The Cosmological Perturbed Lightcone Gauge
Abstract
:1. Introduction
2. Observational Coordinates
- , the unique affine parameter down the null geodesics through C determined by the central conditions on C (). The spacetime metric will be simplified, but one loses the beautiful physical interpretation of observational coordinates;
- , the angular distance, i.e., area distance down the null cones from C.
- , galactic redshift observed from C, imposing . along matter worldlines;
- y chosen as in one of the points 1–3 on the initial null cone , and then specified thereafter to be comoving with the fluid; .
3. Observational Metric
4. Perturbed Lightcone Gauge
5. Observables in the PLG
5.1. The Redshift of Distant Galaxies in the PLG
5.2. The Area Distance in the PLG
5.3. The Luminosity Distance in the PLG
6. Galaxy Surveys
6.1. The Galaxy Number Count with the PLG
6.2. The Perturbation of Galaxy Number Counts
6.2.1. The Computation of in the PLG
6.2.2. The Volume Distortion in the PLG
7. Conclusions
Funding
Conflicts of Interest
Appendix A. Commuting Partial Derivatives and Integrals
References
- McClure, M.; Hellaby, C. Determining the metric of the cosmos: Stability, accuracy, and consistency. Phys. Rev. D 2008, 78, 044005. [Google Scholar] [CrossRef]
- Kristian, J.; Sachs, R. Observations in cosmology. Astrophys. J. 1966, 143, 379. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Nel, S.; Maartens, R.; Stoeger, W.; Whitman, A. Ideal observational cosmology. Phys. Rep. 1985, 124, 315–417. [Google Scholar] [CrossRef]
- Maartens, R. Idealized Observations in Relativistic Cosmology. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 1980. [Google Scholar]
- Nel, S.D. Observational Space-Times. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 1980. [Google Scholar]
- Elmardi, M.Y. Topics in Relativistic Cosmology: Cosmology on the Past Lightcone And in Modified Gravitation. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2018. [Google Scholar]
- Sachs, R. Propagation laws for null and type III gravitational waves. Z. Phys. 1960, 157, 462–477. [Google Scholar] [CrossRef]
- Di Dio, E.; Durrer, R. Vector and tensor contributions to the luminosity distance. Phys. Rev. D 2012, 86, 023510. [Google Scholar] [CrossRef]
- Bonvin, C.; Durrer, R.; Gasparini, M.A. Fluctuations of the luminosity distance. Phys. Rev. D 2006, 73, 023523. [Google Scholar] [CrossRef]
- Hui, L.; Greene, P.B. Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys. Phys. Rev. D 2006, 73, 123526. [Google Scholar] [CrossRef]
- Bonvin, C.; Durrer, R.; Kunz, M. Dipole of the luminosity distance: A direct measure of H (z). Phys. Rev. Lett. 2006, 96, 191302. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.; Agarwal, N.; Myers, A.D.; Lyons, R.; Disbrow, A.; Seo, H.J.; Ross, A.; Hirata, C.; Padmanabhan, N.; O’Connell, R.; et al. Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe. J. Cosmol. Astropart. Phys. 2015, 2015, 040. [Google Scholar] [CrossRef]
- Kitaura, F.S. The initial conditions of the Universe from constrained simulations. Mon. Not. R. Astron. Soc. Lett. 2013, 429, L84–L88. [Google Scholar] [CrossRef]
- Gabrielli, A.; Sylos Labini, F.; Joyce, M.; Pietronero, L. Statistical Physics for Cosmic Structures; Springer: Berlin, Germany, 2006. [Google Scholar]
- Yoo, J.; Fitzpatrick, A.L.; Zaldarriaga, M. New perspective on galaxy clustering as a cosmological probe: General relativistic effects. Phys. Rev. D 2009, 80, 083514. [Google Scholar] [CrossRef]
- Durrer, R. The Cosmic Microwave Background; Cambridge University Press: Cambridge, UK, 2008; Volume 140. [Google Scholar]
- Bonvin, C.; Durrer, R. What galaxy surveys really measure. Phys. Rev. D 2011, 84, 063505. [Google Scholar] [CrossRef]
- Tadros, H.; Ballinger, W.; Taylor, A.; Heavens, A.; Efstathiou, G.; Saunders, W.; Frenk, C.; Keeble, O.; McMahon, R.; Maddox, S.; et al. Spherical harmonic analysis of the PSCz galaxy catalogue: Redshift distortions and the real-space power spectrum. Mon. Not. R. Astron. Soc. 1999, 305, 527–546. [Google Scholar] [CrossRef]
- Samushia, L.; Percival, W.J.; Raccanelli, A. Interpreting large-scale redshift-space distortion measurements. Mon. Not. R. Astron. Soc. 2012, 420, 2102–2119. [Google Scholar] [CrossRef] [Green Version]
- Alcock, C.; Paczynski, B. An evolution free test for non-zero cosmological constant. Nature 1979, 281, 358–359. [Google Scholar] [CrossRef]
- Yoo, J.; Zaldarriaga, M.; Hernquist, L. Lensing reconstruction of cluster-mass cross correlation with cosmic microwave background polarization. Phys. Rev. D 2010, 81, 123006. [Google Scholar] [CrossRef]
- Yoo, J. General relativistic description of the observed galaxy power spectrum: Do we understand what we measure? Phys. Rev. D 2010, 82, 083508. [Google Scholar] [CrossRef]
- Montanari, F.; Durrer, R. Measuring the lensing potential with tomographic galaxy number counts. J. Cosmol. Astropart. Phys. 2015, 2015, 070. [Google Scholar] [CrossRef]
- Jeong, D.; Schmidt, F.; Hirata, C.M. Large-scale clustering of galaxies in general relativity. Phys. Rev. D 2012, 85, 023504. [Google Scholar] [CrossRef]
- Raccanelli, A.; Bertacca, D.; Maartens, R.; Clarkson, C.; Doré, O. Lensing and time-delay contributions to galaxy correlations. Gen. Relativ. Gravit. 2016, 48, 84. [Google Scholar] [CrossRef]
- Bonvin, C. Isolating relativistic effects in large-scale structure. Class. Quantum Gravity 2014, 31, 234002. [Google Scholar] [CrossRef] [Green Version]
1 | These tetrad vectors are defined through the conditions: ( ), and thus satisfy the parallel propagation along C: , with the velocity of the comoving geodesic observer. |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmardi, M. The Cosmological Perturbed Lightcone Gauge. Universe 2018, 4, 108. https://doi.org/10.3390/universe4100108
Elmardi M. The Cosmological Perturbed Lightcone Gauge. Universe. 2018; 4(10):108. https://doi.org/10.3390/universe4100108
Chicago/Turabian StyleElmardi, Maye. 2018. "The Cosmological Perturbed Lightcone Gauge" Universe 4, no. 10: 108. https://doi.org/10.3390/universe4100108
APA StyleElmardi, M. (2018). The Cosmological Perturbed Lightcone Gauge. Universe, 4(10), 108. https://doi.org/10.3390/universe4100108