1. Introduction
2. Data
3. Methodology
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Webb, J.K.; King, J.A.; Murphy, M.T.; Flambaum, V.V.; Carswell, R.F.; Bainbridge, M.B. Indications of a Spatial Variation of the Fine Structure Constant. Phys. Rev. Lett. 2011, 107, 191101. [Google Scholar] [CrossRef] [PubMed]
- King, J.A.; Webb, J.K.; Murphy, M.T.; Flambaum, V.V.; Carswell, R.F.; Bainbridge, M.B.; Wilczynska, M.R.; Koch, F.E. Spatial variation in the fine-structure constant—New results from VLT/UVES. Mon. Not. R. Astron. Soc. 2012, 422, 3370–3414. [Google Scholar] [CrossRef]
- Berengut, J.C.; Flambaum, V.V.; King, J.A.; Curran, S.J.; Webb, J.K. Is there further evidence for spatial variation of fundamental constants? Phys. Rev. D 2011, 83, 123506. [Google Scholar] [CrossRef]
- Berengut, J.C.; Kava, E.M.; Flambaum, V.V. Is there a spatial gradient in values of the fine-structure constant? A reanalysis of the results. Astron. Astrophys. 2012, 542, A118. [Google Scholar] [CrossRef]
- Pinho, A.M.M.; Martins, C.J.A.P. Updated constraints on spatial variations of the fine-structure constant. Phys. Lett. B 2016, 756, 121–125. [Google Scholar] [CrossRef]
- Mariano, A.; Perivolaropoulos, L. Is there correlation between fine structure and dark energy cosmic dipoles? Phys. Rev. D 2012, 86, 083517. [Google Scholar] [CrossRef]
- Mariano, A.; Perivolaropoulos, L. CMB maximum temperature asymmetry axis: Alignment with other cosmic asymmetries. Phys. Rev. D 2013, 87, 043511. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck intermediate results. XXIV. Constraints on variation of fundamental constants. Astron. Astrophys. 2015, 580, A22. [Google Scholar]
- O’Bryan, J.; Smidt, J.; De Bernardis, F.; Cooray, A. Constraints on Spatial Variations in the Fine-structure Constant from Planck. Astrophys. J. 2015, 798, 18. [Google Scholar] [CrossRef]
- Iorio, L. Orbital effects of spatial variations of fundamental coupling constants. Mon. Not. R. Astron. Soc. 2011, 417, 2392–2400. [Google Scholar] [CrossRef]
- Sunyaev, R.A.; Zeldovich, Y.B. The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies. Comments Astrophys. Space Phys. 1972, 4, 173–178. [Google Scholar]
- Avgoustidis, A.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeufb, P.E.; Luzzi, G. Cosmological effects of scalar-photon couplings: Dark energy and varying-α Models. J. Cosmol. Astropart. Phys. 2014, 2014, 062. [Google Scholar] [CrossRef]
- De Martino, I.; Génova-Santos, R.T.; Atrio-Barandela, F.; Ebeling, H.; Kashlinsky, A.; Kocevski, D.; Martins, C.J.A.P. Constraining the Redshift Evolution of the Cosmic Microwave Background Blackbody Temperature with PLANCK Data. Astrophys. J. 2015, 808, 128. [Google Scholar] [CrossRef]
- Böhringer, H.; Schuecker, P.; Guzzo, L.; Collins, C.A.; Voges, W.; Cruddace, R.G.; Ortiz-Gil, A.; Chincarini, G.; De Grandi, S.; Edge, A.C.; et al. The ROSAT-ESO Flux Limited X-ray (REFLEX) Galaxy cluster survey. V. The cluster catalogue. Astron. Astrophys. 2004, 425, 367–383. [Google Scholar] [CrossRef]
- Ebeling, H.; Edge, A.C.; Böhringer, H.; Allen, S.W.; Crawford, C.S.; Fabian, A.C.; Voges, W.; Huchra, J.P. The ROSAT Brightest Cluster Sample—I. The compilation of the sample and the cluster log N-log S distribution. Mon. Not. R. Astron. Soc. 1998, 301, 881–914. [Google Scholar] [CrossRef]
- Ebeling, H.; Edge, A.C.; Allen, S.W.; Crawford, C.S.; Fabian, A.C.; Huchra, J.P. The ROSAT Brightest Cluster Sample—IV. The extended sample. Mon. Not. R. Astron. Soc. 2000, 318, 333–340. [Google Scholar] [CrossRef]
- Ebeling, H.; Mullis, C.R.; Tully, R.B. A Systematic X-Ray Search for Clusters of Galaxies behind the Milky Way. Astrophys. J. 2002, 580, 774–788. [Google Scholar] [CrossRef]
- Górski, K.M.; Hivon, E.; Banday, A.J.; Wandelt, B.D.; Hansen, F.K.; Reinecke, M.; Bartelmann, M. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere. Astrophys. J. 2005, 622, 759–771. [Google Scholar] [CrossRef]
- De Martino, I.; Atrio-Barandela, F. SZ/X-ray scaling relations using X-ray data and Planck Nominal maps. Mon. Not. R. Astron. Soc. 2016, 461, 3222–3232. [Google Scholar] [CrossRef]
- De Martino, I. A f(R)-gravity model of the Sunyaev-Zeldovich profile of the Coma cluster compatible with Planck data. Phys. Rev. D 2016, 93, 124043. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Verde, L.; Peiris, H.V.; Spergel, D.N.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology. Astrophys. J. Suppl. Ser. 2003, 148, 195–211. [Google Scholar] [CrossRef]
- De Martino, I.; Martins, C.J.A.P.; Ebeling, H.; Kocevski, D. Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data. Phys. Review D 2016, 94, 083008. [Google Scholar] [CrossRef]
- Galli, S. Clusters of galaxies and variation of the fine structure constant. Phys. Rev. D 2013, 87, 123516. [Google Scholar] [CrossRef]
- Kashlinsky, A.; Atrio-Barandela, F.; Kocevski, D.; Ebeling, H. A Measurement of Large-Scale Peculiar Velocities of Clusters of Galaxies: Results and Cosmological Implications. Astrophys. J. Lett. 2008, 686, L49. [Google Scholar] [CrossRef]
- Kogut, A.; Lineweaver, C.; Smoot, G.F.; Bennett, C.L.; Banday, A.; Boggess, N.W.; Cheng, E.S.; de Amici, G.; Fixsen, D.J.; Hinshaw, G.; et al. Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps. Astrophys. J. 1993, 419, 1–6. [Google Scholar] [CrossRef]
- Vielva, P.; Martinez-Gonzalez, E.; Barreiro, R.B.; Sanz, J.L.; Cayon, L. Detection of non-gaussianity in the Wilkinson microwave anisotropy probe first-year data using spherical wavelets. Astrophys. J. 2004, 609, 22–34. [Google Scholar] [CrossRef]
- Kashlinsky, A.; Atrio-Barandela, F.; Ebeling, H.; Edge, A.; Kocevski, D. A New Measurement of the Bulk Flow of X-Ray Luminous Clusters of Galaxies. Astrophys. J. Lett. 2010, 712, L81. [Google Scholar] [CrossRef]
- Kashlinsky, A.; Atrio-Barandela, F.; Ebeling, H. Measuring the Dark Flow with Public X-ray Cluster Data. Astrophys. J. 2011, 732, 1. [Google Scholar] [CrossRef]
- Kashlinsky, A.; Atrio-Barandela, F.; Ebeling, H. Measuring bulk motion of X-ray clusters via the kinematic Sunyaev-Zeldovich effect: Summarizing the “dark flow” evidence and its implications. arXiv, 2012; arXiv:1202.0717v1. [Google Scholar]
- Atrio-Barandela, F.; Kashlinsky, A.; Ebeling, H.; Fixsen, D.J.; Kocevski, D. Probing the Dark Flow Signal in WMAP 9 -Year and Planck Cosmic Microwave Background Maps. Astrophys. J. 2015, 810, 143. [Google Scholar] [CrossRef]
- Ade, P.A.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XXIII. Isotropy and statistics of the CMB. Astron. Astrophys. 2014, 571, A23. [Google Scholar]
- Naselsky, P.; Zhao, W.; Kim, J.; Chen, S. Is the Cosmic Microwave Background Asymmetry due to the Kinematic Dipole? Astrophys. J. 2012, 749, 31. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, P.X.; Zhang, Y. Anisotropy of Cosmic Acceleration. Int. J. Mod. Phys. D 2013, 22, 1350060. [Google Scholar] [CrossRef]
- Zhao, W. Directional dependence of CMB parity asymmetry. Phys. Rev. D 2014, 89, 023010. [Google Scholar] [CrossRef]
- Zhao, W.; Santos, L. Preferred axis in cosmology. Universe 2016, 3, 9–33. [Google Scholar]
- Cheng, C.; Zhao, W.; Huang, Q.-G.; Santos, L. Preferred axis of CMB parity asymmetry in the masked maps. Phys. Lett. B 2016, 757, 445–453. [Google Scholar] [CrossRef]

m | d | RA (°) | DEC (°) | ||
---|---|---|---|---|---|
Model 1 | (A) | 0.0 | 261.0 | ||
(B) | 261.0 | ||||
(C) | 0.0 | ||||
(D) | |||||
Model 2 | (A) | 0.0 | 261.0 | ||
(B) | 261.0 | ||||
(C) | 0.0 | ||||
(D) | |||||
Model 3 | (A) | 1.0 | 261.0 | ||
(B) | 261.0 | ||||
(C) | 1.0 | ||||
(D) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).