Powerful Radio Sources as Probes of Black Hole Physics
Abstract
1. Introduction
2. The Radio Sources
2.1. FRIIb Radio Sources
2.2. The Strong Shock Method
2.3. Cosmological Studies
2.4. The Total Lifetime of the Jetted Outflow
2.5. The Relationship Between the Total Lifetime of the Jetted Outflow and Black Hole Mass
2.6. Total Energy Deposited in Hotspot Region Relative to Black Hole Mass
2.7. The Relationship Between Jetted Outflow Lifetime and Black Hole Mass Indicated by
2.8. The Relationship Between Beam Power and Black Hole Mass Indicated by
2.9. Jetted Outflow Lifetime Relative to the Age of the Universe
3. Connections to Black Hole Physics
3.1. Changes in the Black Hole Properties Such as the Irreducible Black Hole Mass
3.2. Dual Black Hole Coalescence
3.3. Changes of Accretion Disk Properties
4. Summary and Conclusions
4.1. Summary of Key Radio Source Properties
4.2. Summary of Connections to Black Hole Physics
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christodoulou, D. Reversible and Irreversible Transformations in Black-Hole Physics. Phys. Rev. Lett. 1970, 25, 1596. [Google Scholar] [CrossRef]
- Christodoulou, D.; Ruffini, R. Reversible Transformations of a Charged Black Hole. Phys. Rev. D 1971, 4, 3552. [Google Scholar] [CrossRef]
- Hawking, S.W. Gravitational Radiation from Colliding Black Holes. Phys. Rev. Lett. 1971, 26, 1344. [Google Scholar] [CrossRef]
- Penrose, R. Gravitational collapse: The role of general relativity. Riv. Nuovo C. 1969, 1, 252. [Google Scholar]
- Penrose, R.; Floyd, R.M. Extraction of Rotational Energy from a Black Hole. Nat. Phys. Sci. 1971, 229, 177. [Google Scholar] [CrossRef]
- Kološ, M.; Tursunov, A.; Stuchlík, Z. Radiative Penrose process: Energy gain by a single radiating charged particle in the ergosphere of rotating black hole. Phys. Rev. D 2021, 103, 24021. [Google Scholar] [CrossRef]
- Tursunov, A.; Juraev, B.; Stuchlík, Z.; Kološ, M. Electric Penrose process: High-energy acceleration of ionized particles by nonrotating weakly charged black hole. Phys. Rev. D 2021, 104, 4099. [Google Scholar] [CrossRef]
- Stuchlík, Z.; Kološ, M.; Tursunov, A. Penrose Process: Its Variants and Astrophysical Applications. Universe 2021, 7, 416. [Google Scholar] [CrossRef]
- Rueda, J.A.; Ruffini, R. Extracting the energy and angular momentum of a Kerr black hole. Eur. Phys. J. C 2023, 83, 960. [Google Scholar] [CrossRef]
- Rueda, J.A.; Ruffini, R. Kerr black hole energy extraction, irreducible mass feedback, and the effect of captured particles charge. Eur. Phys. J. C 2024, 84, 1166. [Google Scholar] [CrossRef]
- Ruffini, R.; Bianco, C.L.; Prakapenia, M.; Quevedo, H.; Rueda, J.A.; Zhang, S. The role of the irreducible mass in repetitive Penrose energy extraction processes in a Kerr black hole. Phys. Rev. Res. 2025, 7, 013203. [Google Scholar] [CrossRef]
- Hundhausen, A.J. Collisionless Shocks in the Heliosphere; Stone, R.G., Tsurwtaui, B.T., Eds.; American Geophysical Union: Washington, DC, USA, 1985; p. 37. [Google Scholar]
- Daly, R.A. A Model to Explain the Correlation between the Optical and Radio Properties of High-Redshift Galaxies. Astrophys. J. 1990, 355, 416. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467. [Google Scholar] [CrossRef]
- Kido, D.; Ioka, K.; Hotokezaka, K.; Inayoshi, K.; Irwin, C.M. Black Hole Envelopes in Little Red Dots. arXiv 2025, arXiv:2505.06965. [Google Scholar] [CrossRef]
- Rusakov, V.; Watson, D.; Nikopoulos, G.P.; Brammer, G.; Gottumukkala, R.; Harvey, T.; Heintz, K.E.; Nielsen, R.D.; Sim, S.A.; Sneppen, A.; et al. JWST’s little red dots: An emerging population of young, low-mass AGN cocooned in dense ionized gas. arXiv 2025, arXiv:2503.16595. [Google Scholar]
- Perger, K.; Fogasy, J.; Frey, S.; Gabányi, K.É. Deep silence: Radio properties of little red dots. Astron. Astrophys. 2025, 693, L2. [Google Scholar] [CrossRef]
- Gloudemans, A.; Duncan, K.J.; Eilers, A.; Farina, E.P.; Harikane, Y.; Inayoshi, K.; Lambrides, E.; Vardoulaki, E. Another Piece to the Puzzle: Radio Detection of a JWST-detected Active Galactic Nucleus Candidate. Astrophys. J. 2025, 986, 130. [Google Scholar] [CrossRef]
- Latif, M.A.; Aftab, A.; Whalen, D.J.; Mexcua, M. Radio emission from little red dots may reveal their true nature. Astron. Astrophys. 2025, 694, L14. [Google Scholar] [CrossRef]
- Fanaroff, B.L.; Riley, J.M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 1974, 164, 31. [Google Scholar] [CrossRef]
- De Young, D.S. Extended extragalactic radio sources. Annu. Rev. Astron. Astrophys. 1976, 14, 447. [Google Scholar] [CrossRef]
- Miley, G. The structure of extended extragalactic radio sources. Annu. Rev. Astron. Astrophys. 1980, 18, 165. [Google Scholar] [CrossRef]
- Leahy, J.P.; Williams, A.G. The bridges of classical double radio sources. Mon. Not. R. Astron. Soc. 1984, 210, 929. [Google Scholar] [CrossRef]
- Alexander, P.; Leahy, J.P. Ageing and speeds in a representative sample of 21 classical double radio sources. Mon. Not. R. Astron. Soc. 1987, 225, 1. [Google Scholar] [CrossRef]
- Leahy, J.P.; Muxlow, T.W.B.; Stephens, P.W. 151-MHz and 1.5-GHz observations of bridges in powerful extragalacticradio sources. Mon. Not. R. Astron. Soc. 1989, 239, 401. [Google Scholar] [CrossRef]
- Daly, R.A. Models developed to describe FR IIb and FR IIa radio sources. New Astron. Rev. 2002, 46, 47. [Google Scholar] [CrossRef]
- Daly, R.A.; Kharb, P.; O’Dea, C.P.; Baum, S.A.; Mory, M.P.; McKane, J.; Altenderfer, C.; Beury, M. A Detailed Study of the Lobes of Eleven Powerful Radio Galaxies. Astrophys. J. Suppl. 2010, 187, 1. [Google Scholar] [CrossRef]
- Carilli, C.L.; Perley, R.A.; Dreher, J.W.; Leahy, J.P. Multifrequency Radio Observations of Cygnus A: Spectral Aging in Powerful Radio Galaxies. Astrophys. J. 1991, 383, 554. [Google Scholar] [CrossRef]
- Liu, R.; Pooley, G.; Riley, J.M. Spectral ageing in a sample of 14 high-luminosity double radio sources. Mon. Not. R. Astron. Soc. 1992, 257, 545. [Google Scholar] [CrossRef]
- O’Dea, C.P.; Daly, R.A.; Freeman, K.A.; Kharb, P.; Baum, S. Physical properties of very powerful FRII radio galaxies. Astron. Astrophys. 2009, 494, 471. [Google Scholar] [CrossRef]
- Laing, R.A.; Riley, J.M.; Longair, M.S. Bright radio sources at 178 MHz: Flux densities, optical identifications and the cosmological evolution of powerful radio galaxies. Mon. Not. R. Astron. Soc. 1983, 204, 151. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Williams, W.L.; Best, P.N.; Croston, J.H.; Duncan, K.J.; Röttgering, H.J.A.; Sabater, J.; Shimwell, T.W.; Tasse, C.; Callingham, J.R.; et al. Radio-loud AGN in the first LoTSS data release. The lifetimes and environmental impact of jet-driven sources. Astron. Astrophys. 2019, 622, A12. [Google Scholar] [CrossRef]
- Blundell, K.M.; Rawlings, S.; Willott, C.J. The Nature and Evolution of Classical Double Radio Sources from Complete Samples. Astron. J. 1999, 117, 677. [Google Scholar] [CrossRef]
- Wellman, G.F.; Daly, R.A.; Wan, L. Radio Bridge Structure and Its Application to Estimate the Mach Number and Ambient Gas Temperature of Powerful Sources. Astrophys. J. 1997, 480, 79. [Google Scholar] [CrossRef]
- Wellman, G.F.; Daly, R.A.; Wan, L. The Gaseous Environments of Powerful Extended Radio Sources. Astrophys. J. 1997, 480, 96. [Google Scholar] [CrossRef]
- Daly, R.A.; Djorgovski, S.G.; Freeman, K.A.; Mory, M.P.; O’Dea, C.P.; Kharb, P.; Baum, S. Improved Constraints on the Acceleration History of the Universe and the Properties of the Dark Energy. Astrophys. J. 2008, 677, 1. [Google Scholar] [CrossRef]
- Kharb, P.; O’Dea, C.P.; Baum, S.A.; Daly, R.A.; Mory, M.P.; Donahue, M.; Guerra, E.J. A Study of 13 Powerful Classical Double Radio Galaxies. Astrophys. J. Suppl. 2008, 174, 74. [Google Scholar] [CrossRef]
- Guerra, E.J.; Daly, R.A.; Wan, L. Global Cosmological Parameters Determined Using Classical Double Radio Galaxies. Astrophys. J. 2000, 544, 659. [Google Scholar] [CrossRef]
- Daly, R.A.; Guerra, E.J. Quintessence, Cosmology, and Fanaroff-Riley Type IIb Radio Galaxies. Astrophys. J. 2002, 124, 1831. [Google Scholar]
- Podariu, S.; Daly, R.A.; Mory, M.P.; Ratra, B. Radio Galaxy Redshift-Angular Size Data Constraints on Dark Energy. Astrophys. J. 2003, 584, 577. [Google Scholar] [CrossRef]
- Daly, R.A.; Mory, M.P.; O’Dea, C.P.; Kharb, P.; Baum, S.; Guerra, E.J.; Djorgovski, S.G. Cosmological Studies with Radio Galaxies and Supernovae. Astrophys. J. 2009, 691, 1058. [Google Scholar] [CrossRef]
- Begelman, M.C.; Cioffi, D.F. Overpressured Cocoons in Extragalactic Radio Sources. Astrophys. J. 1989, 345, L21. [Google Scholar] [CrossRef]
- Rawlings, S.; Saunders, R. Evidence for a common central-engine mechanism in all extragalactic radio sources. Nature 1991, 349, 138. [Google Scholar] [CrossRef]
- Belsole, E.; Worrall, D.M.; Hardcastle, M.J.; Croston, J.H. High-redshift Fanaroff-Riley type II radio sources: Large-scale X-ray environment. Mon. Not. R. Astron. Soc. 2007, 381, 1109. [Google Scholar] [CrossRef]
- Croston, J.H.; Hardcastle, M.J.; Harris, D.E.; Belsole, E.; Birkinshaw, M.; Worrall, D.M. An X-Ray Study of Magnetic Field Strengths and Particle Content in the Lobes of FR II Radio Sources. Astrophys. J. 2005, 626, 733. [Google Scholar] [CrossRef]
- Ineson, J.; Croston, J.H.; Hardcastle, M.J.; Mingo, B. A representative survey of the dynamics and energetics of FR II radio galaxies. Mon. Not. R. Astron. Soc. 2017, 467, 1586. [Google Scholar]
- Daly, R.A. Cosmology with Powerful Extended Radio Sources. Astrophys. J. 1994, 426, 38. [Google Scholar] [CrossRef]
- Barthel, P.D. Is Every Quasar Beamed? Astrophys. J. 1989, 336, 606. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Barthel, P.D.; Padovani, P. The Revised Third Cambridge Catalogue at 60: To Jet or Not to Jet. Galaxies 2024, 12, 3. [Google Scholar] [CrossRef]
- Patrick, M.; Ogle, B.; Sebastian, A.; Aravindan, M.; McDonald, G.; Canalizo, M.L.N.; Ashby, M.; Azadi, R.; Antonucci, P.; Barthel, S.; et al. The JWST View of Cygnus A: Jet-driven Coronal Outflow with a Twist. Astrophys. J. 2025, 983, 98. [Google Scholar] [CrossRef]
- Guerra, E.J.; Daly, R.A. Central Engines of Active Galactic Nuclei: Properties of Collimated Outflows and Applications for Cosmology. Astrophys. J. 1998, 493, 536. [Google Scholar] [CrossRef]
- Daly, R.A. Black Hole Spin and Accretion Disk Magnetic Field Strength Estimates for More Than 750 Active Galactic Nuclei and Multiple Galactic Black Holes. Astrophys. J. 2019, 886, 37. [Google Scholar] [CrossRef]
- Daly, R.A. Robust supermassive black hole spin mass-energy characteristics: A new method and results. Mon. Not. R. Astron. Soc. 2022, 517, 5144. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433. [Google Scholar] [CrossRef]
- Meier, D.L. A Magnetically Switched, Rotating Black Hole Model for the Production of Extragalactic Radio Jets and the Fanaroff and Riley Class Division. Astrophys. J. 1999, 522, 753. [Google Scholar] [CrossRef]
- Daly, R.A. Black Hole Spins of Radio Sources. Astrophys. J. 2009, 691, L72. [Google Scholar] [CrossRef]
- Daly, R.A. Bounds on Black Hole Spins. Astrophys. J. 2009, 696, L32. [Google Scholar] [CrossRef]
- Daly, R.A.; Sprinkle, T.B.; O’Dea, C.P.; Kharb, P.; Baum, S. The relationship between beam power and radio power for classical double radio sources. Mon. Not. R. Astron. Soc. 2012, 423, 2498. [Google Scholar] [CrossRef]
- Akritas, M.G.; Siebert, J. A test for partial correlation with censored astronomical data. Mon. Not. R. Astron. Soc. 1996, 278, 919. [Google Scholar] [CrossRef]
- Timlin, J.D., III; Brandt, W.N.; Laor, A. What controls the UV-to-X-ray continuum shape in quasars? Mon. Not. R. Astron. Soc. 2021, 504, 5556. [Google Scholar] [CrossRef]
- Daly, R.A. Spin properties of supermassive black holes with powerful outflows. Mon. Not. R. Astron. Soc. 2016, 458, L24. [Google Scholar] [CrossRef]
- McLure, R.J.; Willott, C.J.; Jarvis, M.J.; Rawlings, S.; Hill, G.J.; Mitchell, E.; Dunlop, J.S.; Wold, M. A sample of radio galaxies spanning three decades in radio luminosity—I. The host galaxy properties and black hole masses. Mon. Not. R. Astron. Soc. 2004, 351, 347. [Google Scholar] [CrossRef]
- McLure, R.J.; Jarvis, M.J.; Targett, T.A.; Dunlop, J.S.; Best, P.N. On the evolution of the black hole: Spheroid mass ratio. Mon. Not. R. Astron. Soc. 2006, 368, 1395. [Google Scholar] [CrossRef]
- Press, W.H. Time evolution of a rotating black hole immersed in a static scalar field. Astrophys. J. 1972, 175, 243. [Google Scholar] [CrossRef]
- King, A.L.; Lasota, J.P. Magnetic alignment of rotating black holes and accretion discs. Astron. Astrophys. 1977, 58, 175. [Google Scholar]
- Daly, R.A.; Donahue, M.; O’Dea, C.P.; Sebastian, B.; Haggard, D.; Lu, A. New black hole spin values for Sagittarius A* obtained with the outflow method. Mon. Not. R. Astron. Soc. 2024, 527, 428. [Google Scholar] [CrossRef]
- Kis-Tóth, Á.; Haiman, Z.; Frei, Z. Can quasars, triggered by mergers, account for NANOGrav’s stochastic gravitational wave background? Class. Quantum Gravity 2025, 42, 5007. [Google Scholar] [CrossRef]
- Agazie, G. et al. [Nanograv Collaboration] The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophys. J. Lett. 2023, 952, L37. [Google Scholar] [CrossRef]
- Agazie, G. et al. [Nanograv Collaboration] The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. [Google Scholar] [CrossRef]
- Antoniadis, J. et al. [EPTA Collaboration and InPTA Collaboration] The second data release from the European Pulsar Timing Array. Astron. Astrophys. 2023, 678, A50. [Google Scholar]
- Reardon, D.J.; Zic, A.; Shannon, R.M.; Hobbs, G.B.; Bailes, M.; Di Marco, V.; Kapur, A.; Rogers, A.F.; Thrane, E.; Askew, J.; et al. Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 2023, 951, L6. [Google Scholar] [CrossRef]
- Xu, H.; Chen, S.; Guo, Y.; Jiang, J.; Wang, B.; Xu, J.; Xue, Z.; Nicolas Caballero, R.; Yuan, J.; Xu, Y.; et al. Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I. Res. Astron. Astrophys. 2023, 23, 075024. [Google Scholar] [CrossRef]
- Gergely, L.Á.; Biermann, P.L. Supermassive binary black hole mergers. J. Phys. Conf. Ser. 2008, 122, 012040. [Google Scholar] [CrossRef]
- Daly, R.A. Estimates of black hole spin properties of 55 sources. Mon. Not. R. Astron. Soc. 2011, 414, 1253. [Google Scholar] [CrossRef]
- Donahue, M.; Voit, M. Baryon cycles in the biggest galaxies. Phys. Rep. 2022, 973, 1. [Google Scholar] [CrossRef]
- Heckman, T.M.; Best, P.N. A Global Inventory of Feedback. Galaxies 2023, 11, 21. [Google Scholar] [CrossRef]
- Merloni, A.; Heinz, S. Measuring the kinetic power of active galactic nuclei in the radio mode. Mon. Not. R. Astron. Soc. 2007, 381, 589. [Google Scholar] [CrossRef]
- Daly, R.A. Black hole mass accretion rates and efficiency factors for over 750 AGN and multiple GBH. Mon. Not. R. Astron. Soc. 2021, 500, 215. [Google Scholar] [CrossRef]
- Daly, R.A.; Stout, D.A.; Mysliwiec, J.N. A Fundamental Line of Black Hole Activity. Astrophys. J. 2018, 863, 117. [Google Scholar] [CrossRef]
- Daly, R.A.; Sprinkle, T.B. Black hole spin properties of 130 AGN. Mon. Not. R. Astron. Soc. 2014, 438, 3233. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daly, R.A. Powerful Radio Sources as Probes of Black Hole Physics. Universe 2025, 11, 267. https://doi.org/10.3390/universe11080267
Daly RA. Powerful Radio Sources as Probes of Black Hole Physics. Universe. 2025; 11(8):267. https://doi.org/10.3390/universe11080267
Chicago/Turabian StyleDaly, Ruth A. 2025. "Powerful Radio Sources as Probes of Black Hole Physics" Universe 11, no. 8: 267. https://doi.org/10.3390/universe11080267
APA StyleDaly, R. A. (2025). Powerful Radio Sources as Probes of Black Hole Physics. Universe, 11(8), 267. https://doi.org/10.3390/universe11080267