Embedding Black Holes and Other Inhomogeneities in the Universe in Various Theories of Gravity: A Short Review
Abstract
:1. Introduction
- A cosmological background: real black holes are embedded in the universe and, although this feature may be irrelevant for their astrophysics, their asymptotics are quite relevant in problems of principle and in mathematical physics. Alternative theories of gravity advocated to explain the present acceleration of the universe without an ad hoc dark energy contain a built-in, time-dependent effective cosmological “constant” and black holes in these theories are asymptotically Friedmann-Lemaître-Robertson-Walker (FLRW).
- Hawking radiation and evaporation affect all black holes and are, therefore, important and unavoidable in all problems of principle. They become important for hypothetical small black holes in their final stages or perhaps even for primordial black holes in the early universe.
1.1. A Problem of Principle
1.2. A Practical Problem
2. Apparent Horizons and Their Problems
a frontier between things observable and things unobservable.
2.1. Event Horizons
2.2. Apparent and Trapping Horizons
2.3. Spherical Symmetry
3. A Selection of Exact Solutions in Various Theories of Gravity
3.1. Schwarzschild-de Sitter/Kottler Spacetime
- Two apparent horizons exist if .
- If the apparent horizons coincide, giving the extremal Nariai black hole.
- For there is a naked singularity. The physical interpretation of this situation is that the black hole horizon becomes larger than the cosmological one and effectively disappears so, in the region below the cosmological horizon, the central singularity is not screened by a black hole horizon.
3.2. McVittie Solution
- For , it is and both and are complex. There are no apparent horizons.
- The critical time corresponds to . The two roots coincide at a real value, and there exists a single apparent horizon at .
- For , it is , and there are two apparent horizons at real radii .
3.2.1. Generalized McVittie Solutions
3.2.2. Imperfect Fluid and No Radial Mass Flow
3.2.3. Imperfect Fluid and Radial Mass Flow
3.2.4. The Non-Rotating Thakurta Solution
3.3. The Husain-Martinez-Nuñez Solution
3.4. The Fonarev and Phantom Fonarev Solutions
3.5. Other GR Solutions
3.6. Perfect Fluid Solutions of Brans-Dicke Gravity
3.7. Is There a Relation between S-Curve and C-Curve?
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Abbott,B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott,B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott,B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotiriou, T.P. Black holes and scalar fields. Class. Quantum Gravity 2015, 32, 214002. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V. Cosmological and Black hole Apparent Horizons; Springer: New York, NY, USA, 2015. [Google Scholar]
- Capozziello, S.; Carloni, S.; Troisi, A. Quintessence without scalar fields. arXiv, 2003; arXiv:astro-ph/0303041. [Google Scholar]
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 2004, 70, 043528. [Google Scholar] [CrossRef] [Green Version]
- Bolejko, K.; Celerier, M.-N.; Krasínski, A. Inhomogeneous cosmological models: Exact solutions and their applications. Class. Quantum Gravity 2011, 28, 164002. [Google Scholar] [CrossRef]
- Babichev, E.; Dokuchaev, V.; Eroshenko, Y. Black hole mass decreasing due to phantom energy accretion. Phys. Rev. Lett. 2004, 93, 021102. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jing, J. Quasinormal modes of a black hole surrounded by quintessence. Class. Quantum Gravity 2005, 22, 4651–4657. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, G.; Pavon, D. The generalized second law in phantom dominated universes in the presence of black holes. Phys. Lett. B 2006, 639, 1–4. [Google Scholar] [CrossRef]
- De Freitas Pacheco, J.A.; Horvath, J.E. Generalized second law and phantom cosmology. Class. Quantum Gravity 2007, 24, 5427–5434. [Google Scholar] [CrossRef]
- Maeda, H.; Harada, T.; Carr, B.J. Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes. Phys. Rev. D 2008, 77, 024023. [Google Scholar] [CrossRef]
- Gao, C.; Chen, X.; Faraoni, V.; Shen, Y.-G. Does the mass of a black hole decrease due to accretion of phantom energy? Phys. Rev. D 2008, 78, 024008. [Google Scholar] [CrossRef]
- Guariento, D.C.; Horvath, J.E.; Custodio, P.S.; de Freitas Pacheco, J.A. Evolution of primordial black holes in a radiation and phantom energy environment. Gen. Relativ. Gravit. 2008, 40, 1593–1602. [Google Scholar] [CrossRef]
- Sun, C.-Y. Phantom energy accretion onto black holes in a cyclic universe. Phys. Rev. D 2008, 78, 064060. [Google Scholar] [CrossRef]
- Sun, C.-Y. Dark Energy accretion onto a black hole in an expanding universe. Commun. Theor. Phys. 2009, 52, 441–444. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Guzman, F.S. Accretion of phantom scalar field into a black hole. Phys. Rev. D 2009, 79, 121501. [Google Scholar] [CrossRef]
- He, X.; Wang, B.; Wu, S.-F.; Lin, C.-Y. Quasinormal modes of black holes absorbing dark energy. Phys. Lett. B 2009, 673, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Babichev, E.O.; Dokuchaev, V.I.; Eroshenko, Y.N. Perfect fluid and scalar field in the Reissner-Nordstrom metric. J. Exp. Theor. Phys. 2011, 112, 784. [Google Scholar] [CrossRef]
- Nouicer, K. Hawking radiation and thermodynamics of dynamical black holes in phantom dominated universe. Class. Quantum Gravity 2011, 28, 015005. [Google Scholar] [CrossRef]
- Chadburn, S.; Gregory, R. Time dependent black holes and scalar hair. Class. Quantum Gravity 2014, 31, 19. [Google Scholar] [CrossRef]
- Thornburg, J. Event and apparent horizon finders for 3 + 1 numerical relativity. Living Rev. Relat. 2007, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Baumgarte, T.W.; Shapiro, S.L. Numerical relativity and compact binaries. Phys. Rept. 2003, 376, 41–131. [Google Scholar] [CrossRef] [Green Version]
- Chu, T.; Pfeiffer, H.P.; Cohen, M.I. Horizon dynamics of distorted rotating black holes. Phys. Rev. D 2011, 83, 104018. [Google Scholar] [CrossRef]
- Cook, W.G.; Wang, D.; Sperhake, U. Orbiting black-holes and apparent horizons in higher dimensions. arXiv, 2018; arXiv:1808.05834. [Google Scholar]
- Rindler, W. Visual horizons in world-models. Gen. Relativ. Gravit. 2002, 34, 133–153. [Google Scholar] [CrossRef]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Booth, I. Black hole boundaries. Can. J. Phys. 2005, 83. [Google Scholar] [CrossRef]
- Nielsen, A.B. Black holes and black hole thermodynamics without event horizons. Gen. Relativ. Gravit. 2009, 41, 1539–1584. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Krishnan, B. Isolated and dynamical horizons and their applications. Living Rev. Relat. 2004, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Gourghoulhon, E.; Jaramillo, J.L. New theoretical approaches to black holes. New Astron. Rev. 2008, 51, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Misner, C.W.; Sharp, D.H. Relativistic equations for adiabatic, spherically symmetric gravitational collapse. Phys. Rev. 1964, 136, B571–B576. [Google Scholar] [CrossRef]
- Hernandez, W.C.; Misner, C.W. Observer time as a coordinate in relativistic spherical hydrodynamics. Astrophys. J. 1966, 143, 452–464. [Google Scholar] [CrossRef]
- Hawking, S.W. Gravitational radiation in an expanding universe. J. Math. Phys. 1968, 9, 598–604. [Google Scholar] [CrossRef]
- Hayward, S.A. Quasilocal gravitational energy. Phys. Rev. D 1994, 49, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.B.; Yoon, J.H. Dynamical surface gravity. Class. Quantum Gravity 2008, 25, 085010. [Google Scholar] [CrossRef] [Green Version]
- Pielhan, M.; Kunstatter, G.; Nielsen, A.B. Dynamical surface gravity in spherically symmetric black hole formation. Phys. Rev. D 2011, 84, 104008. [Google Scholar] [CrossRef]
- Penrose, R. Gravitational collapse and spacetime singularities. Phys. Rev. Lett. 1965, 14, 57–59. [Google Scholar] [CrossRef]
- Vaidya, P. The gravitational field of a radiating star. Proc. Indian Acad. Sci. Sect. A 1951, 33, 264276. [Google Scholar] [CrossRef]
- Balbinot, R. Hawking radiation and the back reaction—A first approach. Class. Quantum Gravity 1984, 1, 573–577. [Google Scholar] [CrossRef]
- Ben-Dov, I. Outer trapped surfaces in Vaidya spacetimes. Phys. Rev. D 2007, 75, 064007. [Google Scholar] [CrossRef]
- Nielsen, A.B. Revisiting Vaidya horizons. Galaxies 2014, 2, 62–71. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, W. Apparent horizon and event horizon of a Vaidya black hole. Mod. Phys. Lett. A 2009, 24, 2099–2106. [Google Scholar] [CrossRef]
- Bengtsson, I.; Senovilla, J.M.M. Region with trapped surfaces in spherical symmetry, its core, and their boundaries. Phys. Rev. D 2011, 83, 044012. [Google Scholar] [CrossRef]
- Hayward, S.A. General laws of black hole dynamics. Phys. Rev. D 1994, 49, 6467–6474. [Google Scholar] [CrossRef]
- Wald, R.M.; Iyer, V. Trapped surfaces in the Schwarzschild geometry and cosmic censorship. Phys. Rev. D 1991, 44, R3719–R3722. [Google Scholar] [CrossRef]
- Schnetter, E.; Krishnan, B. Non-symmetric trapped surfaces in the Schwarzschild and Vaidya spacetimes. Phys. Rev. D 2006, 73, 021502. [Google Scholar] [CrossRef]
- Faraoni, V.; Ellis, G.F.R.; Firouzjaee, J.T.; Helou, A.; Musco, I. Foliation dependence of black hole apparent horizons in spherical symmetry. Phys. Rev. D 2017, 95, 024008. [Google Scholar] [CrossRef] [Green Version]
- Hiscock, W.A. Gravitational entropy of nonstationary black holes and spherical shells. Phys. Rev. D 1989, 40, 1336–1339. [Google Scholar] [CrossRef]
- Collins, W. Mechanics of apparent horizons. Phys. Rev. D 1992, 45, 495–498. [Google Scholar] [CrossRef]
- Haijcek, P. Origin of Hawking radiation. Phys. Rev. D 1987, 36, 1065–1107. [Google Scholar] [CrossRef]
- Sorkin, R.D. How wrinkled is the surface of a black hole? In Proceedings of the First Australasian Conference on General Relativity and Gravitation, Adelaide, Australia, 12–17 February 1996; Wiltshire, D., Ed.; University of Adelaide: Adelaide, Australia, 1996; pp. 163–174. [Google Scholar]
- Nielsen, A.B.; Firouzjaee, J.T. Conformally rescaled spacetimes and Hawking radiation. Gen. Relat. Gravit. 2013, 45, 1815–1838. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Sudarsky, D. When is S = A/4? Mod. Phys. Lett. A 2002, 17, 1431–1444. [Google Scholar] [CrossRef]
- Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett. 2000, 85, 5042. [Google Scholar] [CrossRef] [PubMed]
- Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett. 2006, 96, 031103. [Google Scholar] [CrossRef] [PubMed]
- Roman, T.A.; Bergmann, P.G. Stellar collapse without singularities? Phys. Rev. D 1983, 28, 1265–1277. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Visser, M. Production and decay of evolving horizons. Class. Quantum Gravity 2006, 23, 4637–4658. [Google Scholar] [CrossRef] [Green Version]
- Maeda, H. Final fate of spherically symmetric gravitational collapse of a dust cloud in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 2006, 73, 104004. [Google Scholar] [CrossRef]
- Maeda, H.; Nozawa, M. Generalized Misner-Sharp quasilocal mass in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 2008, 77, 064031. [Google Scholar] [CrossRef]
- Eingorn, M. First-order Cosmological Perturbations Engendered by Point-like Masses. Astrophys. J. 2016, 825, 84. [Google Scholar] [CrossRef]
- Eingorn, M.; Kiefer, C.; Zhuk, A. Scalar and vector perturbations in a universe with discrete and continuous matter sources. J. Cosmol. Astropart. Phys. 2016, 2016, 32. [Google Scholar] [CrossRef]
- Eingorn, M.; Kiefer, C.; Zhuk, A. Cosmic screening of the gravitational interaction. Int. J. Mod. Phys. D 2017, 26, 1743012. [Google Scholar] [CrossRef] [Green Version]
- Eingorn, M. Cosmological law of universal gravitation. Int. J. Mod. Phys. D 2017, 26, 1750121. [Google Scholar] [CrossRef] [Green Version]
- Herdeiro, C.A.R.; Radu, E. Asymptotically flat black holes with scalar hair: A review. Int. J. Mod. Phys. D 2015, 24, 1542014. [Google Scholar] [CrossRef] [Green Version]
- Tretyakova, D.A.; Latosh, B.N. Scalar-tensor black holes in an expanding universe. Universe 2018, 4, 26. [Google Scholar] [CrossRef]
- Kottler, F. Über die physikalischen Grundlagen der Einsteinschen gravitationstheorie. Ann. Phys. (Leipzig) 1918, 361, 401–462. [Google Scholar] [CrossRef]
- Synge, J.L. Relativity: The General Theory; North Holland: Amsterdam, The Netherlands, 1960. [Google Scholar]
- Schleich, K.; Witt, D.M. A simple proof of Birkhoff’s theorem for cosmological constant. J. Math. Phys. (N.Y.) 2010, 51, 112502. [Google Scholar] [CrossRef]
- Faraoni, V.; Cardini, A.M.; Chung, W.-J. Simultaneous baldness and cosmic baldness and the Kottler spacetime. Phys. Rev. D 2018, 97, 024046. [Google Scholar] [CrossRef] [Green Version]
- McVittie, G.C. The mass-particle in an expanding universe. Mon. Not. R. Astron. Soc. 1933, 93, 325–339. [Google Scholar] [CrossRef]
- Einstein, A.; Straus, E.G. The influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev. Mod. Phys. 1945, 17, 120–124. [Google Scholar] [CrossRef]
- Einstein, A.; Straus, E.G. Corrections and additional remarks to our paper: The influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev. Mod. Phys. 1946, 18, 148–149. [Google Scholar] [CrossRef]
- Nolan, B.C. A Point mass in an isotropic universe: existence, uniqueness and basic properties. Phys. Rev. D 1998, 58, 064006. [Google Scholar] [CrossRef] [Green Version]
- Nolan, B.C. A Point mass in an isotropic universe. 2. Global properties. Class. Quantum Gravity 1999, 16, 1227–1254. [Google Scholar] [CrossRef]
- Nolan, B.C. A Point mass in an isotropic universe 3. The region R ≤ 2m. Class. Quantum Gravity 1999, 16, 3183–3191. [Google Scholar] [CrossRef]
- Li, Z.-H.; Wang, A. Existence of black holes in Friedmann-Robertson-Walker universe dominated by dark energy. Mod. Phys. Lett. A 2007, 22, 1663–1676. [Google Scholar] [CrossRef]
- Faraoni, V.; Zambrano Moreno, A.F.; Nandra, R. Making sense of the bizarre behavior of horizons in the McVittie spacetime. Phys. Rev. D 2012, 85, 083526. [Google Scholar] [CrossRef]
- Nolan, B.C. Sources for McVittie’s mass particle in an expanding universe. J. Math. Phys. 1993, 34, 178–185. [Google Scholar] [CrossRef]
- Faraoni, V.; Jacques, A. Cosmological expansion and local physics. Phys. Rev. D 2007, 76, 063510. [Google Scholar] [CrossRef]
- Kaloper, N.; Kleban, M.; Martin, D. McVittie’s legacy: Black holes in an expanding universe. Phys. Rev. D 2010, 81, 104044. [Google Scholar] [CrossRef]
- Landry, P.; Abdelqader, M.; Lake, K. McVittie solution with a negative cosmological constant. Phys. Rev. D 2012, 86, 084002. [Google Scholar] [CrossRef] [Green Version]
- Lake, K.; Abdelqader, M. More on McVittie’s legacy: A Schwarzschild-de Sitter black and white hole embedded in an asymptotically ΛCDM cosmology. Phys. Rev. D 2011, 84, 044045. [Google Scholar] [CrossRef]
- Da Silva, A.; Fontanini, M.; Guariento, D.C. How the expansion of the universe determines the causal structure of McVittie spacetimes. Phys. Rev. D 2013, 87, 064030. [Google Scholar] [CrossRef]
- Abdalla, E.; Afshordi, N.; Fontanini, M.; Guariento, D.C.; Papantonopoulos, E. Cosmological black holes from self-gravitating fields. Phys. Rev. D 2014, 89, 104018. [Google Scholar] [CrossRef]
- Gomes, H.; Gryb, S.; Koslowski, T. Einstein gravity as a 3D conformally invariant theory. Class. Quantum Gravity 2011, 28, 045005. [Google Scholar] [CrossRef] [Green Version]
- Guariento, D.C.; Mercati, F. Cosmological self-gravitating fluid solutions of shape dynamics. Phys. Rev. D 2016, 94, 064023. [Google Scholar] [CrossRef] [Green Version]
- Thakurta, S.N.G. Kerr metric in an expanding universe. Indian J. Phys. 1981, 55B, 304. [Google Scholar]
- Afshordi, N.; Fontanini, M.; Guariento, D.C. Horndeski meets McVittie: A scalar field theory for accretion onto cosmological black holes. Phys. Rev. D 2014, 90, 084012. [Google Scholar] [CrossRef]
- Faraoni, V.; Gao, C.; Chen, X.; Shen, Y.-G. What is the fate of a black hole embedded in an expanding universe? Phys. Lett. B 2009, 671, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Culetu, H. On the conformal version of Schwarzschild-de Sitter spacetime. J. Phys. Conf. Ser. 2013, 437, 012005. [Google Scholar] [CrossRef]
- Mello, M.M.C.; Maciel, A.; Zanchin, V.T. Evolving black holes from conformal transformations of static solutions. Phys. Rev. D 2017, 95, 084031. [Google Scholar] [CrossRef] [Green Version]
- Jebsen, J.T. On the General Spherically Symmetric Solutions of Einstein’s Gravitational Equations in Vacuo. Gen. Relativ. Gravit. 2005, 37, 2253–2259. [Google Scholar] [CrossRef]
- Birkhoff, G.D. Relativity and Modern Physics; Harvard University Press: Cambridge, MA, USA, 1923; p. 253. [Google Scholar]
- Fisher, I.Z. Scalar mesostatic field with regard for gravitational effects. arXiv, 1999; arXiv:gr-qc/9911008. [Google Scholar]
- Bergman, O.; Leipnik, R. Space-Time Structure of a Static Spherically Symmetric Scalar Field. Phys. Rev. 1957, 107, 1157–1161. [Google Scholar] [CrossRef]
- Janis, A.I.; Newman, E.T.; Winicour, J. Reality of the Schwarzschild Singularity. Phys. Rev. Lett. 1968, 20, 878–880. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Static solutions of the Brans-Dicke equations. Int. J. Theor. Phys. 1972, 6, 407–412. [Google Scholar] [CrossRef]
- Wyman, M. Static spherically symmetric scalar fields in general relativity. Phys. Rev. D 1981, 24, 839–841. [Google Scholar] [CrossRef]
- Husain, V.; Martinez, E.A.; Nuñez, D. Exact solution for scalar field collapse. Phys. Rev. D 1994, 50, 3783–3786. [Google Scholar] [CrossRef] [Green Version]
- Booth, I.; Brits, L.; Gonzalez, J.A.; Van den Broeck, V. Marginally trapped tubes and dynamical horizons. Class. Quantum Gravity 2006, 23, 413–439. [Google Scholar] [CrossRef]
- Clifton, T. Spherically symmetric solutions to fourth-order theories of gravity. Class. Quantum Gravity 2006, 23, 7445–7453. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T.; Mota, D.F.; Barrow, J.D. Inhomogeneous gravity. Mon. Not. R. Astron. Soc. 2005, 358, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V. Clifton’s spherical solution in f(R) vacuum harbours a naked singularity. Class. Quantum Gravity 2009, 26, 195013. [Google Scholar] [CrossRef]
- Faraoni, V.; Vitagliano, V.; Sotiriou, T.P.; Liberati, S. Dynamical apparent horizons in inhomogeneous Brans-Dicke universes. Phys. Rev. D 2012, 86, 064040. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Fonarev, O.A. Exact Einstein scalar field solutions for formation of black holes in a cosmological setting. Class. Quantum Gravity 1995, 12, 1739–1752. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V.; Belknap-Keet, S.D. New inhomogeneous universes in scalar-tensor and f(R) gravity. Phys. Rev. D 2017, 96, 044040. [Google Scholar] [CrossRef]
- Barnes, A. On shear free normal flows of a perfect fluid. Gen. Relativ. Gravit. 1973, 2, 105–129. [Google Scholar] [CrossRef]
- Sultana, J.; Dyer, C.C. Cosmological black holes: A black hole in the Einstein-de Sitter universe. Gen. Relat. Gravit. 2005, 37, 1349–1370. [Google Scholar] [CrossRef]
- Balbinot, R.; Bergamini, R.; Comastri, A. Solution of the Einstein-Strauss problem with a Λ term. Phys. Rev. D 1988, 38, 2415–2418. [Google Scholar] [CrossRef]
- Burko, L.M.; Ori, A. (Eds.) Internal Structure of Black Holes and Spacetime Singularities, an International Research Workshop; IOP: Bristol, UK; Haifa, Israel, 1997. [Google Scholar]
- Cox, D.P.G. Aidya’s Kerr-Einstein metric cannot be matched to the Kerr metric. Phys. Rev. D 2003, 68, 124008. [Google Scholar] [CrossRef]
- Lindesay, J. Coordinates with Non-Singular Curvature for a Time Dependent Black Hole Horizon. Found. Phys. 2007, 37, 1181–1196. [Google Scholar] [CrossRef] [Green Version]
- Lindesay, J. Foundations of Quantum Gravity; Cambridge University Press: Cambridge, UK, 2013; p. 282. [Google Scholar]
- Patel, L.K.; Trivedi, H.B. Kerr-Newman metric in cosmological background. J. Astrophys. Astron. 1982, 3, 63–67. [Google Scholar] [CrossRef]
- Roberts, M.D. Scalar field counterexamples to the Cosmic Censorship hypothesis. Gen. Relativ. Gravit. 1989, 21, 907–939. [Google Scholar] [CrossRef]
- Vaidya, P.C. The Kerr metric in cosmological background. Pramana 1977, 8, 512–517. [Google Scholar] [CrossRef]
- Krasiński, A. Inhomogeneous Cosmological Models; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Krasínski, A.; Hellaby, C. Formation of a galaxy with a central black hole in the Lematre-Tolman model. Phys. Rev. D 2004, 69, 043502. [Google Scholar] [CrossRef]
- McClure, M.L.; Dyer, C.C. Asymptotically Einstein-de Sitter cosmological black holes and the problem of energy conditions. Class. Quantum Gravity 2006, 23, 1971–1987. [Google Scholar] [CrossRef]
- McClure, M.L.; Dyer, C.C. Matching radiation-dominated and matter-dominated Einstein-de Sitter universes and an application for primordial black holes in evolving cosmological backgrounds. Gen. Relativ. Gravit. 2006, 38, 1347–1354. [Google Scholar] [CrossRef]
- McClure, M.L.; Anderson, K.; Bardahl, K. Cosmological versions of Vaidya’s radiating stellar exterior, an accelerating reference frame, and Kinnersley’s photon rocket. arXiv, 2007; arXiv:0709.3288. [Google Scholar]
- McClure, M.L.; Anderson, K.; Bardahl, K. Nonisolated dynamical black holes and white holes. Phys. Rev. D 2008, 77, 104008. [Google Scholar] [CrossRef]
- Faraoni, V.; Zambrano Moreno, A.F. Interpreting the conformal cousin of the Husain-Martinez-Nuñez solution. Phys. Rev. D 2012, 86, 084044. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Matsuda, T. On the Gravitational Collapse in Brans-Dicke Theory of Gravity. Prog. Theor. Phys. Suppl. 1972, 47, 738–740. [Google Scholar] [CrossRef] [Green Version]
- Paiva, F.M.; Romero, C. The limits of Brans-Dicke spacetimes: A coordinate-free approach. Gen. Relativ. Gravit. 1993, 25, 1305–1317. [Google Scholar] [CrossRef]
- Romero, C.; Barros, A. Brans-Dicke cosmology and the cosmological constant: The spectrum of vacuum solutions. Astrophys. Space Sci. 1991, 192, 263–274. [Google Scholar] [CrossRef]
- Romero, C.; Barros, A. Does the Brans-Dicke theory of gravity go over to general relativity when ω → ∞? Phys. Lett. A 1993, 173, 243–246. [Google Scholar] [CrossRef]
- Romero, C.; Barros, A. Brans-Dicke vacuum solutions and the cosmological constant: A qualitative analysis. Gen. Relativ. Gravit. 1993, 25, 491–502. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Torres, D.F.; Trobo, M.L.; Perez-Bergliaffa, S.E. Evolving wormhole geometries. Phys. Rev. D 1998, 57, 829–833. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, N.; Sen, S. Does Brans-Dicke theory always yield general relativity in the infinite ω limit? Phys. Rev. D 1997, 56, 1334–1337. [Google Scholar] [CrossRef]
- Faraoni, V. The ω → ∞ limit of Brans-Dicke theory. Phys. Lett. A 1998, 245, 26–30. [Google Scholar] [CrossRef]
- Faraoni, V. Illusions of general relativity in Brans-Dicke gravity. Phys. Rev. D 1999, 59, 084021. [Google Scholar] [CrossRef]
- Faraoni, V.; Prain, A. Understanding dynamical black hole apparent horizons. arXiv, 2015; arXiv:1511.07775. [Google Scholar]
- Carrera, M.; Giulini, D. Influence of global cosmological expansion on local dynamics and kinematics. Rev. Mod. Phys. 2010, 82, 169–208. [Google Scholar] [CrossRef] [Green Version]
1. | We use the word “background” in quotation marks because the non-linearity of the field equations forbids splitting the spacetime metric into a background and deviations from it in a covariant way (except for algebraically special geometries such as Kerr-Schild metrics). |
2. | The mathematical conditions for the existence and uniqueness of marginally outer trapped surfaces are not completely clear. |
3. | Correspondingly, the expansions of the outgoing and ingoing null geodesic congruences are labelled and . |
4. | |
5. | |
6. | See [6] for details. |
7. |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraoni, V. Embedding Black Holes and Other Inhomogeneities in the Universe in Various Theories of Gravity: A Short Review. Universe 2018, 4, 109. https://doi.org/10.3390/universe4100109
Faraoni V. Embedding Black Holes and Other Inhomogeneities in the Universe in Various Theories of Gravity: A Short Review. Universe. 2018; 4(10):109. https://doi.org/10.3390/universe4100109
Chicago/Turabian StyleFaraoni, Valerio. 2018. "Embedding Black Holes and Other Inhomogeneities in the Universe in Various Theories of Gravity: A Short Review" Universe 4, no. 10: 109. https://doi.org/10.3390/universe4100109
APA StyleFaraoni, V. (2018). Embedding Black Holes and Other Inhomogeneities in the Universe in Various Theories of Gravity: A Short Review. Universe, 4(10), 109. https://doi.org/10.3390/universe4100109