation. Phys. Rev. D 2006, 73, 124038. [Google Scholar] [CrossRef]
- Martín-Benito, M.; Garay, L.J.; Mena Marugán, G.A. Hybrid Quantum Gowdy Cosmology: Combining Loop and Fock Quantizations. Phys. Rev. D 2008, 78, 083516. [Google Scholar] [CrossRef]
- Ashtekar, A.; Kaminski, W.; Lewandowski, J. Quantum field theory on a cosmological, quantum space–time. Phys. Rev. D 2009, 79, 064030. [Google Scholar] [CrossRef]
- Dapor, A.; Lewandowski, J.; Puchta, J. QFT on quantum spacetime: A compatible classical framework. Phys. Rev. D 2013, 87, 104038. [Google Scholar] [CrossRef]
- Agulló, I.; Ashtekar, A.; Nelson, W. An Extension of the Quantum Theory of Cosmological Perturbations to the Planck Era. Phys. Rev. D 2013, 87, 043507. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113–1148. [Google Scholar] [CrossRef]
- Bojowald, M.; Skirzewski, A. Effective Equations of Motion for Quantum Systems. Rev. Math. Phys. 2006, 18, 713–745. [Google Scholar] [CrossRef]
- Bojowald, M.; Skirzewski, A. Quantum Gravity and Higher Curvature Actions. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 25–52. [Google Scholar] [CrossRef]
- Coleman, S.; Weinberg, E. Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 1973, 7, 1888–1910. [Google Scholar] [CrossRef]
- Bojowald, M.; Brahma, S. Canonical derivation of effective potentials. arXiv, 2014; arXiv:1411.3636. [Google Scholar]
- Rovelli, C.; Wilson-Ewing, E. Why are the effective equations of loop quantum cosmology so accurate? Phys. Rev. D 2014, 90, 023538. [Google Scholar] [CrossRef]
- Belinskii, V.A.; Khalatnikov, I.M.; Lifschitz, E.M. A general solution of the Einstein equations with a time singularity. Adv. Phys. 1982, 13, 639–667. [Google Scholar] [CrossRef]
- Bojowald, M. Isotropic Loop Quantum Cosmology. Class. Quantum Gravity 2002, 19, 2717–2741. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. Loop Space Representation of Quantum General Relativity. Nucl. Phys. B 1990, 331, 80–152. [Google Scholar] [CrossRef]
- Ashtekar, A.; Lewandowski, J.; Marolf, D.; Mourão, J.; Thiemann, T. Quantization of Diffeomorphism Invariant Theories of Connections with Local Degrees of Freedom. J. Math. Phys. 1995, 36, 6456–6493. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bojowald, M.; Lewandowski, J. Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 2003, 7, 233–268. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang: Improved dynamics. Phys. Rev. D 2006, 74, 084003. [Google Scholar] [CrossRef]
- Bojowald, M.; Hernández, H.; Kagan, M.; Singh, P.; Skirzewski, A. Formation and evolution of structure in loop cosmology. Phys. Rev. Lett. 2007, 98, 031301. [Google Scholar] [CrossRef] [PubMed]
- Bojowald, M. The dark side of a patchwork universe. Gen. Relativ. Gravit. 2008, 40, 639–660. [Google Scholar] [CrossRef]
- Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D 1994, 50, 3874–3888. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P. Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory. Living Rev. Relativ. 2004, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bojowald, M. Quantum nature of cosmological bounces. Gen. Relativ. Gravit. 2008, 40, 2659–2683. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M. How quantum is the big bang? Phys. Rev. Lett. 2008, 100, 221301. [Google Scholar] [CrossRef]
- Bojowald, M. Fluctuation energies in quantum cosmology. Phys. Rev. D 2014, 89, 124031. [Google Scholar] [CrossRef]
- Vandersloot, K. On the Hamiltonian Constraint of Loop Quantum Cosmology. Phys. Rev. D 2005, 71, 103506. [Google Scholar] [CrossRef]
- Bodendorfer, N. State refinements and coarse graining in a full theory embedding of loop quantum cosmology. Class. Quantum Gravity 2017, 34, 135016. [Google Scholar] [CrossRef] [Green Version]
- Bodendorfer, N.; Haneder, F. Coarse graining as a representation change. arXiv, 2018; arXiv:1811.02792. [Google Scholar]
- Bojowald, M.; Brahma, S.; Nelson, E. Higher time derivatives in effective equations of canonical quantum systems. Phys. Rev. D 2012, 86, 105004. [Google Scholar] [CrossRef]
- Hořava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef]
- Koslowski, T.; Schenkel, A. Preferred foliation effects in Quantum General Relativity. Class. Quantum Gravity 2010, 27, 135014. [Google Scholar] [CrossRef]
- Olmo, G.J.; Singh, P. Covariant Effective Action for Loop Quantum Cosmology a la Palatini. J. Cosmol. Astropart. Phys. 2009, 2009, 030. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Schäfer, A.; Schliemann, J. On the canonical structure of general relativity with a limiting curvature and its relation to loop quantum gravity. Phys. Rev. D 2018, 97, 084057. [Google Scholar] [CrossRef]
- Langlois, D.; Liu, H.; Noui, K.; Wilson-Ewing, E. Effective loop quantum cosmology as a higher-derivative scalar-tensor theory. Class. Quantum Gravity 2017, 34, 225004. [Google Scholar] [CrossRef] [Green Version]
- Haro, J.; Aresté Saló, L.; Pan, S. Mimetic Loop Quantum Cosmology. arXiv, 2018; arXiv:1803.09653. [Google Scholar]
- Haro, J.; Aresté Saló, L.; Elizalde, E. Cosmological perturbations in a class of fully covariant modified theories: Application to models with the same background as standard LQC. Eur. Phys. J. C 2018, 78, 712. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Mele, F.M.; Münch, J. Is limiting curvature mimetic gravity an effective polymer quantum gravity? Class. Quantum Gravity 2018, 35, 225001. [Google Scholar] [CrossRef]
- Helling, R. Higher curvature counter terms cause the bounce in loop cosmology. arXiv, 2009; arXiv:0912.3011. [Google Scholar]
- Bojowald, M.; Halnon, T. Time in quantum cosmology. Phys. Rev. D 2018, 98, 066001. [Google Scholar] [CrossRef]
- Bojowald, M.; Hossain, G.; Kagan, M.; Shankaranarayanan, S. Anomaly freedom in perturbative loop quantum gravity. Phys. Rev. D 2008, 78, 063547. [Google Scholar] [CrossRef]
- Cailleteau, T.; Linsefors, L.; Barrau, A. Anomaly-free perturbations with inverse-volume and holonomy corrections in Loop Quantum Cosmology. Class. Quantum Gravity 2014, 31, 125011. [Google Scholar] [CrossRef]
- Wilson-Ewing, E. Holonomy Corrections in the Effective Equations for Scalar Mode Perturbations in Loop Quantum Cosmology. Class. Quantum Gravity 2012, 29, 085005. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The theory of gravitation in Hamiltonian form. Proc. R. Soc. A 1958, 246, 333–343. [Google Scholar]
- Blohmann, C.; Barbosa Fernandes, M.C.; Weinstein, A. Groupoid symmetry and constraints in general relativity. 1: Kinematics. Commun. Contemp. Math. 2013, 15, 1250061. [Google Scholar] [CrossRef]
- Perez, A.; Pranzetti, D. On the regularization of the constraints algebra of Quantum Gravity in 2+1 dimensions with non-vanishing cosmological constant. Class. Quantum Gravity 2010, 27, 145009. [Google Scholar] [CrossRef]
- Henderson, A.; Laddha, A.; Tomlin, C. Constraint algebra in LQG reloaded: Toy model of a U(1)3 Gauge Theory I. Phys. Rev. D 2013, 88, 044028. [Google Scholar] [CrossRef]
- Henderson, A.; Laddha, A.; Tomlin, C. Constraint algebra in LQG reloaded: Toy model of an Abelian gauge theory—II Spatial Diffeomorphisms. Phys. Rev. D 2013, 88, 044029. [Google Scholar] [CrossRef]
- Tomlin, C.; Varadarajan, M. Towards an Anomaly-Free Quantum Dynamics for a Weak Coupling Limit of Euclidean Gravity. Phys. Rev. D 2013, 87, 044039. [Google Scholar] [CrossRef]
- Varadarajan, M. Towards an Anomaly-Free Quantum Dynamics for a Weak Coupling Limit of Euclidean Gravity: Diffeomorphism Covariance. Phys. Rev. D 2013, 87, 044040. [Google Scholar] [CrossRef]
- Laddha, A. Hamiltonian constraint in Euclidean LQG revisited: First hints of off-shell Closure. arXiv, 2014; arXiv:1401.0931. [Google Scholar]
- Varadarajan, M. The constraint algebra in Smolins’ G→0 limit of 4d Euclidean Gravity. Phys. Rev. D 2018, 97, 106007. [Google Scholar] [CrossRef]
- Bojowald, M.; Sandhöfer, B.; Skirzewski, A.; Tsobanjan, A. Effective constraints for quantum systems. Rev. Math. Phys. 2009, 21, 111–154. [Google Scholar] [CrossRef]
- Bojowald, M.; Tsobanjan, A. Effective constraints for relativistic quantum systems. Phys. Rev. D 2009, 80, 125008. [Google Scholar] [CrossRef]
- Nicolai, H.; Peeters, K.; Zamaklar, M. Loop quantum gravity: an outside view. Class. Quantum Grav. 2005, 22, R193–R247. [Google Scholar] [CrossRef]
- Gambini, R.; Pullin, J. Loop quantization of the Schwarzschild black hole. Phys. Rev. Lett. 2013, 110, 211301. [Google Scholar] [CrossRef]
- Martín-de Blas, D.; Olmedo, J.; Pawlowski, T. Loop quantization of the Gowdy model with local rotational symmetry. Phys. Rev. D 2017, 96, 106016. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Brahma, S.; Reyes, J.D. Covariance in models of loop quantum gravity: Spherical symmetry. Phys. Rev. D 2015, 92, 045043. [Google Scholar] [CrossRef]
- Bojowald, M.; Brahma, S. Covariance in models of loop quantum gravity: Gowdy systems. Phys. Rev. D 2015, 92, 065002. [Google Scholar] [CrossRef]
- Bojowald, M. Information loss, made worse by quantum gravity. Front. Phys. 2015, 3, 33. [Google Scholar] [CrossRef]
- Barrau, A.; Bojowald, M.; Calcagni, G.; Grain, J.; Kagan, M. Anomaly-free cosmological perturbations in effective canonical quantum gravity. J. Cosmol. Astropart. Phys. 2015, 2015, 051. [Google Scholar] [CrossRef]
- Hojman, S.A.; Kuchař, K.; Teitelboim, C. Geometrodynamics Regained. Ann. Phys. 1976, 96, 88–135. [Google Scholar] [CrossRef]
- Kuchař, K.V. Geometrodynamics regained: A Lagrangian approach. J. Math. Phys. 1974, 15, 708–715. [Google Scholar] [CrossRef]
- Bojowald, M.; Paily, G.M. Deformed General Relativity and Effective Actions from Loop Quantum Gravity. Phys. Rev. D 2012, 86, 104018. [Google Scholar] [CrossRef]
- Reyes, J.D. Spherically Symmetric Loop Quantum Gravity: Connections to 2-Dimensional Models and Applications to Gravitational Collapse. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 2009. [Google Scholar]
- Ben Achour, J.; Brahma, S.; Marciano, A. Spherically symmetric sector of self dual Ashtekar gravity coupled to matter: Anomaly-free algebra of constraints with holonomy corrections. Phys. Rev. D 2017, 96, 026002. [Google Scholar] [CrossRef]
- Ben Achour, J.; Brahma, S.; Grain, J.; Marciano, A. A new look at scalar perturbations in loop quantum cosmology: (Un)deformed algebra approach using self dual variables. arXiv, 2016; arXiv:1610.07467. [Google Scholar]
- Ben Achour, J.; Brahma, S. Covariance in self dual inhomogeneous models of effective quantum geometry: Spherical symmetry and Gowdy systems. Phys. Rev. D 2018, 97, 126003. [Google Scholar] [CrossRef]
- Wu, J.P.; Bojowald, M.; Ma, Y. Anomaly freedom in perturbative models of Euclidean loop quantum gravity. Phys. Rev. D 2018, 98, 106009. [Google Scholar] [CrossRef]
- Bojowald, M.; Brahma, S. Effective constraint algebras with structure functions. J. Phys. A Math. Theor. 2016, 49, 125301. [Google Scholar] [CrossRef] [Green Version]
- Deruelle, N.; Sasaki, M.; Sendouda, Y.; Yamauchi, D. Hamiltonian formulation of f(Riemann) theories of gravity. Prog. Theor. Phys. 2010, 123, 169–185. [Google Scholar] [CrossRef]
- Bojowald, M.; Brahma, S.; Büyükçam, U.; D’Ambrosio, F. Hypersurface-deformation algebroids and effective space–time models. Phys. Rev. D 2016, 94, 104032. [Google Scholar] [CrossRef]
- Bojowald, M.; Brahma, S.; Yeom, D.H. Effective line elements and black-hole models in canonical (loop) quantum gravity. Phys. Rev. D 2018, 98, 046015. [Google Scholar] [CrossRef]
- Tricomi, F.G. Repertorium der Theorie der Differentialgleichungen; Springer: Berlin/Heidelberg, Germany, 1968. [Google Scholar]
- Bojowald, M.; Mielczarek, J. Some implications of signature-change in cosmological models of loop quantum gravity. J. Cosmol. Astropart. Phys. 2015, 2015, 052. [Google Scholar] [CrossRef]
- Bojowald, M.; Paily, G.M.; Reyes, J.D. Discreteness corrections and higher spatial derivatives in effective canonical quantum gravity. Phys. Rev. D 2014, 90, 025025. [Google Scholar] [CrossRef]
- Brahma, S. Spherically symmetric canonical quantum gravity. Phys. Rev. D 2015, 91, 124003. [Google Scholar] [CrossRef]
- Bojowald, M.; Brahma, S. Signature change in loop quantum gravity: Two-dimensional midisuperspace models and dilaton gravity. Phys. Rev. D 2017, 95, 124014. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Brahma, S. Signature change in 2-dimensional black-hole models of loop quantum gravity. Phys. Rev. D 2018, 98, 026012. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bojowald, M. Quantum Geometry and the Schwarzschild Singularity. Class. Quantum Gravity 2006, 23, 391–411. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bojowald, M. Black hole evaporation: A paradigm. Class. Quantum Gravity 2005, 22, 3349–3362. [Google Scholar] [CrossRef]
- Connes, A. Non-Commutative Geometry; Academic Press: Boston, MA, USA, 1994. [Google Scholar]
- Chamseddine, A.H.; Connes, A.; Mukhanov, V. Quanta of Geometry: Noncommutative Aspects. Phys. Rev. Lett. 2015, 114, 091302. [Google Scholar] [CrossRef] [PubMed]
- Brahma, S.; Yeom, D.H. The no-boundary wave function for loop quantum cosmology. Phys. Rev. D 2018, 98, 083537. [Google Scholar] [CrossRef]
- Bojowald, M.; Brahma, S. Loops rescue the no-boundary proposal. Phys. Rev. Lett. 2018, 121, 201301. [Google Scholar] [CrossRef] [PubMed]
- Brahma, S.; Yeom, D.H. On the geometry of no-boundary instantons in loop quantum cosmology. arXiv, 2018; arXiv:1810.10211. [Google Scholar] [CrossRef]
- Hartle, J.B.; Hawking, S.W. Wave function of the Universe. Phys. Rev. D 1983, 28, 2960–2975. [Google Scholar] [CrossRef]
- Feldbrugge, J.; Lehners, J.L.; Turok, N. Lorentzian Quantum Cosmology. Phys. Rev. D 2017, 95, 103508. [Google Scholar] [CrossRef]
- Feldbrugge, J.; Lehners, J.L.; Turok, N. No smooth beginning for spacetime. Phys. Rev. Lett. 2017, 119, 171301. [Google Scholar] [CrossRef]
- Feldbrugge, J.; Lehners, J.L.; Turok, N. No rescue for the no boundary proposal: Pointers to the future of quantum cosmology. Phys. Rev. D 2018, 97, 023509. [Google Scholar] [CrossRef]
- Bojowald, M. Inflation from quantum geometry. Phys. Rev. Lett. 2002, 89, 261301. [Google Scholar] [CrossRef] [PubMed]
- Bojowald, M. Loop Quantum Cosmology. Living Rev. Relativ. 2005, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojowald, M. Effective Field Theory of Loop Quantum Cosmology. Universe 2019, 5, 44. https://doi.org/10.3390/universe5020044
Bojowald M. Effective Field Theory of Loop Quantum Cosmology. Universe. 2019; 5(2):44. https://doi.org/10.3390/universe5020044
Chicago/Turabian StyleBojowald, Martin. 2019. "Effective Field Theory of Loop Quantum Cosmology" Universe 5, no. 2: 44. https://doi.org/10.3390/universe5020044
APA StyleBojowald, M. (2019). Effective Field Theory of Loop Quantum Cosmology. Universe, 5(2), 44. https://doi.org/10.3390/universe5020044