Probing Dark Photons Through Gravitational Decoupling of Mass-State Oscillations in Interstellar Media
Abstract
:1. Introduction
2. The Oscillation Model
3. Example of Gravitational Lensing Quasar Scheme
4. Results and Discussions
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SM | Standard Model |
BSM | beyond-the-Standard-Model |
CMB | cosmic microwave background |
LSW | light-shining-through-wall experiment |
AGN | active galactic nucleus |
Appendix A. Deflection Angle Between Photon and Dark Photon
Appendix A.1. Calculation Basis
Appendix A.2. Deflection of Massless Particle (Photon)
Appendix A.3. Deflection of Massive Particle
Appendix A.4. The Differential Angular Deflection
References
- Feng, L.; Yang, R.Z.; He, H.N.; Dong, T.K.; Fan, Y.Z.; Chang, J. AMS-02 positron excess: New bounds on dark matter models and hint for primary electron spectrum hardening. Phys. Lett. B 2014, 728, 250–255. [Google Scholar]
- Holdom, B. Two U (1)’s and epsilon charge shifts. Phys. Lett. B 1986, 166, 196–198. [Google Scholar]
- Okun, L.B. Limits of Electrodynamics: Paraphotons; Technical Report; Gosudarstvennyj Komitet po Ispol’zovaniyu Atomnoj Ehnergii SSSR: Moscow, Russia, 1982. [Google Scholar]
- Redondo, J. Helioscope bounds on hidden sector photons. J. Cosmol. Astropart. Phys. 2008, 2008, 8. [Google Scholar]
- Barducci, D.; Bertuzzo, E.; Grilli di Cortona, G.; Salla, G.M. Dark photon bounds in the dark EFT. J. High Energy Phys. 2021, 2021, 1–20. [Google Scholar] [CrossRef]
- Jaeckel, J.; Redondo, J.; Ringwald, A. Signatures of a hidden cosmic microwave background. Phys. Rev. Lett. 2008, 101, 131801. [Google Scholar] [CrossRef]
- Danilov, M.; Demidov, S.; Gorbunov, D. Constraints on hidden photons produced in nuclear reactors. Phys. Rev. Lett. 2019, 122, 041801. [Google Scholar]
- An, H.; Pospelov, M.; Pradler, J. New stellar constraints on dark photons. Phys. Lett. B 2013, 725, 190–195. [Google Scholar]
- Mirizzi, A.; Redondo, J.; Sigl, G. Microwave background constraints on mixing of photons with hidden photons. J. Cosmol. Astropart. Phys. 2009, 2009, 26. [Google Scholar]
- McDermott, S.D.; Witte, S.J. Cosmological evolution of light dark photon dark matter. Phys. Rev. D 2020, 101, 063030. [Google Scholar] [CrossRef]
- Caputo, A.; Liu, H.; Mishra-Sharma, S.; Ruderman, J.T. Dark photon oscillations in our inhomogeneous universe. Phys. Rev. Lett. 2020, 125, 221303. [Google Scholar]
- García, A.A.; Bondarenko, K.; Ploeckinger, S.; Pradler, J.; Sokolenko, A. Effective photon mass and (dark) photon conversion in the inhomogeneous Universe. J. Cosmol. Astropart. Phys. 2020, 2020, 011. [Google Scholar]
- Ahlers, M.; Gies, H.; Jaeckel, J.; Redondo, J.; Ringwald, A. Laser experiments explore the hidden sector. Phys. Rev. D—Part. Fields Gravit. Cosmol. 2008, 77, 095001. [Google Scholar]
- Redondo, J.; Raffelt, G. Solar constraints on hidden photons re-visited. J. Cosmol. Astropart. Phys. 2013, 2013, 034. [Google Scholar]
- An, H.; Pospelov, M.; Pradler, J.; Ritz, A. Direct detection constraints on dark photon dark matter. Phys. Lett. B 2015, 747, 331–338. [Google Scholar]
- Liu, X.H.; Li, Z.H.; Qi, J.Z.; Zhang, X. Galaxy-scale test of general relativity with strong gravitational lensing. Astrophys. J. 2022, 927, 28. [Google Scholar]
- Reyes, R.; Mandelbaum, R.; Seljak, U.; Baldauf, T.; Gunn, J.E.; Lombriser, L.; Smith, R.E. Confirmation of general relativity on large scales from weak lensing and galaxy velocities. Nature 2010, 464, 256–258. [Google Scholar]
- Grespan, M.; Biesiada, M. Strong gravitational lensing of gravitational waves: A review. Universe 2023, 9, 200. [Google Scholar] [CrossRef]
- Osłowski, S.; Moderski, R.; Bulik, T.; Belczynski, K. Gravitational lensing as a probe of compact object populations in the Galaxy. Astron. Astrophys. 2008, 478, 429–434. [Google Scholar]
- Wen, D.; Kemball, A.J. Testing Primordial Black Hole Dark Matter with Atacama Large Millimeter Array Observations of the Gravitational Lens B1422+ 231. Universe 2024, 10, 37. [Google Scholar] [CrossRef]
- Zumalacarregui, M.; Seljak, U. Limits on stellar-mass compact objects as dark matter from gravitational lensing of type Ia supernovae. Phys. Rev. Lett. 2018, 121, 141101. [Google Scholar]
- Swami, H.; Lochan, K.; Patel, K.M. Signature of neutrino mass hierarchy in gravitational lensing. Phys. Rev. D 2020, 102, 024043. [Google Scholar] [CrossRef]
- Glicenstein, J.F. Gravitational lensing of photons coupled to massive particles. Phys. Rev. D 2018, 97, 083005. [Google Scholar] [CrossRef]
- Fomalont, E.; Kopeikin, S.; Lanyi, G.; Benson, J. Progress in measurements of the gravitational bending of radio waves using the VLBA. Astrophys. J. 2009, 699, 1395. [Google Scholar] [CrossRef]
- Park, H. Detecting dark photons with reactor neutrino experiments. Phys. Rev. Lett. 2017, 119, 081801. [Google Scholar] [CrossRef]
- An, H.; Pospelov, M.; Pradler, J. Dark matter detectors as dark photon helioscopes. Phys. Rev. Lett. 2013, 111, 041302. [Google Scholar] [CrossRef] [PubMed]
- Donges, A. The coherence length of black-body radiation. Eur. J. Phys. 1998, 19, 245. [Google Scholar] [CrossRef]
- Gaston, B. Luminosity function of high-redshift quasars. Astrophys. J. 1983, 272, 411–433. [Google Scholar] [CrossRef]
- Notini, P.; Richter, G. Luminosity Functions of Quasars and Seyfert Galaxies. Astron. Nachrichten 1972, 294, 95–104. [Google Scholar] [CrossRef]
- Pei, Y.C. The luminosity function of quasars. Astrophys. J. 1995, 438, 623–631. [Google Scholar] [CrossRef]
- Hawkins, M.; Veron, P. The evolution of the quasar luminosity function. Mon. Not. R. Astron. Soc. 1995, 275, 1102–1116. [Google Scholar] [CrossRef]
- Lobanov, A.P.; Zechlin, H.S.; Horns, D. Astrophysical searches for a hidden-photon signal in the radio regime. Phys. Rev. D—Part. Fields Gravit. Cosmol. 2013, 87, 065004. [Google Scholar]
- Marocco, G. Dark photon limits from magnetic fields and astrophysical plasmas. arXiv 2021, arXiv:2110.02875. [Google Scholar]
- Yan, S.; Li, L.; Fan, J. Constraints on photon mass and dark photon from the Jovian magnetic field. J. High Energy Phys. 2024, 2024, 28. [Google Scholar] [CrossRef]
- Fixsen, D.J.; Cheng, E.; Gales, J.; Mather, J.C.; Shafer, R.; Wright, E. The cosmic microwave background spectrum from the full cobe* firas data set. Astrophys. J. 1996, 473, 576. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Luo, C.-B. Probing Dark Photons Through Gravitational Decoupling of Mass-State Oscillations in Interstellar Media. Universe 2025, 11, 115. https://doi.org/10.3390/universe11040115
Zhang B, Luo C-B. Probing Dark Photons Through Gravitational Decoupling of Mass-State Oscillations in Interstellar Media. Universe. 2025; 11(4):115. https://doi.org/10.3390/universe11040115
Chicago/Turabian StyleZhang, Bo, and Cui-Bai Luo. 2025. "Probing Dark Photons Through Gravitational Decoupling of Mass-State Oscillations in Interstellar Media" Universe 11, no. 4: 115. https://doi.org/10.3390/universe11040115
APA StyleZhang, B., & Luo, C.-B. (2025). Probing Dark Photons Through Gravitational Decoupling of Mass-State Oscillations in Interstellar Media. Universe, 11(4), 115. https://doi.org/10.3390/universe11040115