Protoplanet and Proto-Brown Dwarf Clumps in Gravitationally Unstable Protoplanetary Disks of Various Metallicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrodynamic Model
2.2. Initial Conditions
2.3. Numerical Resolution and Solution Method
2.4. Clump Identification Algorithm
2.5. Energy Calculation
3. Results
3.1. Global Disk Evolution
3.2. Clump Occurrence vs. Time
3.3. Radial Distance to the Clumps
3.4. Probability Density Distributions of Energies
3.5. Ratios of the Energies
3.6. Mass Spectra of Bound Clumps
3.7. Central Temperatures of Bound Clumps
4. Discussion
5. Conclusions
- The disk fragmentation phase starts earlier and lasts shorter in the lowest metallicity model (0.01 ). The number of clumps at a time in the disk of this model is also lowest.
- Most clumps in models with Z = 1.0 and 0.1 Z⊙ are located at 20–500 au with a peak at 200–300 au. The peak in the clump locations in the lowest metallicity model is shifted to 50–200 au, reflecting a more compact nature of the corresponding disk.
- Clumps are supported against self-gravity mostly by pressure, with a lesser input from rotation. The input of rotation to the clump energetics slightly increases with lowering metallicity.
- Only about 7–14% of the clumps are gravitationally bound, meaning that the gravitational energy is greater than the sum of the rotational and thermal energies. The percentage of bound clumps is highest for the lowest metallicity case, but the absolute number of bound clumps is lowest because the Z = 0.01 Z⊙ disk features the least number of clumps.
- Masses of gravitationally bound clumps in the Z = 1.0 Z⊙ model lie in 1.7–30 limits, with most clump masses corresponding to upper-mass giant planets, 6–10 MJup. In the Z = 0.1 Z⊙ model, the proto-brown dwarf tail extends to 70 , whereas the lowest metallicity model yields almost no proto-brown dwarfs. The peak in the bound clump mass distribution in both low metallicity models seems to shift to slightly lower values, ≈4–6 .
- The central temperatures of bound clumps do not reach the dissociation temperature of molecular hydrogen and are limited by 320–1000 K depending on the metallicity, implying slow contraction towards proto-planetary densities rather than fast collapse due to H2O dissociation. This result may, however, be affected by moderate numerical resolution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The Pisa PMS Evolutionary Tracks. Available online: http://astro.df.unipi.it/stellar-models/ (accessed on 22 March 2025). |
References
- Shu, F.H. Self-similar collapse of isothermal spheres and star formation. Astrophysical 1977, 214, 488–497. [Google Scholar] [CrossRef]
- Larson, R.B. Cloud fragmentation and stellar masses. Mon. Not. R. Astron. Soc. 1985, 214, 379–398. [Google Scholar] [CrossRef]
- Padoan, P.; Nordlund, Å. The “Mysterious” Origin of Brown Dwarfs. Astrophysical 2004, 617, 559–564. [Google Scholar] [CrossRef]
- Whitworth, A.P.; Zinnecker, H. The formation of free-floating brown dwarves and planetary-mass objects by photo-erosion of prestellar cores. Astron. Astrophys. 2004, 427, 299–306. [Google Scholar] [CrossRef]
- Pollack, J.B.; Hubickyj, O.; Bodenheimer, P.; Lissauer, J.J.; Podolak, M.; Greenzweig, Y. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas. Icarus 1996, 124, 62–85. [Google Scholar] [CrossRef]
- Stökl, A.; Dorfi, E.A.; Johnstone, C.P.; Lammer, H. Dynamical Accretion of Primordial Atmospheres around Planets with Masses between 0.1 and 5 M ⊕ in the Habitable Zone. Astrophys. J. 2016, 825, 86. [Google Scholar] [CrossRef]
- Jin, L.; Li, M. Diversity of Extrasolar Planets and Diversity of Molecular Cloud Cores. I. Semimajor Axes. Astrophys. J. 2014, 783, 37. [Google Scholar] [CrossRef]
- Haghighipour, N.; Podolak, M.; Podolak, E. Detailed Calculations of the Efficiency of Planetesimal Accretion in the Core-accretion Model. II. The Effect of Saturn. Astrophys. J. 2022, 941, 117. [Google Scholar] [CrossRef]
- Ida, S.; Lin, D.N.C. Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets. Astrophys. J. 2004, 604, 388–413. [Google Scholar] [CrossRef]
- Mordasini, C.; Alibert, Y.; Klahr, H.; Henning, T. Characterization of exoplanets from their formation. I. Models of combined planet formation and evolution. Astron. Astrophys. 2012, 547, A111. [Google Scholar] [CrossRef]
- Cameron, A.G.W. Physics of the Primitive Solar Accretion Disk. Moon Planets 1978, 18, 5–40. [Google Scholar] [CrossRef]
- Mayer, L.; Quinn, T.; Wadsley, J.; Stadel, J. Formation of Giant Planets by Fragmentation of Protoplanetary Disks. Science 2002, 298, 1756–1759. [Google Scholar] [CrossRef] [PubMed]
- Boley, A.C. The Two Modes of Gas Giant Planet Formation. Astrophys. J. 2009, 695, L53–L57. [Google Scholar] [CrossRef]
- Vorobyov, E.I. Formation of giant planets and brown dwarfs on wide orbits. Astron. Astrophys. 2013, 552, A129. [Google Scholar] [CrossRef]
- Jin, L.; Liu, F.; Jiang, T.; Tang, P.; Yang, J. An Investigation of Fragmentation in the Disk Instability Model for Giant Planet Formation. Astrophys. J. 2020, 904, 55. [Google Scholar] [CrossRef]
- Nayakshin, S. Formation of planets by tidal downsizing of giant planet embryos. Mon. Not. R. Astron. Soc. 2010, 408, L36–L40. [Google Scholar] [CrossRef]
- Cai, K.; Durisen, R.H.; Michael, S.; Boley, A.C.; Mejía, A.C.; Pickett, M.K.; D’Alessio, P. The Effects of Metallicity and Grain Size on Gravitational Instabilities in Protoplanetary Disks. Astrophys. J. 2006, 636, L149–L152. [Google Scholar] [CrossRef]
- Machida, M.N. Binary Formation in Star-forming Clouds with Various Metallicities. Astrophys. J. 2008, 682, L1. [Google Scholar] [CrossRef]
- Matsukoba, R.; Tanaka, K.E.I.; Omukai, K.; Vorobyov, E.I.; Hosokawa, T. Protostellar-disc fragmentation across all metallicities. Mon. Not. R. Astron. Soc. 2022, 515, 5506–5522. [Google Scholar] [CrossRef]
- Boss, A.P. Stellar Metallicity and the Formation of Extrasolar Gas Giant Planets. Astrophys. J. 2002, 567, L149–L153. [Google Scholar] [CrossRef]
- Mayer, L.; Lufkin, G.; Quinn, T.; Wadsley, J. Fragmentation of Gravitationally Unstable Gaseous Protoplanetary Disks with Radiative Transfer. Astrophys. J. 2007, 661, L77–L80. [Google Scholar] [CrossRef]
- Matsukoba, R.; Vorobyov, E.I.; Hosokawa, T.; Guedel, M. Formation of a wide-orbit giant planet in a gravitationally unstable subsolar-metallicity protoplanetary disc. Mon. Not. R. Astron. Soc. 2023, 526, 3933–3943. [Google Scholar] [CrossRef]
- Fischer, D.A.; Valenti, J. The Planet-Metallicity Correlation. Astrophys. J. 2005, 622, 1102–1117. [Google Scholar] [CrossRef]
- Santos, N.C.; Adibekyan, V.; Figueira, P.; Andreasen, D.T.; Barros, S.C.C.; Delgado-Mena, E.; Demangeon, O.; Faria, J.P.; Oshagh, M.; Sousa, S.G.; et al. Observational evidence for two distinct giant planet populations. Astron. Astrophys. 2017, 603, A30. [Google Scholar] [CrossRef]
- Narang, M.; Manoj, P.; Furlan, E.; Mordasini, C.; Henning, T.; Mathew, B.; Banyal, R.K.; Sivarani, T. Properties and Occurrence Rates for Kepler Exoplanet Candidates as a Function of Host Star Metallicity from the DR25 Catalog. Astron. J. 2018, 156, 221. [Google Scholar] [CrossRef]
- Vorobyov, E.I.; Matsukoba, R.; Omukai, K.; Guedel, M. Thermal evolution of protoplanetary disks: From β-cooling to decoupled gas and dust temperatures. arXiv 2020, arXiv:2004.13561. [Google Scholar]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Zhu, Z.; Jiang, Y.F.; Stone, J.M. Global 3-D Radiation Magnetohydrodynamic Simulations for FU Ori’s Accretion Disk and Observational Signatures of Magnetic Fields. arXiv 2019, arXiv:1912.01632. [Google Scholar]
- Rosotti, G.P. Empirical constraints on turbulence in proto-planetary discs. New Astron. Rev. 2023, 96, 101674. [Google Scholar] [CrossRef]
- Vorobyov, E.I.; Basu, S. The Burst Mode of Accretion and Disk Fragmentation in the Early Embedded Stages of Star Formation. Astrophys. J. 2010, 719, 1896–1911. [Google Scholar] [CrossRef]
- Lin, Z.Y.D.; Li, Z.Y.; Tobin, J.J.; Ohashi, N.; Jørgensen, J.K.; Looney, L.W.; Aso, Y.; Takakuwa, S.; Aikawa, Y.; van’t Hoff, M.L.R.; et al. Early Planet Formation in Embedded Disks (eDisk). II. Limited Dust Settling and Prominent Snow Surfaces in the Edge-on Class I Disk IRAS 04302+2247. Astrophys. J. 2023, 951, 9. [Google Scholar] [CrossRef]
- Vorobyov, E.I.; Basu, S. Secular evolution of viscous and self-gravitating circumstellar discs. Mon. Not. R. Astron. Soc. 2009, 393, 822–837. [Google Scholar] [CrossRef]
- Yorke, H.W.; Bodenheimer, P. Theoretical Developments in Understanding Massive Star Formation. In Proceedings of the Massive Star Formation: Observations Confront Theory, Heidelberg, Germany, 10–14 September 2007; Beuther, H., Linz, H., Henning, T., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2008; Volume 387, p. 189. [Google Scholar]
- Hosokawa, T.; Yorke, H.W.; Inayoshi, K.; Omukai, K.; Yoshida, N. Formation of Primordial Supermassive Stars by Rapid Mass Accretion. Astrophys. J. 2013, 778, 178. [Google Scholar] [CrossRef]
- Vorobyov, E.I.; Elbakyan, V.G.; Omukai, K.; Hosokawa, T.; Matsukoba, R.; Guedel, M. Accretion bursts in low-metallicity protostellar disks. Astron. Astrophys. 2020, 641, A72. [Google Scholar] [CrossRef]
- Gammie, C.F. Nonlinear Outcome of Gravitational Instability in Cooling, Gaseous Disks. Astrophys. J. 2001, 553, 174–183. [Google Scholar] [CrossRef]
- Rice, W.K.M.; Armitage, P.J.; Bate, M.R.; Bonnell, I.A. The effect of cooling on the global stability of self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 2003, 339, 1025–1030. [Google Scholar] [CrossRef]
- Semenov, D.; Henning, T.; Helling, C.; Ilgner, M.; Sedlmayr, E. Rosseland and Planck mean opacities for protoplanetary discs. Astron. Astrophys. 2003, 410, 611–621. [Google Scholar] [CrossRef]
- Pollack, J.B.; Hollenbach, D.; Beckwith, S.; Simonelli, D.P.; Roush, T.; Fong, W. Composition and Radiative Properties of Grains in Molecular Clouds and Accretion Disks. Astrophys. J. 1994, 421, 615. [Google Scholar] [CrossRef]
- Omukai, K. Protostellar Collapse with Various Metallicities. Astrophys. J. 2000, 534, 809–824. [Google Scholar] [CrossRef]
- Basu, S. A Semianalytic Model for Supercritical Core Collapse: Self-Similar Evolution and the Approach to Protostar Formation. Astrophys. J. 1997, 485, 240–253. [Google Scholar] [CrossRef]
- Truelove, J.K.; Klein, R.I.; McKee, C.F.; Holliman, J.H., II; Howell, L.H.; Greenough, J.A.; Woods, D.T. Self-gravitational Hydrodynamics with Three-dimensional Adaptive Mesh Refinement: Methodology and Applications to Molecular Cloud Collapse and Fragmentation. Astrophys. J. 1998, 495, 821–852. [Google Scholar] [CrossRef]
- Vorobyov, E.I.; Akimkin, V.; Stoyanovskaya, O.; Pavlyuchenkov, Y.; Liu, H.B. Early evolution of viscous and self-gravitating circumstellar disks with a dust component. Astron. Astrophys. 2018, 614, A98. [Google Scholar] [CrossRef]
- Stone, J.M.; Norman, M.L. ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. I. The Hydrodynamic Algorithms and Tests. Astrophys. J. 1992, 80, 753. [Google Scholar] [CrossRef]
- Colella, P.; Woodward, P.R. The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. J. Comput. Phys. 1984, 54, 174–201. [Google Scholar] [CrossRef]
- Norman, M.L.; Wilson, J.R.; Barton, R.T. A new calculation on rotating protostar collapse. Astrophys. J. 1980, 239, 968–981. [Google Scholar] [CrossRef]
- Federrath, C.; Banerjee, R.; Clark, P.C.; Klessen, R.S. Modeling Collapse and Accretion in Turbulent Gas Clouds: Implementation and Comparison of Sink Particles in AMR and SPH. Astrophys. J. 2010, 713, 269–290. [Google Scholar] [CrossRef]
- Masunaga, H.; Inutsuka, S.i. A Radiation Hydrodynamic Model for Protostellar Collapse. II. The Second Collapse and the Birth of a Protostar. Astrophys. J. 2000, 531, 350–365. [Google Scholar] [CrossRef]
- Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 1964, 139, 1217–1238. [Google Scholar] [CrossRef]
- Polyachenko, V.L.; Polyachenko, E.V.; Strel’Nikov, A.V. Stability criteria for gaseous self-gravitating disks. Astron. Lett. 1997, 23, 483–491. [Google Scholar]
- Takahashi, S.Z.; Tsukamoto, Y.; Inutsuka, S. A revised condition for self-gravitational fragmentation of protoplanetary discs. Mon. Not. R. Astron. Soc. 2016, 458, 3597–3612. [Google Scholar] [CrossRef]
- Zhu, Z.; Hartmann, L.; Nelson, R.P.; Gammie, C.F. Challenges in Forming Planets by Gravitational Instability: Disk Irradiation and Clump Migration, Accretion, and Tidal Destruction. Astrophys. J. 2012, 746, 110. [Google Scholar] [CrossRef]
- Basu, S.; Vorobyov, E.I. A Hybrid Scenario for the Formation of Brown Dwarfs and Very Low Mass Stars. Astrophys. J. 2012, 750, 30. [Google Scholar] [CrossRef]
- Fischer, W.J.; Hillenbrand, L.A.; Herczeg, G.J.; Johnstone, D.; Kospal, A.; Dunham, M.M. Accretion Variability as a Guide to Stellar Mass Assembly. In Proceedings of the Protostars and Planets VII, Kyoto, Japan, 10–15 April 2023; Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K., Tamura, M., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2023; Volume 534, p. 355. [Google Scholar] [CrossRef]
- Nayakshin, S. Dawes Review 7: The Tidal Downsizing Hypothesis of Planet Formation. Publ. Astron. Soc. Aust. 2017, 34, e002. [Google Scholar] [CrossRef]
- Vorobyov, E.I.; Elbakyan, V.G. Gravitational fragmentation and formation of giant protoplanets on orbits of tens of au. Astron. Astrophys. 2018, 618, A7. [Google Scholar] [CrossRef]
- Forgan, D.; Rice, K. The Jeans mass as a fundamental measure of self-gravitating disc fragmentation and initial fragment mass. Mon. Not. R. Astron. Soc. 2011, 417, 1928–1937. [Google Scholar] [CrossRef]
- Boley, A.C.; Hayfield, T.; Mayer, L.; Durisen, R.H. Clumps in the outer disk by disk instability: Why they are initially gas giants and the legacy of disruption. Icarus 2010, 207, 509–516. [Google Scholar] [CrossRef]
- Helled, R.; Bodenheimer, P. The effects of metallicity and grain growth and settling on the early evolution of gaseous protoplanets. Icarus 2011, 211, 939–947. [Google Scholar] [CrossRef]
- Kratter, K.M.; Matzner, C.D.; Krumholz, M.R. Global Models for the Evolution of Embedded, Accreting Protostellar Disks. Astrophys. J. 2008, 681, 375–390. [Google Scholar] [CrossRef]
- Bowler, B.P. Imaging Extrasolar Giant Planets. Publ. Astron. Soc. Pac. 2016, 128, 102001. [Google Scholar] [CrossRef]
- Vigan, A.; Fontanive, C.; Meyer, M.; Biller, B.; Bonavita, M.; Feldt, M.; Desidera, S.; Marleau, G.D.; Emsenhuber, A.; Galicher, R.; et al. The SPHERE infrared survey for exoplanets (SHINE). III. The demographics of young giant exoplanets below 300 au with SPHERE. Astron. Astrophys. 2021, 651, A72. [Google Scholar] [CrossRef]
- Mercer, A.; Stamatellos, D. The effect of radiative feedback on disc fragmentation. Mon. Not. R. Astron. Soc. 2017, 465, 2–18. [Google Scholar] [CrossRef]
- Machida, M.N.; Inutsuka, S.i.; Matsumoto, T. Recurrent Planet Formation and Intermittent Protostellar Outflows Induced by Episodic Mass Accretion. Astrophys. J. 2011, 729, 42. [Google Scholar] [CrossRef]
Model | Metallicity | |||||||
---|---|---|---|---|---|---|---|---|
[] | [] | [] | [au] | [] | [pc] | [K] | [] | |
Z1.0 | 1.0 | 0.88 | 2.2 | 1560 | 0.09 | 0.05 | 10.1 | 0.48 |
Z0.1 | 0.1 | 1.05 | 2.2 | 1720 | 0.1 | 0.05 | 12.2 | 0.465 |
Z0.01 | 0.01 | 1.04 | 3.8 | 610 | 0.7 | 0.019 | 30.3 | 0.63 |
Z | Clumps | Bound | Gravit. Dom. | Thermally Dom. | Rotationally Dom. | Else |
---|---|---|---|---|---|---|
1.0 | 850 | 8.59% | 47.12% | 51.33% | 1.05% | 0.50% |
0.1 | 1149 | 6.82% | 57.98% | 32.47% | 7.68% | 1.87% |
0.01 | 197 | 14.24% | 63.75% | 31.39% | 3.24% | 1.62% |
Z | Clumps | Bound | Gravit. Dom. | Thermally Dom. | Rotationally Dom. | Else |
---|---|---|---|---|---|---|
1.0 | 850 | 73 | 401 | 436 | 9 | 4 |
0.1 | 1149 | 78 | 666 | 373 | 88 | 22 |
0.01 | 197 | 28 | 126 | 62 | 6 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorobyov, E.; Schoenhacker, C. Protoplanet and Proto-Brown Dwarf Clumps in Gravitationally Unstable Protoplanetary Disks of Various Metallicity. Universe 2025, 11, 116. https://doi.org/10.3390/universe11040116
Vorobyov E, Schoenhacker C. Protoplanet and Proto-Brown Dwarf Clumps in Gravitationally Unstable Protoplanetary Disks of Various Metallicity. Universe. 2025; 11(4):116. https://doi.org/10.3390/universe11040116
Chicago/Turabian StyleVorobyov, Eduard, and Carina Schoenhacker. 2025. "Protoplanet and Proto-Brown Dwarf Clumps in Gravitationally Unstable Protoplanetary Disks of Various Metallicity" Universe 11, no. 4: 116. https://doi.org/10.3390/universe11040116
APA StyleVorobyov, E., & Schoenhacker, C. (2025). Protoplanet and Proto-Brown Dwarf Clumps in Gravitationally Unstable Protoplanetary Disks of Various Metallicity. Universe, 11(4), 116. https://doi.org/10.3390/universe11040116