From Heavy-Ion Collisions to Compact Stars: Equation of State and Relevance of the System Size
Abstract
:1. Introduction
2. Charge Fluctuations in Infinite Size Systems
3. Resummed Perturbative Quantum Chromodynamics in Infinite Size Systems
3.1. Resummation Inspired from Dimensional Reduction
3.2. Hard-Thermal-Loop Perturbation Theory
4. On the Finite Size Corrections
5. Results and Discussion
5.1. Quantum Chromodynamics Infinite Volume Case at Finite Density
5.1.1. Low Order Susceptibilities
5.1.2. Kurtoses
5.2. Toy Model Finite Size Case at Zero Density
5.2.1. Finite Size Corrections to the Thermodynamics
5.2.2. Non Additivity of the Equation of State “Entropy Versus Temperature” in Finite Size Systems
5.2.3. Finite Size Corrections to the Speed of Sound
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Blaizot, J.P.; Iancu, E.; Rebhan, A. On the apparent convergence of perturbative QCD at high temperature. Phys. Rev. D 2003, 68, 025011. [Google Scholar] [CrossRef]
- Karsch, F.; Laermann, E.; Peikert, A. Quark mass and flavor dependence of the QCD phase transition. Nucl. Phys. B 2001, 605, 579–599. [Google Scholar] [CrossRef]
- Bazavov, A.; Bhattacharya, T.; Cheng, M.; DeTar, C.; Ding, H.-T.; Steven Gottlieb, R.; Gupta, R.; Hegde, P.; Heller, U.M.; Karsch, F.; et al. The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 2012, 85, 054503. [Google Scholar] [CrossRef]
- De Forcrand, P. Simulating QCD at finite density. PoS LAT 2009, 2009, 010. [Google Scholar]
- Gupta, S. QCD at finite density. PoS LAT 2010, 2010, 007. [Google Scholar]
- Blaizot, J.P.; Iancu, E.; Rebhan, A. Quark number susceptibilities from HTL resummed thermodynamics. Phys. Lett. B 2001, 523, 143–150. [Google Scholar] [CrossRef]
- Andersen, J.O.; Mogliacci, S.; Su, N.; Vuorinen, A. Quark number susceptibilities from resummed perturbation theory. Phys. Rev. D 2013, 87, 074003. [Google Scholar] [CrossRef]
- Mogliacci, S.; Andersen, J.O.; Strickland, M.; Su, N.; Vuorinen, A. Equation of State of hot and dense QCD: Resummed perturbation theory confronts lattice data. J. High Energy Phys. 2013, 1312, 055. [Google Scholar] [CrossRef]
- Haque, N.; Bandyopadhyay, A.; Andersen, J.O.; Mustafa, M.G.; Strickland, M.; Su, N. Three-loop HTLpt thermodynamics at finite temperature and chemical potential. J. High Energy Phys. 2014, 1405, 027. [Google Scholar] [CrossRef]
- Tannenbaum, M.J. Highlights from BNL-RHIC. arXiv, 2012; arXiv:1201.5900. [Google Scholar]
- Müller, B.; Schukraft, J.; Wyslouch, B. First Results from Pb+Pb collisions at the LHC. Ann. Rev. Nucl. Part. Sci. 2012, 62, 361–386. [Google Scholar] [CrossRef] [Green Version]
- Heuser, J.M. The compressed baryonic matter experiment at FAIR. Nucl. Phys. A 2013, 904–905, 941c–944c. [Google Scholar] [CrossRef]
- Kekelidze, V.; Kovalenko, A.; Lednicky, R.; Matveev, V.; Meshkov, I.; Sorin, A.; Trubnikov, G. Project NICA at JINR. Nucl. Phys. A 2013, 904–905, 945c–948c. [Google Scholar] [CrossRef]
- Mogliacci, S. Kurtoses and high order cumulants: Insights from resummed perturbation theory. J. Phys. Conf. Ser. 2014, 503, 012005. [Google Scholar] [CrossRef]
- Aamodt, K.; Abrahantes Quintana, A.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; et al. Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV. Phys. Lett. B 2011, 696, 328–337. [Google Scholar] [CrossRef]
- Adam, J.; Adamová, D.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S.U.; Aimo, I.; et al. Two-pion femtoscopy in p-Pb collisions at = 5.02 TeV. Phys. Rev. C 2015, 91, 034906. [Google Scholar] [CrossRef]
- Vuorinen, A. Quark Matter Equation of State from Perturbative QCD. EPJ Web Conf. 2017, 137, 09011. [Google Scholar] [CrossRef]
- Mogliacci, S. Probing the Finite Density Equation of State of QCD via Resummed Perturbation Theory. Ph.D. Thesis, Bielefeld University, Bielefeld, Germany, 2014. [Google Scholar]
- Mogliacci, S.; Horowitz, W.A.; Kolbé, I. In preparation.
- Satz, H. Probing the States of Matter in QCD. Int. J. Mod. Phys. A 2013, 28, 1330043. [Google Scholar] [CrossRef]
- Koch, V. Hadronic Fluctuations and Correlations. arXiv, 2008; arXiv:0810.2520. [Google Scholar]
- Appelquist, T.; Pisarski, R.D. High-Temperature Yang-Mills Theories and Three-Dimensional Quantum Chromodynamics. Phys. Rev. D 1981, 23, 2305. [Google Scholar] [CrossRef]
- Nadkarni, S. Dimensional reduction in finite-temperature quantum chromodynamics. Phys. Rev. D 1983, 27, 917–931. [Google Scholar] [CrossRef]
- Braaten, E.; Nieto, A. Effective field theory approach to high temperature thermodynamics. Phys. Rev. D 1995, 51, 6990. [Google Scholar] [CrossRef]
- Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M.E. Generic rules for high temperature dimensional reduction and their application to the standard model. Nucl. Phys. B 1996, 458, 90–136. [Google Scholar] [CrossRef]
- Linde, A.D. Infrared Problem in Thermodynamics of the Yang-Mills Gas. Phys. Lett. B 1980, 96, 289–292. [Google Scholar] [CrossRef]
- Laine, M.; Schröder, Y. Quark mass thresholds in QCD thermodynamics. Phys. Rev. D 2006, 73, 085009. [Google Scholar] [CrossRef]
- Kajantie, K.; Laine, M.; Rummukainen, K.; Schröder, Y. The Pressure of hot QCD up to g6ln(1/g). Phys. Rev. D 2003, 67, 105008. [Google Scholar] [CrossRef]
- Vuorinen, A. The Pressure of QCD at finite temperatures and chemical potentials. Phys. Rev. D 2003, 68, 054017. [Google Scholar] [CrossRef]
- Kneur, J.-L.; Neveu, A. αS from Fπ and Renormalization Group Optimized Perturbation. Phys. Rev. D 2013, 88, 074025. [Google Scholar] [CrossRef]
- Karsch, F.; Patkós, A.; Petreczky, P. Screened perturbation theory. Phys. Lett. B 1997, 401, 69–73. [Google Scholar] [CrossRef]
- Frenkel, J.; Taylor, J.C. High Temperature Limit of Thermal QCD. Nucl. Phys. B 1990, 334, 199–216. [Google Scholar] [CrossRef]
- Braaten, E.; Pisarski, R.D. Soft Amplitudes in Hot Gauge Theories: A General Analysis. Nucl. Phys. B 1990, 337, 569–634. [Google Scholar] [CrossRef]
- Andersen, J.O.; Braaten, E.; Strickland, M. Hard thermal loop resummation of the thermodynamics of a hot gluon plasma. Phys. Rev. D 2000, 61, 014017. [Google Scholar] [CrossRef]
- Andersen, J.O.; Braaten, E.; Strickland, M. Hard thermal loop resummation of the free energy of a hot quark-gluon plasma. Phys. Rev. D 2000, 61, 074016. [Google Scholar] [CrossRef]
- Karsch, F.; Morita, K.; Redlich, K. Effects of kinematic cuts on net-electric charge fluctuations. Phys. Rev. C 2016, 93, 034907. [Google Scholar] [CrossRef]
- Haque, N.; Andersen, J.O.; Mustafa, M.G.; Strickland, M.; Su, N. Three-loop HTLpt Pressure and Susceptibilities at Finite Temperature and Density. Phys. Rev. D 2014, 89, 061701. [Google Scholar] [CrossRef]
- Bazavov, A.; Ding, H.-T.; Hegde, P.; Karsch, F.; Miao, C.; Mukherjee, S.; Petreczky, P.; Schmidt, C.; Velytsky, A. Quark number susceptibilities at high temperatures. Phys. Rev. D 2013, 88, 094021. [Google Scholar] [CrossRef]
- Borsányi, S.; Fodor, Z.; Katz, S.D.; Krieg, S.; Ratti, C.; Szabó, K.K. Fluctuations of conserved charges at finite temperature from lattice QCD. J. High Energy Phys. 2012, 1201, 138. [Google Scholar] [CrossRef]
- Schmidt, C. QCD bulk thermodynamics and conserved charge fluctuations with HISQ fermions. J. Phys. Conf. Ser. 2013, 432, 012013v. [Google Scholar] [CrossRef]
- Schmidt, C. Baryon number and charge fluctuations from lattice QCD. Nucl. Phys. A 2013, 904–905, 865c–868c. [Google Scholar] [CrossRef]
- Bazavov, A.; Ding, H.-T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, S.; Ohno, H.; Petreczky, P.; et al. Strangeness at High Temperatures: From Hadrons to Quarks. Phys. Rev. Lett. 2013, 111, 082301. [Google Scholar] [CrossRef] [PubMed]
- Borsányi, S. Thermodynamics of the QCD transition from lattice. Nucl. Phys. A 2013, 904–905, 270c–277c. [Google Scholar] [CrossRef]
- Stephanov, M.A. On the sign of kurtosis near the QCD critical point. Phys. Rev. Lett. 2011, 107, 052301. [Google Scholar] [CrossRef] [PubMed]
- Borsányi, S.; Fodor, Z.; Katz, S.D.; Krieg, S.; Ratti, C.; Szabo, K.K. Freeze-out parameters: lattice meets experiment. Phys. Rev. Lett. 2013, 111, 062005. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogliacci, S.; Kolbé, I.; Horowitz, W.A. From Heavy-Ion Collisions to Compact Stars: Equation of State and Relevance of the System Size. Universe 2018, 4, 14. https://doi.org/10.3390/universe4010014
Mogliacci S, Kolbé I, Horowitz WA. From Heavy-Ion Collisions to Compact Stars: Equation of State and Relevance of the System Size. Universe. 2018; 4(1):14. https://doi.org/10.3390/universe4010014
Chicago/Turabian StyleMogliacci, Sylvain, Isobel Kolbé, and W. A. Horowitz. 2018. "From Heavy-Ion Collisions to Compact Stars: Equation of State and Relevance of the System Size" Universe 4, no. 1: 14. https://doi.org/10.3390/universe4010014
APA StyleMogliacci, S., Kolbé, I., & Horowitz, W. A. (2018). From Heavy-Ion Collisions to Compact Stars: Equation of State and Relevance of the System Size. Universe, 4(1), 14. https://doi.org/10.3390/universe4010014