Broad Observational Perspectives Achieved by the Accreting White Dwarf Sciences in the XMM-Newton and Chandra Eras
Abstract
:1. Introduction
1.1. A Brief History of X-Ray Astronomy
1.2. The XMM-Newton Mission
1.3. The Chandra X-Ray Observatory
2. Cataclysmic Variables
2.1. The Achievements of Chandra
2.1.1. Nonmagnetic CVs
2.1.2. Magnetic CVs
2.1.3. Detection of Old Novae and Their Shells
2.1.4. Resolved CV Populations in Globular Clusters and Surveys
2.2. Fundamental XMM-Newton Contributions
2.2.1. Nonmagnetic CVs
2.2.2. Supersoft X-Ray Sources
2.2.3. Magnetic CVs
2.2.4. CV/MCV Populations and Surveys
3. AM CVn Systems
4. WD Symbiotics
Symbiotic Binaries in the Era of XMM-Newton and Chandra
5. Novae in Outburst
5.1. The High-Resolution Spectra: The Shocks Phase
5.2. The XMM-Newton RGS, Chandra LETG Grating Spectra: The Central White Dwarf as a Luminous Supersoft X-Ray Source
5.3. The Surprising Light Curves
5.4. The Return to Quiescence
6. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
1 | |
2 | |
3 | |
4 | G = (f + i)/r; “f” is the forbidden, “i” is the intercombination and “r” stands for the resonance line of the triplet emission where G-ratio reveals the electron temperatures and ionization condition in the plasma. |
5 | |
6 | |
7 | |
8 | This is the reflection scaling factor parameter of the reflect model in XSPEC. It is a convolution model for reflection from neutral material according to the method of [57]. The X-ray emission from magnetic CVs can change as a result of the reflection effect from the WD surface or accretion curtain which can cause a Compton Hump in the range of 10-30 keV, and the fluorescent Fe K emission line at 6.4 keV [58]. For example, a tall accretion column reduces the solid angle of the WD, reducing also the Compton hump at large viewing angles, which can explain the low reflection amplitudes less than 1. |
9 | |
10 | |
11 | Ongoing accretion at a low rate (quiescence) is interrupted every few weeks to months or sometimes longer durations by intense accretion (outburst) of days to weeks where increases. Super-outbursts are observed in some DNe which are rarer and occur with larger magnitude differences between the quiescence and outburst. |
12 | We note that the blackbody emission in the DN-like outburst of symbiotic system T CrB was detected with XMM-Newton. |
13 | |
14 | https://sirrah.troja.mff.cuni.cz/~merc/nodsv/utilities/x-rays.html, (accessed on 24 February 2025) |
15 | A small fraction ~10% of symbiotic stars undergo very slow and long lasting nova outburst (several decades to a century) [249]. |
16 |
References
- Jansen, F.; Lumb, D.; Altieri, B.; Clavel, J.; Ehle, M.; Erd, C.; Gabriel, C.; Guainazzi, M.; Gondoin, P.; Much, R.; et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 2001, 365, L1–L6. [Google Scholar] [CrossRef]
- Turner, M.J.L.; Abbey, A.; Arnaud, M.; Balasini, M.; Barbera, M.; Belsole, E.; Bennie, P.J.; Bernard, J.P.; Bignami, G.F.; Boer, M.; et al. The European Photon Imaging Camera on XMM-Newton: The MOS cameras. Astron. Astrophys. 2001, 365, L27–L35. [Google Scholar] [CrossRef]
- Strüder, L.; Briel, U.; Dennerl, K.; Hartmann, R.; Kendziorra, E.; Meidinger, N.; Pfeffermann, E.; Reppin, C.; Aschenbach, B.; Bornemann, W.; et al. The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera. Astron. Astrophys. 2001, 365, L18–L26. [Google Scholar] [CrossRef]
- den Herder, J.W.; Brinkman, A.C.; Kahn, S.M.; Branduardi-Raymont, G.; Thomsen, K.; Aarts, H.; Audard, M.; Bixler, J.V.; den Boggende, A.J.; Cottam, J.; et al. The Reflection Grating Spectrometer on board XMM-Newton. Astron. Astrophys. 2001, 365, L7–L17. [Google Scholar] [CrossRef]
- Mason, K.O.; Breeveld, A.; Much, R.; Carter, M.; Cordova, F.A.; Cropper, M.S.; Fordham, J.; Huckle, H.; Ho, C.; Kawakami, H.; et al. The XMM-Newton optical/UV monitor telescope. Astron. Astrophys. 2001, 365, L36–L44. [Google Scholar] [CrossRef]
- Weisskopf, M.C.; Brinkman, B.; Canizares, C.; Garmire, G.; Murray, S.; Van Speybroeck, L.P. An Overview of the Performance and Scientific Results from the Chandra X-Ray Observatory. Publ. Astron. Soc. Pac. 2002, 114, 1–24. [Google Scholar] [CrossRef]
- Canizares, C.R.; Davis, J.E.; Dewey, D.; Flanagan, K.A.; Galton, E.B.; Huenemoerder, D.P.; Ishibashi, K.; Markert, T.H.; Marshall, H.L.; McGuirk, M.; et al. The Chandra High-Energy Transmission Grating: Design, Fabrication, Ground Calibration, and 5 Years in Flight. Publ. Astron. Soc. Pac. 2005, 117, 1144–1171. [Google Scholar] [CrossRef]
- Brinkman, B.C.; Gunsing, T.; Kaastra, J.S.; van der Meer, R.; Mewe, R.; Paerels, F.B.; Raassen, T.; van Rooijen, J.; Braeuninger, H.W.; Burwitz, V.; et al. Description and performance of the low-energy transmission grating spectrometer on board Chandra. In Proceedings of the X-Ray Optics, Instruments, and Missions III; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Truemper, J.E., Aschenbach, B., Eds.; SPIE: Bellingham, DC, USA, 2000; Volume 4012, pp. 81–90. [Google Scholar] [CrossRef]
- Garmire, G.P.; Bautz, M.W.; Ford, P.G.; Nousek, J.A.; Ricker, G.R., Jr. Advanced CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory. In Proceedings of the X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Truemper, J.E., Tananbaum, H.D., Eds.; SPIE: Bellingham, DC, USA, 2003; Volume 4851, pp. 28–44. [Google Scholar] [CrossRef]
- Murray, S.S.; Austin, G.K.; Chappell, J.H.; Gomes, J.J.; Kenter, A.T.; Kraft, R.P.; Meehan, G.R.; Zombeck, M.V.; Fraser, G.W.; Serio, S. In-flight performance of the Chandra high-resolution camera. In Proceedings of the X-Ray Optics, Instruments, and Missions III; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Truemper, J.E., Aschenbach, B., Eds.; SPIE: Bellingham, DC, USA, 2000; Volume 4012, pp. 68–80. [Google Scholar] [CrossRef]
- Warner, B. Cataclysmic variable stars. In Cambridge Astrophysics Series; Cambridge University Press: Cambridge, UK, 1995; Volume 28. [Google Scholar]
- Munari, U.; Moretti, S.; Maitan, A. The sustained post-outburst brightness of Nova Per 2018, the evolved companion, and the long orbital period. Astron. Astrophys. 2020, 639, L10. [Google Scholar] [CrossRef]
- Kolb, U.; Baraffe, I. Brown dwarfs and the cataclysmic variable period minimum. Mon. Not. R. Astron. Soc. 1999, 309, 1034–1042. [Google Scholar] [CrossRef]
- Howell, S.B.; Nelson, L.A.; Rappaport, S. An Exploration of the Paradigm for the 2-3 Hour Period Gap in Cataclysmic Variables. Astrophys. J. 2001, 550, 897–918. [Google Scholar] [CrossRef]
- McAllister, M.; Littlefair, S.P.; Parsons, S.G.; Dhillon, V.S.; Marsh, T.R.; Gänsicke, B.T.; Breedt, E.; Copperwheat, C.; Green, M.J.; Knigge, C. The evolutionary status of Cataclysmic Variables: Eclipse modelling of 15 systems. Mon. Not. R. Astron. Soc. 2019, 486, 5535–5551. [Google Scholar] [CrossRef]
- Mukai, K. X-Ray Emissions from Accreting White Dwarfs: A Review. Publ. Astron. Soc. Pac. 2017, 129, 062001. [Google Scholar] [CrossRef]
- Balman, Ş. Accretion flows in nonmagnetic white dwarf binaries as observed in X-rays. Adv. Space Res. 2020, 66, 1097–1122. [Google Scholar] [CrossRef]
- Page, K.L.; Shaw, A.W. X-Ray Emission Mechanisms in Accreting White Dwarfs. In Handbook of X-ray and Gamma-ray Astrophysics; Bambi, C., Sangangelo, A., Eds.; Springer Nature: Singapore, 2024; p. 107. [Google Scholar] [CrossRef]
- Schwope, A.D.; Beuermann, K.; Buckley, D.A.H.; Ciardi, D.; Cropper, M.; Horne, K.; Howell, S.; Mantel, K.H.; Metzner, A.; O’Brien, K.; et al. Polars-multisite emission-multiwavelength observation. In Proceedings of the Wild Stars in the Old West; Astronomical Society of the Pacific Conference Series; Howell, S., Kuulkers, E., Woodward, C., Eds.; Cambridge University Press: Cambridge, UK, 1998; Volume 137, p. 44. [Google Scholar]
- Hellier, C. The Accretion Geometry of Intermediate Polars. In Proceedings of the Magnetic Cataclysmic Variables; Astronomical Society of the Pacific Conference Series; Buckley, D.A.H., Warner, B., Eds.; Cambridge University Press: Cambridge, UK, 1995; Volume 85, p. 185. [Google Scholar]
- Norton, A.J.; Hellier, C.; Beardmore, A.P.; Wheatley, P.J.; Osborne, J.P.; Taylor, P. Stream-fed and disc-fed accretion in TX Columbae. Mon. Not. R. Astron. Soc. 1997, 289, 362–370. [Google Scholar] [CrossRef]
- de Martino, D.; Bernardini, F.; Mukai, K.; Falanga, M.; Masetti, N. Hard X-ray cataclysmic variables. Adv. Space Res. 2020, 66, 1209–1225. [Google Scholar] [CrossRef]
- Aizu, K. X-Ray Emission Region of a White Dwarf with Accretion. Prog. Theor. Phys. 1973, 49, 1184–1194. [Google Scholar] [CrossRef]
- Schwope, A.D.; Brunner, H.; Buckley, D.; Greiner, J.; Heyden, K.v.d.; Neizvestny, S.; Potter, S.; Schwarz, R. The census of cataclysmic variables in the ROSAT Bright Survey. Astron. Astrophys. 2002, 396, 895–910. [Google Scholar] [CrossRef]
- Evans, P.A.; Hellier, C. Why Do Some Intermediate Polars Show Soft X-Ray Emission? A Survey of XMM-Newton Spectra. Astrophys. J. 2007, 663, 1277–1284. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Reprint of 1973A&A....24..337S. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 500, 33–51. [Google Scholar]
- Lynden-Bell, D.; Pringle, J.E. The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc. 1974, 168, 603–637. [Google Scholar] [CrossRef]
- Narayan, R.; Popham, R. Hard X-rays from accretion disk boundary layers. Nature 1993, 362, 820–822. [Google Scholar] [CrossRef]
- Popham, R. A boundary layer origin for dwarf nova oscillations. Mon. Not. R. Astron. Soc. 1999, 308, 979–983. [Google Scholar] [CrossRef]
- Popham, R.; Narayan, R. Accretion Disk Boundary Layers in Cataclysmic Variables. I. Optically Thick Boundary Layers. Astrophys. J. 1995, 442, 337–357. [Google Scholar] [CrossRef]
- Godon, P.; Regev, O.; Shaviv, G. One-dimensional time-dependent numerical modelling of accretion disc boundary layers. Mon. Not. R. Astron. Soc. 1995, 275, 1093–1101. [Google Scholar] [CrossRef]
- Hertfelder, M.; Kley, W. Wave mediated angular momentum transport in astrophysical boundary layers. Astron. Astrophys. 2015, 579, A54–A72. [Google Scholar] [CrossRef]
- Puebla, R.E.; Diaz, M.P.; Hubeny, I. A Statistical Study of Accretion Disk Model Spectra for Cataclysmic Variables. Astron. J. 2007, 134, 1923–1933. [Google Scholar] [CrossRef]
- Linnell, A.P.; Godon, P.; Hubeny, I.; Sion, E.M.; Szkody, P. The Anomalous Accretion Disk of the Cataclysmic Variable RW Sextantis. Astrophys. J. 2010, 719, 271–286. [Google Scholar] [CrossRef]
- Godon, P.; Sion, E.M.; Balman, Ş.; Blair, W.P. Modifying the Standard Disk Model for the Ultraviolet Spectral Analysis of Disk-dominated Cataclysmic Variables. I. The Novalikes MV Lyrae, BZ Camelopardalis, and V592 Cassiopeiae. Astrophys. J. 2017, 846, 52–76. [Google Scholar] [CrossRef]
- Balman, Ş.; Revnivtsev, M. X-ray variations in the inner accretion flow of dwarf novae. Astron. Astrophys. 2012, 546, A112–A121. [Google Scholar] [CrossRef]
- Balman, Ş.; Schlegel, E.M.; Godon, P. Characterizing the Advective Hot Flows of Nova-like Cataclysmic Variables in the X-Rays: The Case of BZ Cam and V592 Cas. Astrophys. J. 2022, 932, 33. [Google Scholar] [CrossRef]
- Datta, S.R.; Dhang, P.; Mishra, B. Advective Accretion onto a Nonspherical Accretor in White Dwarf and Neutron Star Binaries: A New Scenario of Shock Formation. Astrophys. J. 2021, 918, 87. [Google Scholar] [CrossRef]
- Szkody, P.; Nishikida, K.; Raymond, J.C.; Seth, A.; Hoard, D.W.; Long, K.S.; Sion, E.M. Chandra Spectra of the Prototype Dwarf Nova U Geminorum at Quiescence. Astrophys. J. 2002, 574, 942–949. [Google Scholar] [CrossRef]
- Güver, T.; Uluyazı, C.; Özkan, M.T.; Göǧüs, E. X-ray spectral variations of U Gem from quiescence to outburst. Mon. Not. R. Astron. Soc. 2006, 372, 450–456. [Google Scholar] [CrossRef]
- Perna, R.; McDowell, J.; Menou, K.; Raymond, J.; Medvedev, M.V. Chandra Observations of the Dwarf Nova WX Hydri in Quiescence. Astrophys. J. 2003, 598, 545–552. [Google Scholar] [CrossRef]
- Mauche, C.W. Correlation of the Quasi-Periodic Oscillation Frequencies of White Dwarf, Neutron Star, and Black Hole Binaries. Astrophys. J. 2002, 580, 423–428. [Google Scholar] [CrossRef]
- Psaltis, D.; Belloni, T.; van der Klis, M. Correlations in Quasi-periodic Oscillation and Noise Frequencies among Neutron Star and Black Hole X-Ray Binaries. Astrophys. J. 1999, 520, 262–270. [Google Scholar] [CrossRef]
- Mauche, C.W. Chandra Low Energy Transmission Grating Spectrum of SS Cygni in Outburst. Astrophys. J. 2004, 610, 422–426. [Google Scholar] [CrossRef]
- Rana, V.R.; Singh, K.P.; Schlegel, E.M.; Barrett, P.E. Study of Fe Kα lines in Nonmagnetic Cataclysmic Variables Using Chandra HEG Data. Astrophys. J. 2006, 642, 1042–1050. [Google Scholar] [CrossRef]
- Schlegel, E.M.; Shipley, H.V.; Rana, V.R.; Barrett, P.E.; Singh, K.P. X-Ray Emission Line Spectroscopy of Cataclysmic Variables. II. Temperatures and Densities from Line Ratios in the Chandra HETG Band. Astrophys. J. 2014, 797, 38–54. [Google Scholar] [CrossRef]
- Maiolino, T.; Titarchuk, L.; D’Amico, F.; Cheng, Z.Q.; Wang, W.; Orlandini, M.; Frontera, F. Testing Comptonization as the Origin of the Continuum in Nonmagnetic Cataclysmic Variables: The Photon Index of X-Ray Emission. Astrophys. J. 2020, 900, 153. [Google Scholar] [CrossRef]
- Zemko, P.; Orio, M.; Luna, G.J.M.; Mukai, K.; Evans, P.A.; Bianchini, A. Multimission observations of the old nova GK Per during the 2015 outburst. Mon. Not. R. Astron. Soc. 2017, 469, 476–491. [Google Scholar] [CrossRef]
- Mukai, K.; Kinkhabwala, A.; Peterson, J.R.; Kahn, S.M.; Paerels, F. Two Types of X-Ray Spectra in Cataclysmic Variables. Astrophys. J. 2003, 586, L77–L80. [Google Scholar] [CrossRef]
- Arnaud, K.A. XSPEC: The First Ten Years. In Proceedings of the Astronomical Data Analysis Software and Systems V; Astronomical Society of the Pacific Conference Series; Jacoby, G.H., Barnes, J., Eds.; Cambridge University Press: Cambridge, UK, 1996; Volume 101, p. 17. [Google Scholar]
- Hellier, C.; Harmer, S.; Beardmore, A.P. On the magnetic accretor GK Persei in outburst. Mon. Not. R. Astron. Soc. 2004, 349, 710–714. [Google Scholar] [CrossRef]
- Girish, V.; Rana, V.R.; Singh, K.P. Chandra High-Resolution X-Ray Spectroscopy of AM Herculis. Astrophys. J. 2007, 658, 525–533. [Google Scholar] [CrossRef]
- Beuermann, K.; Burwitz, V.; Reinsch, K. A new soft X-ray spectral model for polars with an application to AM Herculis. Astron. Astrophys. 2012, 543, A41. [Google Scholar] [CrossRef]
- Mauche, C.W.; Liedahl, D.A.; Fournier, K.B. The Fe XXII I(11.92 Å)/I(11.77 Å) Density Diagnostic Applied to the Chandra High Energy Transmission Grating Spectrum of EX Hydrae. Astrophys. J. 2003, 588, L101–L104. [Google Scholar] [CrossRef]
- Hoogerwerf, R.; Brickhouse, N.S.; Mauche, C.W. The Radial Velocity and Mass of the White Dwarf of EX Hydrae Measured with Chandra. Astrophys. J. 2004, 610, 411–415. [Google Scholar] [CrossRef]
- Luna, G.J.M.; Raymond, J.C.; Brickhouse, N.S.; Mauche, C.W.; Proga, D.; Steeghs, D.; Hoogerwerf, R. Photoionized Features in the X-ray Spectrum of EX Hydrae. Astrophys. J. 2010, 711, 1333–1337. [Google Scholar] [CrossRef]
- Magdziarz, P.; Zdziarski, A.A. Angle-dependent Compton reflection of X-rays and gamma-rays. Mon. Not. R. Astron. Soc. 1995, 273, 837–848. [Google Scholar] [CrossRef]
- Hayashi, T.; Kitaguchi, T.; Ishida, M. X-ray reflection from cold white dwarfs in magnetic cataclysmic variables. Mon. Not. R. Astron. Soc. 2018, 474, 1810–1825. [Google Scholar] [CrossRef]
- Luna, G.J.M.; Raymond, J.C.; Brickhouse, N.S.; Mauche, C.W.; Suleimanov, V. Testing the cooling flow model in the intermediate polar EX Hydrae. Astron. Astrophys. 2015, 578, A15. [Google Scholar] [CrossRef]
- Mauche, C.W. Chandra High-Energy Transmission Grating Spectrum of AE Aquarii. Astrophys. J. 2009, 706, 130–141. [Google Scholar] [CrossRef]
- Itoh, K.; Okada, S.; Ishida, M.; Kunieda, H. Density Diagnostics of the Hot Plasma in AE Aquarii with XMM-Newton. Astrophys. J. 2006, 639, 397–404. [Google Scholar] [CrossRef]
- McNamara, A.L.; Kuncic, Z.; Wu, K.; Galloway, D.K.; Cullen, J.G. Compton scattering of Fe Kα lines in magnetic cataclysmic variables. Mon. Not. R. Astron. Soc. 2008, 383, 962–970. [Google Scholar] [CrossRef]
- Salinas, A.; Schlegel, E.M. An Observation of the Intermediate Polar XY Arietis with Chandra. Astron. J. 2004, 128, 1331–1339. [Google Scholar] [CrossRef]
- Hayashi, T.; Mori, H.; Mukai, K.; Terada, Y.; Ishida, M. Gravitational Redshift Detection from the Magnetic White Dwarf Harbored in RX J1712.6-2414. Astrophys. J. 2023, 953, 30. [Google Scholar] [CrossRef]
- Bode, M.F.; Evans, A. Classical Novae; Cambridge University Press: Cambridge, UK, 2008; Volume 43. [Google Scholar]
- Anupama, G.C. Recurrent Novae: What Do We Know about Them? In Proceedings of the Binary Paths to Type Ia Supernovae Explosions; IAU Symposium; Di Stefano, R., Orio, M., Moe, M., Eds.; Cambridge University Press: Cambridge, UK, 2013; Volume 281, pp. 154–161. [Google Scholar] [CrossRef]
- Mukai, K.; Orio, M. X-Ray Observations of the Bright Old Nova V603 Aquilae. Astrophys. J. 2005, 622, 602–612. [Google Scholar] [CrossRef]
- Balman, Ş. Chandra Observation of the Shell of Nova Persei 1901 (GK Persei): Detection of Localized Nonthermal X-Ray Emission from a Miniature Supernova Remnant. Astrophys. J. 2005, 627, 933–952. [Google Scholar] [CrossRef]
- Takei, D.; Drake, J.J.; Yamaguchi, H.; Slane, P.; Uchiyama, Y.; Katsuda, S. X-Ray Fading and Expansion in the “Miniature Supernova Remnant” of GK Persei. Astrophys. J. 2015, 801, 92. [Google Scholar] [CrossRef]
- Luna, G.J.M.; Montez, R.; Sokoloski, J.L.; Mukai, K.; Kastner, J.H. Chandra Detection of Extended X-ray Emission from the Recurrent Nova RS Ophiuchi. Astrophys. J. 2009, 707, 1168–1172. [Google Scholar] [CrossRef]
- Juda, M.; Karovska, M. Chandra’s Ultimate Angular Resolution: Studies of the HRC-I Point Spread Function. In Proceedings of the AAS/High Energy Astrophysics Division #11, AAS/High Energy Astrophysics Division, Waikoloa Village, HI, USA, 1–4 March 2010; Volume 11. [Google Scholar]
- Montez, R.; Luna, G.J.M.; Mukai, K.; Sokoloski, J.L.; Kastner, J.H. Expanding Bipolar X-Ray Structure After the 2006 Eruption of RS Oph. Astrophys. J. 2022, 926, 100. [Google Scholar] [CrossRef]
- Balman, Ş. Pre-outburst Chandra observations of the recurrent nova T Pyxidis. Astron. Astrophys. 2014, 572, A114–A127. [Google Scholar] [CrossRef]
- Toalá, J.A.; Guerrero, M.A.; Santamaría, E.; Ramos-Larios, G.; Sabin, L. Extended X-ray emission from the classic nova DQ Her-on the possible presence of a magnetized jet. Mon. Not. R. Astron. Soc. 2020, 495, 4372–4379. [Google Scholar] [CrossRef]
- Bahramian, A.; Strader, J.; Miller-Jones, J.C.A.; Chomiuk, L.; Heinke, C.O.; Maccarone, T.J.; Pooley, D.; Shishkovsky, L.; Tudor, V.; Zhao, Y.; et al. The MAVERIC Survey: Chandra/ACIS Catalog of Faint X-Ray Sources in 38 Galactic Globular Clusters. Astrophys. J. 2020, 901, 57. [Google Scholar] [CrossRef]
- Bao, T.; Li, Z.; Cheng, Z. Periodic X-ray sources in the massive globular cluster 47 Tucanae: Evidence for dynamically formed cataclysmic variables. Mon. Not. R. Astron. Soc. 2023, 521, 4257–4276. [Google Scholar] [CrossRef]
- Grindlay, J.E.; Hong, J.; Zhao, P.; Laycock, S.; van den Berg, M.; Koenig, X.; Schlegel, E.M.; Cohn, H.N.; Lugger, P.M.; Rogel, A.B. Chandra Multiwavelength Plane (ChaMPlane) Survey: An Introduction. Astrophys. J. 2005, 635, 920–930. [Google Scholar] [CrossRef]
- van den Berg, M.; Hong, J.S.; Grindlay, J.E. ChaMPlane Deep Galactic Bulge Survey. I. Faint Accretion-driven Binaries in the Limiting Window. Astrophys. J. 2009, 700, 1702–1715. [Google Scholar] [CrossRef]
- Servillat, M.; Grindlay, J.; van den Berg, M.; Hong, J.; Zhao, P.; Allen, B. Spectroscopic Follow-up of X-Ray Sources in the ChaMPlane Survey: Identification of a New Cataclysmic Variable. Astrophys. J. 2012, 748, 32. [Google Scholar] [CrossRef]
- Rogel, A.B.; Cohn, H.N.; Lugger, P.M. Modeling the Galactic CV Distribution for the ChaMPlane Survey. Astrophys. J. 2008, 675, 373–379. [Google Scholar] [CrossRef]
- Revnivtsev, M.; Sazonov, S.; Churazov, E.; Forman, W.; Vikhlinin, A.; Sunyaev, R. Discrete sources as the origin of the Galactic X-ray ridge emission. Nature 2009, 458, 1142–1144. [Google Scholar] [CrossRef]
- Türler, M.; Chernyakova, M.; Courvoisier, T.J.L.; Lubiński, P.; Neronov, A.; Produit, N.; Walter, R. INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission. Astron. Astrophys. 2010, 512, A49. [Google Scholar] [CrossRef]
- Warwick, R.S. Low-luminosity X-ray sources and the Galactic ridge X-ray emission. Mon. Not. R. Astron. Soc. 2014, 445, 66–80. [Google Scholar] [CrossRef]
- Yuasa, T.; Makishima, K.; Nakazawa, K. Broadband Spectral Analysis of the Galactic Ridge X-Ray Emission. Astrophys. J. 2012, 753, 129. [Google Scholar] [CrossRef]
- Schmitt, J.H.M.M.; Czesla, S.; Schneider, P.C.; Freund, S.; Robrade, J. The nature of the X-ray sources constituting the 6.7 keV Galactic ridge emission. Astron. Astrophys. 2022, 661, A88. [Google Scholar] [CrossRef]
- Lasota, J.P. The disc instability model of dwarf novae and low-mass X-ray binary transients. NewAR 2001, 45, 449–508. [Google Scholar] [CrossRef]
- Hameury, J.M.; Knigge, C.; Lasota, J.P.; Hambsch, F.J.; James, R. Modelling hystereses observed during dwarf nova outbursts. Astron. Astrophys. 2020, 636, A1–A9. [Google Scholar] [CrossRef]
- Tampo, Y.; Knigge, C.; Long, K.S.; Matthews, J.H.; Segura, N.C. A disc wind origin for the optical spectra of dwarf novae in outburst. Mon. Not. R. Astron. Soc. 2024, 532, 1199–1211. [Google Scholar] [CrossRef]
- Knigge, C.; Baraffe, I.; Patterson, J. The Evolution of Cataclysmic Variables as Revealed by Their Donor Stars. Astrophys. J. 2011, 194, 28–76. [Google Scholar] [CrossRef]
- Kuulkers, E.; Norton, A.; Schwope, A.; Warner, B. X-rays from cataclysmic variables. In Compact Stellar X-Ray Sources; Lewin, W., van der Klis, M., Eds.; Cambridge Astrophysics Series No. 39; Cambridge University Press: Cambridge, UK, 2006; Volume 39, pp. 421–460. ISBN 978-0-521-82659-4. [Google Scholar]
- Mauche, C.W.; Raymond, J.C. Extreme Ultraviolet Explorer Observations of OY Carinae in Superoutburst. Astrophys. J. 2000, 541, 924–936. [Google Scholar] [CrossRef]
- Long, K.S.; Mauche, C.W.; Raymond, J.C.; Szkody, P.; Mattei, J.A. EUVE Observations of U Geminorum in Outburst. Astrophys. J. 1996, 469, 841–853. [Google Scholar] [CrossRef]
- Byckling, K.; Osborne, J.P.; Wheatley, P.J.; Wynn, G.A.; Beardmore, A.; Braito, V.; Mukai, K.; West, R.G. Swift observations of GW Lib: A unique insight into a rare outburst. Mon. Not. R. Astron. Soc. 2009, 399, 1576–1586. [Google Scholar] [CrossRef]
- Kimura, M.; Kashiyama, K.; Shigeyama, T.; Tampo, Y.; Yamada, S.; Enoto, T. MASTER OT J030227.28+191754.5: A Dwarf Nova at a Massive Oxygen-Neon White Dwarf System? Astrophys. J. 2023, 951, 124. [Google Scholar] [CrossRef]
- Wheatley, P.J.; Mauche, C.W.; Mattei, J.A. The X-ray and extreme-ultraviolet flux evolution of SS Cygni throughout outburst. Mon. Not. R. Astron. Soc. 2003, 345, 49–61. [Google Scholar] [CrossRef]
- McGowan, K.E.; Priedhorsky, W.C.; Trudolyubov, S.P. On the Correlated X-Ray and Optical Evolution of SS Cygni. Astrophys. J. 2004, 601, 1100–1108. [Google Scholar] [CrossRef]
- Ishida, M.; Okada, S.; Hayashi, T.; Nakamura, R.; Terada, Y.; Mukai, K.; Hamaguchi, K. Suzaku Observations of SS Cygni in Quiescence and Outburst. Publ. Astron. Soc. Jpn. 2009, 61, S77–S91. [Google Scholar] [CrossRef]
- Collins, D.J.; Wheatley, P.J. X-ray observations of SU UMa throughout six outbursts. Mon. Not. R. Astron. Soc. 2010, 402, 1816–1823. [Google Scholar] [CrossRef]
- Balman, S. Inner Disk Structure of Dwarf Novae in the Light of X-Ray Observations. Acta Polytechnica CTU Proceedings 2015, 2, 116–122. [Google Scholar] [CrossRef]
- Zhang, G.; Gelfand, J.D.; Russell, D.M.; Lewis, F.; Masetti, N.; Bernardini, F.; Andruchow, I.; Zibecchi, L. Multiwavelength monitoring of a very active dwarf nova AX J1549.8-5416 with an unusually high duty cycle. Mon. Not. R. Astron. Soc. 2017, 469, 4236–4248. [Google Scholar] [CrossRef]
- Dutta, A.; Rana, V.; Mukai, K.; de Oliveira, R.L. A Broadband X-Ray Study of the Dwarf Nova SS Cyg during Quiescence and Outburst. Astrophys. J. 2023, 957, 33. [Google Scholar] [CrossRef]
- Dobrotka, A.; Ness, J.U.; Nucita, A.A.; Melicherčík, M. XMM-Newton observation of V1504 Cyg as a probe for the existence of an evaporated corona. Astron. Astrophys. 2023, 674, A188. [Google Scholar] [CrossRef]
- Balman, S.; Schlegel, E.M.; Godon, P.; Drake, J.J. X-Ray Spectroscopy of the Dwarf Nova Z Chamaeleontis in Quiescence and Outburst Using the XMM-Newton Observatory. ApJ 2024, 977, 136. [Google Scholar] [CrossRef]
- Takeo, M.; Hayashi, T.; Ishida, M.; Nakaniwa, N.; Maeda, Y. Spatial distribution of the X-ray-emitting plasma of U Geminorum in quiescence and outburst. Publ. Astron. Soc. Jpn. 2021, 73, 143–153. [Google Scholar] [CrossRef]
- Ramsay, G.; Poole, T.; Mason, K.; Córdova, F.; Priedhorsky, W.; Breeveld, A.; Much, R.; Osborne, J.; Pandel, D.; Potter, S.; et al. First XMM-Newton observations of a cataclysmic variable I: Timing studies of OY Car. Astron. Astrophys. 2001, 365, L288–L293. [Google Scholar] [CrossRef]
- Pandel, D.; Córdova, F.A.; Howell, S.B. X-ray and ultraviolet observations of the dwarf nova VW Hyi in quiescence. Mon. Not. R. Astron. Soc. 2003, 346, 1231–1241. [Google Scholar] [CrossRef]
- Hakala, P.; Ramsay, G.; Wheatley, P.; Harlaftis, E.T.; Papadimitriou, C. XMM-Newton observations of the dwarf nova YZ Cnc in quiescence. Astron. Astrophys. 2004, 420, 273–281. [Google Scholar] [CrossRef]
- Pandel, D.; Córdova, F.A.; Mason, K.O.; Priedhorsky, W.C. X-Ray Observations of the Boundary Layer in Dwarf Novae at Low Accretion Rates. Astrophys. J. 2005, 626, 396–410. [Google Scholar] [CrossRef]
- Hilton, E.J.; Szkody, P.; Mukadam, A.; Mukai, K.; Hellier, C.; van Zyl, L.; Homer, L. XMM-Newton Observations of the Cataclysmic Variable GW Librae. Astrophys. J. 2007, 134, 1503–1507. [Google Scholar] [CrossRef]
- Nucita, A.A.; Maiolo, B.M.T.; Carpano, S.; Belanger, G.; Coia, D.; Guainazzi, M.; de Paolis, F.; Ingrosso, G. The X-ray eclipse of the dwarf nova HT Cassiopeiae observed by the XMM-Newton satellite: Spectral and timing analysis. Astron. Astrophys. 2009, 504, 973–979. [Google Scholar] [CrossRef]
- Balman, Ş.; Godon, P.; Sion, E.M.; Ness, J.U.; Schlegel, E.; Barrett, P.E.; Szkody, P. XMM-Newton Observations of the Dwarf Nova RU Peg in Quiescence: Probe of the Boundary Layer. Astrophys. J. 2011, 741, 84–91. [Google Scholar] [CrossRef]
- Nucita, A.A.; Kuulkers, E.; De Paolis, F.; Mukai, K.; Ingrosso, G.; Maiolo, B.M.T. XMM-Newton and Swift observations of WZ Sagittae: Spectral and timing analysis. Astron. Astrophys. 2014, 566, A121. [Google Scholar] [CrossRef]
- Balman, Ş. Disk structure of cataclysmic variables and broadband noise characteristics in comparison with XRBs. Astronomische Nachrichten 2019, 340, 296–301. [Google Scholar] [CrossRef]
- Baskill, D.S.; Wheatley, P.J.; Osborne, J.P. The complete set of ASCA X-ray observations of non-magnetic cataclysmic variables. Mon. Not. R. Astron. Soc. 2005, 357, 626–644. [Google Scholar] [CrossRef]
- Nakaniwa, N.; Hayashi, T.; Takeo, M.; Ishida, M. Variation of mass accretion rate on to the white dwarf in the dwarf nova VW Hyi in quiescence. Mon. Not. R. Astron. Soc. 2019, 488, 5104–5113. [Google Scholar] [CrossRef]
- Byckling, K.; Mukai, K.; Thorstensen, J.R.; Osborne, J.P. Deriving an X-ray luminosity function of dwarf novae based on parallax measurements. Mon. Not. R. Astron. Soc. 2010, 408, 2298–2311. [Google Scholar] [CrossRef]
- Britt, C.T.; Maccarone, T.; Pretorius, M.L.; Hynes, R.I.; Jonker, P.G.; Torres, M.A.P.; Knigge, C.; Johnson, C.B.; Heinke, C.O.; Steeghs, D.; et al. The relationship between X-ray luminosity and duty cycle for dwarf novae and their specific frequency in the inner Galaxy. Mon. Not. R. Astron. Soc. 2015, 448, 3455–3462. [Google Scholar] [CrossRef]
- Balman, Ş.; Godon, P.; Sion, E.M. Swift X-Ray Telescope Observations of the Nova-like Cataclysmic Variables MV Lyr, BZ Cam, and V592 Cas. Astrophys. J. 2014, 794, 84–96. [Google Scholar] [CrossRef]
- Pratt, G.W.; Mukai, K.; Hassall, B.J.M.; Naylor, T.; Wood, J.H. An XMM-Newton observation of the nova-like variable UX UMa: Spatially and spectrally resolved two-component X-ray emission. Mon. Not. R. Astron. Soc. 2004, 348, L49–L53. [Google Scholar] [CrossRef]
- Hoard, D.W.; Lu, T.N.; Knigge, C.; Homer, L.; Szkody, P.; Still, M.; Long, K.S.; Dhillon, V.S.; Wachter, S. Simultaneous X-ray and Ultraviolet Observations of the SW Sextantis Star DW Ursae Majoris. Astrophys. J. 2010, 140, 1313–1320. [Google Scholar] [CrossRef]
- Page, K.L.; Osborne, J.P.; Beardmore, A.P.; Evans, P.A.; Rosen, S.R.; Watson, M.G. X-ray and UV observations of V751 Cygni in an optical high state. Astron. Astrophys. 2014, 570, A37. [Google Scholar] [CrossRef]
- Dobrotka, A.; Ness, J.U.; Mineshige, S.; Nucita, A.A. XMM-Newton observation of MV Lyr and the sandwiched model confirmation. Mon. Not. R. Astron. Soc. 2017, 468, 1183–1197. [Google Scholar] [CrossRef]
- Kahabka, P.; van den Heuvel, E.P.J. Luminous Supersoft X-Ray Sources. Annu. Rev. Astron. Astrophys. 1997, 35, 69–100. [Google Scholar] [CrossRef]
- Kahabka, P.; van den Heuvel, E.P.J. Super-soft sources. In Compact Stellar X-Ray Sources; Lewin, W.H.G., van der Klis, M., Eds.; Cambridge Astrophysics Series No. 39; Cambridge University Press: Cambridge, UK, 2006; Volume 39, pp. 461–474. [Google Scholar]
- Orio, M. Hydrogen burning on massive binary white dwarfs: What we know from the observations. Astron. Rev. 2013, 8, 71–89. [Google Scholar] [CrossRef]
- Lanz, T.; Telis, G.A.; Audard, M.; Paerels, F.; Rasmussen, A.P.; Hubeny, I. Non-LTE Model Atmosphere Analysis of the Large Magellanic Cloud Supersoft X-Ray Source CAL 83. Astrophys. J. 2005, 619, 517–526. [Google Scholar] [CrossRef]
- Pei, S.; Zhang, X.; Li, Q.; Ou, Z. High-resolution X-ray spectra of the compact binary supersoft X-ray source CAL 87. Astron. Astrophys. 2024, 690, A9. [Google Scholar] [CrossRef]
- Ribeiro, T.; Lopes de Oliveira, R.; Borges, B.W. The X-Ray Eclipse Geometry of the Super-soft X-Ray Source CAL 87. Astrophys. J. 2014, 792, 20. [Google Scholar] [CrossRef]
- Kahabka, P.; Haberl, F.; Pakull, M.; Millar, W.C.; White, G.L.; Filipović, M.D.; Payne, J.L. Faint super-soft X-ray sources in XMM-Newton Large Magellanic Cloud fields. Astron. Astrophys. 2008, 482, 237–245. [Google Scholar] [CrossRef]
- Kahabka, P.; Haberl, F.; Payne, J.L.; Filipović, M.D. The super-soft source XMMU J052016.0-692505 in the LMC. A likely white dwarf Be/X-ray binary. Astron. Astrophys. 2006, 458, 285–292. [Google Scholar] [CrossRef]
- Marino, A.; Yang, H.N.; Coti Zelati, F.; Rea, N.; Guillot, S.; Jaisawal, G.K.; Maitra, C.; Ness, J.U.; Haberl, F.; Kuulkers, E.; et al. Einstein Probe Discovery of EP J005245.1-722843: A Rare Be–White Dwarf Binary in the Small Magellanic Cloud? Astrophys. J. 2025, 980, L36. [Google Scholar] [CrossRef]
- Li, K.L.; Kong, A.K.H.; Charles, P.A.; Lu, T.N.; Bartlett, E.S.; Coe, M.J.; McBride, V.; Rajoelimanana, A.; Udalski, A.; Masetti, N.; et al. A Luminous Be+White Dwarf Supersoft Source in the Wing of the SMC: MAXI J0158-744. Astrophys. J. 2012, 761, 99. [Google Scholar] [CrossRef]
- Cracco, V.; Orio, M.; Ciroi, S.; Gallagher, J.; Kotulla, R.; Romero-Colmenero, E. Supersoft X-Ray Sources Identified with Be Binaries in the Magellanic Clouds. ApJ 2018, 862, 167. [Google Scholar] [CrossRef]
- Gies, D.R.; Wang, L.; Klement, R. Gamma Cas Stars as Be+White Dwarf Binary Systems. Astrophys. J. 2023, 942, L6. [Google Scholar] [CrossRef]
- Raguzova, N.V. Population synthesis of Be/white dwarf binaries in the Galaxy. Astron. Astrophys. 2001, 367, 848–858. [Google Scholar] [CrossRef]
- Misanovic, Z.; Pietsch, W.; Haberl, F.; Ehle, M.; Hatzidimitriou, D.; Trinchieri, G. An XMM-Newton survey of the Local Group galaxy M 33 - variability of the detected sources. Astron. Astrophys. 2006, 448, 1247–1262. [Google Scholar] [CrossRef]
- Stiele, H.; Pietsch, W.; Haberl, F.; Hatzidimitriou, D.; Barnard, R.; Williams, B.F.; Kong, A.K.H.; Kolb, U. The deep XMM-Newton Survey of M 31. Astron. Astrophys. 2011, 534, A55. [Google Scholar] [CrossRef]
- Henze, M.; Pietsch, W.; Haberl, F.; Della Valle, M.; Sala, G.; Hatzidimitriou, D.; Hofmann, F.; Hernanz, M.; Hartmann, D.H.; Greiner, J. X-ray monitoring of classical novae in the central region of M 31 III. Autumn and winter 2009/10, 2010/11, and 2011/12. Astron. Astrophys. 2014, 563, A2. [Google Scholar] [CrossRef]
- Ramsay, G.; Cropper, M. XMM-Newton observations of the asynchronous polar BY Cam. Mon. Not. R. Astron. Soc. 2002, 334, 805–810. [Google Scholar] [CrossRef]
- Schwope, A.D.; Hambaryan, V.; Schwarz, R.; Kanbach, G.; Gänsicke, B.T. A multiwavelength timing analysis of the eclipsing polar DP Leo. Astron. Astrophys. 2002, 392, 541–551. [Google Scholar] [CrossRef]
- Ramsay, G.; Cropper, M.; Mason, K.O.; Córdova, F.A.; Priedhorsky, W. XMM-Newton observations of three short-period polars: V347 Pav, GG Leo and EU UMa. Mon. Not. R. Astron. Soc. 2004, 347, 95–100. [Google Scholar] [CrossRef]
- Evans, P.A.; Hellier, C.; Ramsay, G.; Cropper, M. Twisted accretion curtains in the intermediate polar FO Aquarii. Mon. Not. R. Astron. Soc. 2004, 349, 715–721. [Google Scholar] [CrossRef]
- Rana, V.R.; Singh, K.P.; Barrett, P.E.; Buckley, D.A.H. X-Ray Emission and Optical Polarization of V1432 Aquilae: An Asynchronous Polar. Astrophys. J. 2005, 625, 351–367. [Google Scholar] [CrossRef]
- Schwarz, R.; Reinsch, K.; Beuermann, K.; Burwitz, V. XMM-Newton observation of the long-period polar V1309 Orionis: The case for pure blobby accretion. Astron. Astrophys. 2005, 442, 271–279. [Google Scholar] [CrossRef]
- Evans, P.A.; Hellier, C.; Ramsay, G. XMM-Newton observations of the complex spin pulse of the intermediate polar PQ Geminorum. Mon. Not. R. Astron. Soc. 2006, 369, 1229–1234. [Google Scholar] [CrossRef]
- Norton, A.J.; Mukai, K. A precessing accretion disc in the intermediate polar XY Arietis? Astron. Astrophys. 2007, 472, 225–232. [Google Scholar] [CrossRef]
- Pandel, D.; Córdova, F.A. XMM-Newton observes flaring in the polar UZ For during a low state. Mon. Not. R. Astron. Soc. 2002, 336, 1049–1055. [Google Scholar] [CrossRef]
- Ramsay, G.; Cropper, M.; Wu, K.; Mason, K.O.; Córdova, F.A.; Priedhorsky, W. XMM-Newton observations of polars in low accretion states. Mon. Not. R. Astron. Soc. 2004, 350, 1373–1384. [Google Scholar] [CrossRef]
- Pandel, D.; Córdova, F.A. Irregular Mass Transfer in the Polars VV Puppis and V393 Pavonis during the Low State. Astrophys. J. 2005, 620, 416–421. [Google Scholar] [CrossRef]
- Schwope, A.D.; Staude, A.; Koester, D.; Vogel, J. XMM-Newton observations of EF Eridani: The textbook example of low-accretion rate polars. Astron. Astrophys. 2007, 469, 1027–1031. [Google Scholar] [CrossRef]
- Schwarz, R.; Schwope, A.D.; Vogel, J.; Dhillon, V.S.; Marsh, T.R.; Copperwheat, C.; Littlefair, S.P.; Kanbach, G. Hunting high and low: XMM monitoring of the eclipsing polar HU Aquarii. Astron. Astrophys. 2009, 496, 833–840. [Google Scholar] [CrossRef]
- Balman, Ş.; Khamitov, I.; Kolbin, A.; Çalışkan, E.A.; Bikmaev, I.; Özdönmez, A.; Burenin, R.; Kılıç, Y.; Esenoğlu, H.H.; Yelkenci, K.F.; et al. Optical identification and follow-up observations of SRGA J213151.5+491400. A new magnetic cataclysmic variable discovered with the SRG observatory. Astron. Astrophys. 2024, 684, A190. [Google Scholar] [CrossRef]
- Szkody, P.; Homer, L.; Chen, B.; Henden, A.; Schmidt, G.D.; Anderson, S.F.; Hoard, D.W.; Voges, W.; Brinkmann, J. XMM-Newton Observations of the Extremely Low Accretion Rate Polars SDSS J155331.12+551614.5 and SDSS J132411.57+032050.5. Astrophys. J. 2004, 128, 2443–2447. [Google Scholar] [CrossRef]
- Vogel, J.; Schwope, A.D.; Schwarz, R. XMM-Newton observations of the pre-polar HS0922+1333. Astron. Astrophys. 2011, 530, A117. [Google Scholar] [CrossRef]
- Ramsay, G.; Cropper, M. The energy balance of polars revisited. Mon. Not. R. Astron. Soc. 2004, 347, 497–507. [Google Scholar] [CrossRef]
- King, A.R. Blob Model for Polar Accretion. Astrophys. J. 2000, 541, 306–307. [Google Scholar] [CrossRef]
- Frank, J.; King, A.R.; Lasota, J.P. The soft X-ray excess in accreting magnetic white dwarfs. Astron. Astrophys. 1988, 193, 113–118. [Google Scholar]
- Anzolin, G.; de Martino, D.; Bonnet-Bidaud, J.M.; Mouchet, M.; Gänsicke, B.T.; Matt, G.; Mukai, K. Two new intermediate polars with a soft X-ray component. Astron. Astrophys. 2008, 489, 1243–1254. [Google Scholar] [CrossRef]
- Bernardini, F.; de Martino, D.; Mukai, K.; Russell, D.M.; Falanga, M.; Masetti, N.; Ferrigno, C.; Israel, G. Broad-band characteristics of seven new hard X-ray selected cataclysmic variables. Mon. Not. R. Astron. Soc. 2017, 470, 4815–4837. [Google Scholar] [CrossRef]
- Bernardini, F.; de Martino, D.; Mukai, K.; Falanga, M.; Masetti, N. 2PBC J0658.0-1746: A hard X-ray eclipsing polar in the orbital period gap. Mon. Not. R. Astron. Soc. 2019, 489, 1044–1053. [Google Scholar] [CrossRef]
- Schwope, A.D.; Worpel, H.; Traulsen, I.; Sablowski, D. The various accretion modes of AM Herculis: Clues from multi-wavelength observations in high accretion states. Astron. Astrophys. 2020, 642, A134. [Google Scholar] [CrossRef]
- Paerels, F.; Heise, J.; van Teeseling, A. Simultaneous Soft and Hard X-Ray Spectroscopy of AM Herculis with EXOSAT: Discovery of Photospheric Absorption Features. Astrophys. J. 1994, 426, 313. [Google Scholar] [CrossRef]
- Staude, A.; Schwope, A.D.; Schwarz, R.; Vogel, J.; Krumpe, M.; Nebot Gomez-Moran, A. The changing accretion states of the intermediate polar MU Camelopardalis. Astron. Astrophys. 2008, 486, 899–909. [Google Scholar] [CrossRef]
- Bernardini, F.; de Martino, D.; Mukai, K.; Falanga, M. The true nature of Swift J0746.3-1608: A possible Intermediate Polar showing accretion state changes. Mon. Not. R. Astron. Soc. 2019, 484, 101–106. [Google Scholar] [CrossRef]
- Littlefield, C.; Garnavich, P.; Kennedy, M.R.; Patterson, J.; Kemp, J.; Stiller, R.A.; Hambsch, F.J.; Heras, T.A.; Myers, G.; Stone, G.; et al. The Rise and Fall of the King: The Correlation between FO Aquarii’s Low States and the White Dwarf’s Spin-down. Astrophys. J. 2020, 896, 116. [Google Scholar] [CrossRef]
- Kennedy, M.R.; Garnavich, P.M.; Littlefield, C.; Callanan, P.; Mukai, K.; Aadland, E.; Kotze, M.M.; Kotze, E.J. X-ray observations of FO Aqr during the 2016 low state. Mon. Not. R. Astron. Soc. 2017, 469, 956–967. [Google Scholar] [CrossRef]
- Islam, N.; Mukai, K. The Role of Complex Ionized Absorbers in the Soft X-Ray Spectra of Intermediate Polars. Astrophys. J. 2021, 919, 90. [Google Scholar] [CrossRef]
- Pekön, Y.; Balman, S. Orbital and spin phase-resolved spectroscopy of the intermediate polar EX Hya using XMM-Newton data. Mon. Not. R. Astron. Soc. 2011, 411, 1177–1196. [Google Scholar] [CrossRef]
- Pekön, Y.; Balman, Ş. Orbital-phase-resolved Spectroscopy of the Intermediate Polar FO Aqr Using XMM-Newton Observatory Data. Astrophys. J. 2012, 144, 53. [Google Scholar] [CrossRef]
- Bernardini, F.; de Martino, D.; Mukai, K.; Falanga, M. IGR J14257-6117, a magnetic accreting white dwarf with a very strong strong X-ray orbital modulation. Mon. Not. R. Astron. Soc. 2018, 478, 1185–1192. [Google Scholar] [CrossRef]
- Parker, T.L.; Norton, A.J.; Mukai, K. X-ray orbital modulations in intermediate polars. Astron. Astrophys. 2005, 439, 213–225. [Google Scholar] [CrossRef]
- de Martino, D.; Matt, G.; Mukai, K.; Bonnet-Bidaud, J.M.; Falanga, M.; Gänsicke, B.T.; Haberl, F.; Marsh, T.R.; Mouchet, M.; Littlefair, S.P.; et al. 1RXS J173021.5-055933: A cataclysmic variable with a fast-spinning magnetic white dwarf. Astron. Astrophys. 2008, 481, 149–159. [Google Scholar] [CrossRef]
- Bernardini, F.; de Martino, D.; Falanga, M.; Mukai, K.; Matt, G.; Bonnet-Bidaud, J.M.; Masetti, N.; Mouchet, M. Characterization of new hard X-ray cataclysmic variables. Astron. Astrophys. 2012, 542, A22. [Google Scholar] [CrossRef]
- Mukai, K.; Rana, V.; Bernardini, F.; de Martino, D. Unambiguous Detection of Reflection in Magnetic Cataclysmic Variables: Joint NuSTAR-XMM-Newton Observations of Three Intermediate Polars. Astrophys. J. 2015, 807, L30. [Google Scholar] [CrossRef]
- Dutta, A.; Rana, V. Study of Complex Absorption and Reflection in a Unique Intermediate Polar Paloma. Astrophys. J. 2022, 940, 100. [Google Scholar] [CrossRef]
- Ezuka, H.; Ishida, M. Iron Line Diagnostics of the Postshock Hot Plasma in MagneticCataclysmic Variables Observed with ASCA. Astrophys. J. 1999, 120, 277–298. [Google Scholar] [CrossRef]
- Saxton, C.J.; Wu, K.; Canalle, J.B.G.; Cropper, M.; Ramsay, G. X-ray emissions from two-temperature accretion flows within a dipole magnetic funnel. Mon. Not. R. Astron. Soc. 2007, 379, 779–790. [Google Scholar] [CrossRef]
- Hayashi, T.; Ishida, M. A new comprehensive X-ray spectral model from the post-shock accretion column in intermediate polars. Mon. Not. R. Astron. Soc. 2014, 438, 2267–2277. [Google Scholar] [CrossRef]
- Suleimanov, V.F.; Doroshenko, V.; Werner, K. Hard X-ray view on intermediate polars in the Gaia era. Mon. Not. R. Astron. Soc. 2019, 482, 3622–3635. [Google Scholar] [CrossRef]
- Shaw, A.W.; Heinke, C.O.; Mukai, K.; Tomsick, J.A.; Doroshenko, V.; Suleimanov, V.F.; Buisson, D.J.K.; Gandhi, P.; Grefenstette, B.W.; Hare, J.; et al. Measuring the masses of magnetic white dwarfs: A NuSTAR legacy survey. Mon. Not. R. Astron. Soc. 2020, 498, 3457–3469. [Google Scholar] [CrossRef]
- Álvarez-Hernández, A.; Torres, M.A.P.; Shahbaz, T.; Rodríguez-Gil, P.; Gazeas, K.D.; Sánchez-Sierras, J.; Jonker, P.G.; Corral-Santana, J.M.; Acosta-Pulido, J.A.; Hakala, P. The mass of the white dwarf in YY Dra (=DO Dra): Dynamical measurement and comparative study with X-ray estimates. Astron. Astrophys. 2024, 690, A218. [Google Scholar] [CrossRef]
- Yu, Z.L.; Xu, X.J.; Li, X.D. A Study on White Dwarf Masses in Cataclysmic Variables Based on XMM-Newton and Suzaku Observations. Res. Astron. Astrophys. 2022, 22, 045003. [Google Scholar] [CrossRef]
- Schmidt, G.D.; Szkody, P.; Homer, L.; Smith, P.S.; Chen, B.; Henden, A.; Solheim, J.E.; Wolfe, M.A.; Greimel, R. Unraveling the Puzzle of the Eclipsing Polar SDSS J015543.40+002807.2 with XMM and Optical Photometry/Spectropolarimetry. Astrophys. J. 2005, 620, 422–431. [Google Scholar] [CrossRef]
- Homer, L.; Szkody, P.; Chen, B.; Henden, A.; Schmidt, G.D.; Fraser, O.J.; Saloma, K.; Silvestri, N.M.; Taylor, H.; Brinkmann, J. XMM-Newton and Optical Follow-up Observations of Three New Polars from the Sloan Digital Sky Survey. Astrophys. J. 2005, 620, 929–937. [Google Scholar] [CrossRef]
- Homer, L.; Szkody, P.; Henden, A.; Chen, B.; Schmidt, G.D.; Fraser, O.J.; West, A.A. Characterizing three candidate magnetic cataclysmic variables from SDSS: XMM-Newton and optical follow-up observations. Astrophys. J. 2006, 132, 2743–2754. [Google Scholar] [CrossRef]
- Szkody, P.; Homer, L.; Henden, A. Using XMM-Newton and Optical Photometry to Figure Out CVs. JAAVSO 2006, 35, 306–310. [Google Scholar]
- Hilton, E.J.; Szkody, P.; Mukadam, A.; Henden, A.; Dillon, W.; Schmidt, G.D. XMM-Newton and Optical Observations of Cataclysmic Variables from the Sloan Digital Sky Survey. Astrophys. J. 2009, 137, 3606–3614. [Google Scholar] [CrossRef]
- Worpel, H.; Schwope, A.D.; Granzer, T.; Reinsch, K.; Schwarz, R.; Traulsen, I. X-ray and optical observations of four polars. Astron. Astrophys. 2016, 592, A114. [Google Scholar] [CrossRef]
- Muñoz-Giraldo, D.; Stelzer, B.; de Martino, D.; Schwope, A. New X-ray detections of magnetic period-bounce cataclysmic variables from XMM-Newton and SRG/eROSITA. Astron. Astrophys. 2023, 676, A7. [Google Scholar] [CrossRef]
- Schreiber, M.R.; Belloni, D.; van Roestel, J. Period bouncers as detached magnetic cataclysmic variables. Astron. Astrophys. 2023, 679, L8. [Google Scholar] [CrossRef]
- Xu, X.j.; Wang, Q.D.; Li, X. Statistical properties of cataclysmic variables in the local galactic disc: A joint analysis of Gaia and XMM-Newton data. Mon. Not. R. Astron. Soc. 2022, 516, 1263–1274. [Google Scholar] [CrossRef]
- Heard, V.; Warwick, R.S. XMM-Newton observations of the Galactic Centre Region - I. The distribution of low-luminosity X-ray sources. Mon. Not. R. Astron. Soc. 2013, 428, 3462–3477. [Google Scholar] [CrossRef]
- Hailey, C.J.; Mori, K.; Perez, K.; Canipe, A.M.; Hong, J.; Tomsick, J.A.; Boggs, S.E.; Christensen, F.E.; Craig, W.W.; Fornasini, F.; et al. Evidence for Intermediate Polars as the Origin of the Galactic Center Hard X-ray Emission. Astrophys. J. 2016, 826, 160. [Google Scholar] [CrossRef]
- Oh, K.; Koss, M.; Markwardt, C.B.; Schawinski, K.; Baumgartner, W.H.; Barthelmy, S.D.; Cenko, S.B.; Gehrels, N.; Mushotzky, R.; Petulante, A.; et al. The 105-Month Swift-BAT All-sky Hard X-Ray Survey. Astrophys. J. 2018, 235, 4. [Google Scholar] [CrossRef]
- Anzolin, G.; de Martino, D.; Falanga, M.; Mukai, K.; Bonnet-Bidaud, J.M.; Mouchet, M.; Terada, Y.; Ishida, M. Broad-band properties of the hard X-ray cataclysmic variables IGR J00234+6141 and 1RXS J213344.1+510725. Astron. Astrophys. 2009, 501, 1047–1058. [Google Scholar] [CrossRef]
- Ok, S.; Schwope, A. XMM-Newton and TESS observations of the highly variable polar V496 UMa. Astron. Astrophys. 2022, 662, A116. [Google Scholar] [CrossRef]
- Kennedy, M.R.; Littlefield, C.; Garnavich, P.M. Transient two-pole accretion in the polar V496 UMa. Mon. Not. R. Astron. Soc. 2022, 513, 2930–2941. [Google Scholar] [CrossRef]
- Rawat, N.; De Martino, D.; Mukai, K.; Falanga, M.; Masetti, N.; Pandey, J.C. Indications of magnetic accretion in Swift J0826.2-7033. Astron. Astrophys. 2024, 691, A264. [Google Scholar] [CrossRef]
- Joshi, A. Identifying reliable periods in 2MASS J09213414-5939068, IGR J16167-4957, and V667 Pup. Astron. Astrophys. 2024, 683, A177. [Google Scholar] [CrossRef]
- Armitage, P.J.; Livio, M. Hydrodynamics of the Stream-Disk Impact in Interacting Binaries. Astrophys. J. 1998, 493, 898–908. [Google Scholar] [CrossRef]
- Smak, J. Stream Overflow in Z Cha and OY Car during Quiescence. Ac. Ast. 2012, 62, 213–217. [Google Scholar] [CrossRef]
- Schreiber, M.R.; Hessman, F.V. Stream overflow and dwarf nova eruptions. Mon. Not. R. Astron. Soc. 1998, 301, 626–630. [Google Scholar] [CrossRef]
- Nelemans, G. AM CVn stars. In Proceedings of the The Astrophysics of Cataclysmic Variables and Related Objects, Strasbourg, France, 11–16 July 2004; Astronomical Society of the Pacific Conference Series. Hameury, J.M., Lasota, J.P., Eds.; Springer: Berlin, Germany, 2005; Volume 330, pp. 27–40. [Google Scholar]
- Solheim, J.E. AM CVn Stars: Status and Challenges. Publ. Astron. Soc. Pac. 2010, 122, 1133–1163. [Google Scholar] [CrossRef]
- Belloni, D.; Schreiber, M.R. Reversing the verdict: Cataclysmic variables could be the dominant progenitors of AM CVn binaries after all. Astron. Astrophys. 2023, 678, A34. [Google Scholar] [CrossRef]
- Rodriguez, A.C.; El-Badry, K.; Suleimanov, V.; Pala, A.F.; Kulkarni, S.R.; Gaensicke, B.; Mori, K.; Rich, R.M.; Sarkar, A.; Bao, T.; et al. Cataclysmic Variables and AM CVn Binaries in SRG/eROSITA + Gaia: Volume Limited Samples, X-ray Luminosity Functions, and Space Densities. arXiv 2024, arXiv:2408.16053. [Google Scholar] [CrossRef]
- van Roestel, J.; Kupfer, T.; Green, M.J.; Wong, T.L.S.; Bildsten, L.; Burdge, K.; Prince, T.; Marsh, T.R.; Szkody, P.; Fremling, C.; et al. Discovery and characterization of five new eclipsing AM CVn systems. Mon. Not. R. Astron. Soc. 2022, 512, 5440–5461. [Google Scholar] [CrossRef]
- Nelemans, G.; Portegies Zwart, S.F.; Verbunt, F.; Yungelson, L.R. Population synthesis for double white dwarfs. II. Semi-detached systems: AM CVn stars. Astron. Astrophys. 2001, 368, 939–949. [Google Scholar] [CrossRef]
- Goliasch, J.; Nelson, L. Population Synthesis of Cataclysmic Variables. I. Inclusion of Detailed Nuclear Evolution. Astrophys. J. 2015, 809, 80. [Google Scholar] [CrossRef]
- Kupfer, T.; Korol, V.; Littenberg, T.B.; Shah, S.; Savalle, E.; Groot, P.J.; Marsh, T.R.; Le Jeune, M.; Nelemans, G.; Pala, A.F.; et al. LISA Galactic Binaries with Astrometry from Gaia DR3. Astrophys. J. 2024, 963, 100. [Google Scholar] [CrossRef]
- Scaringi, S.; Breivik, K.; Littenberg, T.B.; Knigge, C.; Groot, P.J.; Veresvarska, M. Cataclysmic variables are a key population of gravitational wave sources for LISA. Mon. Not. R. Astron. Soc. 2023, 525, L50–L55. [Google Scholar] [CrossRef]
- Patterson, J.; Fenton, W.H.; Thorstensen, J.R.; Harvey, D.A.; Skillman, D.R.; Fried, R.E.; Monard, B.; O’Donoghue, D.; Beshore, E.; Martin, B. Superhumps in Cataclysmic Binaries. XXIII. V442 Ophiuchi and RX J1643.7+3402. Publ. Astron. Soc. Pac. 2002, 114, 1364–1381. [Google Scholar] [CrossRef]
- Patterson, J.; Kemp, J.; Harvey, D.A.; Fried, R.E.; Rea, R.; Monard, B.; Cook, L.M.; Skillman, D.R.; Vanmunster, T.; Bolt, G. Superhumps in Cataclysmic Binaries. XXV. qcrit, ∈(q), and Mass-Radius. Publ. Astron. Soc. Pac. 2005, 117, 1204–1222. [Google Scholar] [CrossRef]
- Roelofs, G.H.A.; Groot, P.J.; Marsh, T.R.; Steeghs, D.; Barros, S.C.C.; Nelemans, G. SDSS J124058.03-015919.2: A new AM CVn star with a 37-min orbital period. Mon. Not. R. Astron. Soc. 2005, 361, 487–494. [Google Scholar] [CrossRef]
- Groot, P.J.; Nelemans, G.; Steeghs, D.; Marsh, T.R. The Quiescent Spectrum of the AM Canum Venaticorum Star CP Eridani. Astrophys. J. 2001, 558, L123–L127. [Google Scholar] [CrossRef]
- Levitan, D.; Fulton, B.J.; Groot, P.J.; Kulkarni, S.R.; Ofek, E.O.; Prince, T.A.; Shporer, A.; Bloom, J.S.; Cenko, S.B.; Kasliwal, M.M. PTF1 J071912.13+485834.0: An Outbursting AM CVn System Discovered by a Synoptic Survey. Astrophys. J. 2011, 739, 68–78. [Google Scholar] [CrossRef]
- Kotko, I.; Lasota, J.P.; Dubus, G.; Hameury, J.M. Models of AM Canum Venaticorum star outbursts. Astron. Astrophys. 2012, 544, A13–A27. [Google Scholar] [CrossRef]
- Hameury, J.M.; Lasota, J.P. Outbursts in ultracompact X-ray binaries. Astron. Astrophys. 2016, 594, A87–A96. [Google Scholar] [CrossRef]
- Isogai, K.; Kato, T.; Ohshima, T.; Kasai, K.; Oksanen, A.; Masumoto, K.; Fukushima, D.; Maeda, K.; Kawabata, M.; Matsuda, R.; et al. Superoutburst of CR Bootis: Estimation of mass ratio of a typical AM CVn star by stage A superhumps. Publ. Astron. Soc. Jpn. 2016, 68, 64. [Google Scholar] [CrossRef]
- Ulla, A. The X-ray properties of AM Canum Venaticorum. Astron. Astrophys. 1995, 301, 469–477. [Google Scholar]
- van Teeseling, A.; Verbunt, F. ROSAT X-ray observations of ten cataclysmic variables. Astron. Astrophys. 1994, 292, 519–533. [Google Scholar]
- van Teeseling, A.; Beuermann, K.; Verbunt, F. The X-ray source in non-magnetic cataclysmic variables. Astron. Astrophys. 1996, 315, 467–474. [Google Scholar]
- Strohmayer, T.E. Phase Coherent Timing of RX J0806.3+1527 with ROSAT and Chandra. Astrophys. J. 2003, 593, L39–L42. [Google Scholar] [CrossRef]
- Strohmayer, T.E. Chandra Observations of V407 Vulpeculae: Confirmation of the Spin-up. Astrophys. J. 2004, 610, 416–421. [Google Scholar] [CrossRef]
- Strohmayer, T.E. A Real-time View of Orbital Evolution in HM Cancri. Astrophys. J. 2021, 912, L8. [Google Scholar] [CrossRef]
- Kilic, M.; Hermes, J.J.; Gianninas, A.; Brown, W.R.; Heinke, C.O.; Agüeros, M.A.; Chote, P.; Sullivan, D.J.; Bell, K.J.; Harrold, S.T. Found: The progenitors of AM CVn and supernovae .Ia. Mon. Not. R. Astron. Soc. 2014, 438, L26–L30. [Google Scholar] [CrossRef]
- Kilic, M.; Brown, W.R.; Heinke, C.O.; Gianninas, A.; Benni, P.; Agüeros, M.A. Massive double white dwarfs and the AM CVn birthrate. Mon. Not. R. Astron. Soc. 2016, 460, 4176–4181. [Google Scholar] [CrossRef]
- Ramsay, G.; Hakala, P.; Marsh, T.; Nelemans, G.; Steeghs, D.; Cropper, M. XMM-Newton observations of AM CVn binaries. Astron. Astrophys. 2005, 440, 675–681. [Google Scholar] [CrossRef]
- Ramsay, G.; Groot, P.J.; Marsh, T.; Nelemans, G.; Steeghs, D.; Hakala, P. XMM-Newton observations of AM CVn binaries: V396 Hya and SDSS J1240-01. Astron. Astrophys. 2006, 457, 623–627. [Google Scholar] [CrossRef]
- Ramsay, G.; Brocksopp, C.; Groot, P.J.; Hakala, P.; Lehto, H.; Marsh, T.R.; Napiwotzki, R.; Nelemans, G.; Potter, S.; Slee, B. Recent Observational Progress in AM CVn Binaries. In Proceedings of the 15th European Workshop on White Dwarfs; Astronomical Society of the Pacific Conference Series; Napiwotzki, R., Burleigh, M.R., Eds.; Cambridge University Press: Cambridge, UK, 2007; Volume 372, pp. 425–430. [Google Scholar]
- Strohmayer, T.E. High-Resolution X-Ray Spectroscopy of RX J0806.3+1527 with Chandra. Astrophys. J. 2008, 679, L109. [Google Scholar] [CrossRef]
- Strohmayer, T.E. Detection of Nitrogen and Neon in the X-Ray Spectrum of GP Comae Berenices with XMM/Newton. Astrophys. J. 2004, 608, L53–L56. [Google Scholar] [CrossRef]
- Begari, T.; Maccarone, T.J. X-ray Luminosity Versus Orbital Period of AM CVn Systems. JAAVSO 2023, 51, 227. [Google Scholar] [CrossRef]
- Ramsay, G.; Wheatley, P.J.; Rosen, S.; Barclay, T.; Steeghs, D. Suppression of X-rays during an optical outburst of the helium dwarf nova KL Dra. Mon. Not. R. Astron. Soc. 2012, 425, 1486–1491. [Google Scholar] [CrossRef]
- Rivera Sandoval, L.E.; Maccarone, T.J. Swift X-ray and UV observations of SDSS J141118.31+481257.6 during its first ever recorded superoutburst. Mon. Not. R. Astron. Soc. 2019, 483, L6–L11. [Google Scholar] [CrossRef]
- Rivera Sandoval, L.E.; Maccarone, T.J.; Cavecchi, Y.; Britt, C.; Zurek, D. The outburst of a 60 min AM CVn reveals peculiar colour evolution: Implications for outbursts in long-period double white dwarfs. Mon. Not. R. Astron. Soc. 2021, 505, 215–222. [Google Scholar] [CrossRef]
- Wood, M.A. Synthetic direct impact light curves of the ultracompact AM CVn binary systems V407 Vul and HM Cnc. Mon. Not. R. Astron. Soc. 2009, 395, 378–385. [Google Scholar] [CrossRef]
- Cropper, M.; Ramsay, G.; Wu, K.; Hakala, P. REVIEW: Ultra-Short Period Double-Degenerate Binaries. In Proceedings of the IAU Colloq. 190: Magnetic Cataclysmic Variables; Astronomical Society of the Pacific Conference Series; Vrielmann, S., Cropper, M., Eds.; Cambridge University Press: Cambridge, UK, 2004; Volume 315, pp. 324–337. [Google Scholar]
- Barros, S.C.C.; Marsh, T.R.; Dhillon, V.S.; Groot, P.J.; Littlefair, S.; Nelemans, G.; Roelofs, G.; Steeghs, D.; Wheatley, P.J. ULTRACAM photometry of the ultracompact binaries V407 Vul and HM Cnc. Mon. Not. R. Astron. Soc. 2007, 374, 1334–1346. [Google Scholar] [CrossRef]
- Marsh, T.R.; Steeghs, D. V407 Vul: A direct impact accretor. Mon. Not. R. Astron. Soc. 2002, 331, L7–L11. [Google Scholar] [CrossRef]
- Dolence, J.; Wood, M.A.; Silver, I. SPH Simulations of Direct Impact Accretion in the Ultracompact AM CVn Binaries. Astrophys. J. 2008, 683, 375–382. [Google Scholar] [CrossRef]
- Israel, G.L.; Covino, S.; Stella, L.; Mauche, C.W.; Campana, S.; Marconi, G.; Hummel, W.; Mereghetti, S.; Munari, U.; Negueruela, I. Unveiling the Nature of the 321 Second Modulation in RX J0806.3+1527: Near-Simultaneous Chandra and Very Large Telescope Observations. Astrophys. J. 2003, 598, 492–500. [Google Scholar] [CrossRef]
- Ramsay, G. The X-ray spectrum of RX J1914.4+2456 revisited. Mon. Not. R. Astron. Soc. 2008, 384, 687–691. [Google Scholar] [CrossRef]
- Lewin, W.H.G.; Ricker, G.R.; McClintock, J.E. X-Rays from a New Variable Source GX 1+4. Astrophys. J. 1971, 169, L17. [Google Scholar] [CrossRef]
- Lima, I.J.; Luna, G.J.M.; Mukai, K.; Oliveira, A.S.; Sokoloski, J.L.; Walter, F.M.; Palivanas, N.; Nuñez, N.E.; Souza, R.R.; Araujo, R.A.N. Symbiotic stars in X-rays: IV. XMM-Newton, Swift, and TESS observations. Astron. Astrophys. 2024, 689, A86. [Google Scholar] [CrossRef]
- Allen, D.A. X-ray observations of symbiotic stars. Mon. Not. R. Astron. Soc. 1981, 197, 739–743. [Google Scholar] [CrossRef]
- Merc, J.; Gális, R.; Wolf, M. First Release of the New Online Database of Symbiotic Variables. Res. Notes Am. Astron. Soc. 2019, 3, 28. [Google Scholar] [CrossRef]
- Muerset, U.; Wolff, B.; Jordan, S. X-ray properties of symbiotic stars. II. Systems with colliding winds. Astron. Astrophys. 1997, 319, 201–210. [Google Scholar]
- Munari, U. Symbiotic novae. arXiv 2024, arXiv:2412.20499. [Google Scholar] [CrossRef]
- González-Riestra, R.; Viotti, R.F.; Iijima, T.; Rossi, C.; Montagni, F.; Bernabei, S.; Frasca, A.; Skopal, A. AG Draconis observed with XMM-Newton. Astron. Astrophys. 2008, 481, 725–734. [Google Scholar] [CrossRef]
- González-Riestra, R.; Selvelli, P.; Cassatella, A. XMM-Newton observations of RR Telescopii: Evidence for wind signatures and shocked gas emission. Astron. Astrophys. 2013, 556, A85. [Google Scholar] [CrossRef]
- Orio, M.; Zezas, A.; Munari, U.; Siviero, A.; Tepedelenlioglu, E. Two SMC Symbiotic Stars Undergoing Steady Hydrogen Burning. Astrophys. J. 2007, 661, 1105–1111. [Google Scholar] [CrossRef]
- Skopal, A.; Sekeráš, M.; González-Riestra, R.; Viotti, R.F. The origin of the supersoft X-ray-optical/UV flux anticorrelation in the symbiotic binary AG Draconis. Astron. Astrophys. 2009, 507, 1531–1539. [Google Scholar] [CrossRef]
- Ballard, L.; Orio, M.; Mikolajewska, J.; Ness, J.U.; Luna, G.J.M.; Dobrotka, A. Two Shell-burning White Dwarfs in Symbiotics of the Small Magellanic Cloud. Res. Notes Am. Astron. Soc. 2024, 8, 127. [Google Scholar] [CrossRef]
- Fujimoto, M.Y. A Theory of Hydrogen Shell Flashes on Accreting White Dwarfs - Part Two - the Stable Shell Burning and the Recurrence Period of Shell Flashes. Astrophys. J. 1982, 257, 767. [Google Scholar] [CrossRef]
- Kuuttila, J.; Gilfanov, M.; Woods, T.E.; Seitenzahl, I.R.; Ruiter, A.J. LIN 358: A symbiotic binary accreting above the steady hydrogen fusion limit. Mon. Not. R. Astron. Soc. 2021, 500, 3763–3775. [Google Scholar] [CrossRef]
- Skopal, A. Multiwavelength Modeling the SED of Luminous Supersoft X-Ray Sources in Large Magellanic Cloud and Small Magellanic Cloud. Astrophys. J. 2022, 164, 145. [Google Scholar] [CrossRef]
- Saeedi, S.; Sasaki, M.; Ducci, L. XMM-Newton study of the supersoft symbiotic system Draco C1. Mon. Not. R. Astron. Soc. 2018, 473, 440–446. [Google Scholar] [CrossRef]
- Saeedi, S.; Sasaki, M.; Stelzer, B.; Ducci, L. Classification of low-luminosity stellar X-ray sources in the field of the Draco dwarf spheroidal galaxy. Astron. Astrophys. 2019, 627, A128. [Google Scholar] [CrossRef]
- Saeedi, S.; Sasaki, M. XMM-Newton study of X-ray sources in the field of Willman 1 dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 2020, 499, 3111–3129. [Google Scholar] [CrossRef]
- Saeedi, S.; Sasaki, M. XMM-Newton study of the Sculptor dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 2022, 512, 5481–5503. [Google Scholar] [CrossRef]
- Chernyakova, M.; Courvoisier, T.J.L.; Rodriguez, J.; Lutovinov, A. INTEGRAL discovery of the new source IGR J12349-6434. Astron. Telegr. 2005, 519, 1. [Google Scholar]
- Tueller, J.; Gehrels, N.; Mushotzky, R.F.; Markwardt, C.B.; Kennea, J.A.; Burrows, D.N.; Mukai, K.; Sokoloski, J. Swift confirms identification of RT Cru as the IGR J12349-6434 hard x-ray source. Astron. Telegr. 2005, 591, 1. [Google Scholar]
- Masetti, N.; Bassani, L.; Bird, A.J.; Bazzano, A. Igr J12349-6434 = RT Cru? Astron. Telegr. 2005, 528, 1. [Google Scholar]
- Luna, G.J.M.; Sokoloski, J.L. The Nature of the Hard X-Ray-Emitting Symbiotic Star RT Cru. Astrophys. J. 2007, 671, 741–747. [Google Scholar] [CrossRef]
- Mushotzky, R.F.; Szymkowiak, A.E. Einstein Observatory Solid State Detector Observations of Cooling Flows in Clusters of Galaxies. In Cooling Flows in Clusters and Galaxies; NATO Advanced Study Institute (ASI) Series C; Fabian, A.C., Ed.; Springer: Berlin, Germany, 1988; Volume 229, p. 53. [Google Scholar] [CrossRef]
- Danehkar, A.; Karovska, M.; Drake, J.J.; Kashyap, V.L. Long-term X-ray variability of the symbiotic system RT Cru based on Chandra spectroscopy. Mon. Not. R. Astron. Soc. 2021, 500, 4801–4817. [Google Scholar] [CrossRef]
- Danehkar, A.; Drake, J.J.; Luna, G.J.M. X-ray Variability in the Symbiotic Binary RT Cru: Principal Component Analysis. arXiv 2024, arXiv:2406.17161. [Google Scholar] [CrossRef]
- Pujol, A.; Luna, G.J.M.; Mukai, K.; Sokoloski, J.L.; Kuin, N.P.M.; Walter, F.M.; Angeloni, R.; Nikolov, Y.; Lopes de Oliveira, R.; Nuñez, N.E.; et al. Taking a break: Paused accretion in the symbiotic binary RT Cru. Astron. Astrophys. 2023, 670, A32. [Google Scholar] [CrossRef]
- Luna, G.J.M.; Mukai, K.; Sokoloski, J.L.; Lucy, A.B.; Cusumano, G.; Segreto, A.; Jaque Arancibia, M.; Nuñez, N.E.; Puebla, R.E.; Nelson, T.; et al. X-ray, UV, and optical observations of the accretion disk and boundary layer in the symbiotic star RT Crucis. Astron. Astrophys. 2018, 616, A53. [Google Scholar] [CrossRef]
- Lopes de Oliveira, R.; Sokoloski, J.L.; Luna, G.J.M.; Mukai, K.; Nelson, T. SU Lyn: Diagnosing the Boundary Layer with UV and Hard X-Ray Data. Astrophys. J. 2018, 864, 46. [Google Scholar] [CrossRef]
- Eze, R.N.C.; Luna, G.J.M.; Smith, R.K. High-Resolution X-ray Spectra of the Symbiotic Star SS73 17. Astrophys. J. 2010, 709, 816–822. [Google Scholar] [CrossRef]
- Luna, G.J.M.; Sokoloski, J.L.; Mukai, K. High Energy X-ray Emission from Recurrent Novae in Quiescence: T CrB. In Proceedings of the RS Ophiuchi (2006) and the Recurrent Nova Phenomenon; Astronomical Society of the Pacific Conference Series; Evans, A., Bode, M.F., O’Brien, T.J., Darnley, M.J., Eds.; Cambridge University Press: Cambridge, UK, 2008; Volume 401, p. 342. [Google Scholar] [CrossRef]
- Mukai, K.; Ishida, M.; Kilbourne, C.; Mori, H.; Terada, Y.; Chan, K.W.; Soong, Y. An Apparent Hard X-Ray Decline of CH Cygni. Publ. Astron. Soc. Jpn. 2007, 59, 177–183. [Google Scholar] [CrossRef]
- Kennea, J.A.; Mukai, K.; Sokoloski, J.L.; Luna, G.J.M.; Tueller, J.; Markwardt, C.B.; Burrows, D.N. Swift Observations of Hard X-ray Emitting White Dwarfs in Symbiotic Stars. Astrophys. J. 2009, 701, 1992–2001. [Google Scholar] [CrossRef]
- Lutovinov, A.; Suleimanov, V.; Manuel Luna, G.J.; Sazonov, S.; de Martino, D.; Ducci, L.; Doroshenko, V.; Falanga, M. INTEGRAL View on cataclysmic variables and symbiotic binaries. NewAR 2020, 91, 101547. [Google Scholar] [CrossRef]
- Luna, G.J.M.; Sokoloski, J.L.; Mukai, K.; Nelson, T. Symbiotic stars in X-rays. Astron. Astrophys. 2013, 559, A6. [Google Scholar] [CrossRef]
- Galloway, D.K.; Sokoloski, J.L. An X-Ray Jet from a White Dwarf: Detection of the Collimated Outflow from CH Cygni with Chandra. Astrophys. J. 2004, 613, L61–L64. [Google Scholar] [CrossRef]
- Taylor, A.R.; Seaquist, E.R.; Mattei, J.A. A radio outburst and jet from the symbiotic star CH Cyg. Nature 1986, 319, 38–41. [Google Scholar] [CrossRef]
- Corradi, R.L.M.; Munari, U.; Livio, M.; Mampaso, A.; Gonçalves, D.R.; Schwarz, H.E. The Large-Scale Ionized Outflow of CH Cygni. Astrophys. J. 2001, 560, 912–918. [Google Scholar] [CrossRef]
- Karovska, M.; Gaetz, T.J.; Carilli, C.L.; Hack, W.; Raymond, J.C.; Lee, N.P. A Precessing Jet in the CH Cyg Symbiotic System. Astrophys. J. 2010, 710, L132–L136. [Google Scholar] [CrossRef]
- Kellogg, E.; Pedelty, J.A.; Lyon, R.G. The X-Ray System R Aquarii: A Two-sided Jet and Central Source. Astrophys. J. 2001, 563, L151–L155. [Google Scholar] [CrossRef]
- Sacchi, A.; Karovska, M.; Raymond, J.; Kashyap, V.; Gaetz, T.J.; Hack, W.; Kennea, J.; Lee, N.; Mioduszewski, A.J.; Claussen, M.J. Front-row Seat of the Recent R Aqr Periastron Passage: X-Ray Multiepoch Spectral and Spatial Analysis. Astrophys. J. 2024, 961, 12. [Google Scholar] [CrossRef]
- Lucy, A.B.; Sokoloski, J.L.; Munari, U.; Roy, N.; Kuin, N.P.M.; Rupen, M.P.; Knigge, C.; Darnley, M.J.; Luna, G.J.M.; Somogyi, P.; et al. Regulation of accretion by its outflow in a symbiotic star: The 2016 outflow fast state of MWC 560. Mon. Not. R. Astron. Soc. 2020, 492, 3107–3127. [Google Scholar] [CrossRef]
- Stute, M.; Luna, G.J.M.; Pillitteri, I.F.; Sokoloski, J.L. Detection of X-rays from the jet-driving symbiotic star Hen 3-1341. Astron. Astrophys. 2013, 554, A56. [Google Scholar] [CrossRef]
- Franckowiak, A.; Jean, P.; Wood, M.; Cheung, C.C.; Buson, S. Search for gamma-ray emission from Galactic novae with the Fermi -LAT. Astron. Astrophys. 2018, 609, A120. [Google Scholar] [CrossRef]
- Cheung, C.C.; Johnson, T.J.; Jean, P.; Kerr, M.; Page, K.L.; Osborne, J.P.; Beardmore, A.P.; Sokolovsky, K.V.; Teyssier, F.; Ciprini, S.; et al. Fermi LAT Gamma-ray Detection of the Recurrent Nova RS Ophiuchi during its 2021 Outburst. Astrophys. J. 2022, 935, 44. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Artero, M.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; Barres de Almeida, U.; et al. Proton acceleration in thermonuclear nova explosions revealed by gamma rays. Nat. Astron. 2022, 6, 689–697. [Google Scholar] [CrossRef]
- H. E. S. S. Collaboration; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Batzofin, R.; Becherini, Y.; et al. Time-resolved hadronic particle acceleration in the recurrent nova RS Ophiuchi. Science 2022, 376, 77–80. [Google Scholar] [CrossRef]
- Oegelman, H.; Beuermann, K.; Krautter, J. The detection of X-rays from nova MUSCAE 1983 with the EXOSAT satellite. Astrophys. J. 1984, 287, L31–L34. [Google Scholar] [CrossRef]
- Balman, Ş.; Krautter, J.; Ögelman, H. The X-Ray Spectral Evolution of Classical Nova V1974 Cygni 1992: A Reanalysis of the ROSAT Data. Astrophys. J. 1998, 499, 395–406. [Google Scholar] [CrossRef]
- Drake, J.J.; Ness, J.U.; Page, K.L.; Luna, G.J.M.; Beardmore, A.P.; Orio, M.; Osborne, J.P.; Mróz, P.; Starrfield, S.; Banerjee, D.P.K.; et al. The Remarkable Spin-down and Ultrafast Outflows of the Highly Pulsed Supersoft Source of Nova Herculis 2021. Astrophys. J. 2021, 922, L42. [Google Scholar] [CrossRef]
- Orio, M.; Melicherčík, M.; Ciroi, S.; Canton, V.; Aydi, E.; Buckley, D.A.H.; Dobrotka, A.; Luna, G.J.M.; Ness, J. V407 Lup, an intermediate polar nova. Mon. Not. R. Astron. Soc. 2024, 533, 1541–1549. [Google Scholar] [CrossRef]
- Diesing, R.; Metzger, B.D.; Aydi, E.; Chomiuk, L.; Vurm, I.; Gupta, S.; Caprioli, D. Evidence for multiple shocks from the γ-ray emission of RS Ophiuchi. arXiv 2022, arXiv:2211.02059. [Google Scholar] [CrossRef]
- Nelson, T.; Orio, M.; Cassinelli, J.P.; Still, M.; Leibowitz, E.; Mucciarelli, P. X-Ray Spectroscopy of the 2006 Outburst of RS Ophiuchi. Astrophys. J. 2008, 673, 1067–1079. [Google Scholar] [CrossRef]
- Ness, J.U.; Drake, J.J.; Starrfield, S.; Bode, M.F.; O’Brien, T.J.; Evans, A.; Eyres, S.P.S.; Helton, L.A.; Osborne, J.P.; Page, K.L.; et al. High-Resolution X-Ray Spectroscopy of the Evolving Shock in the 2006 Outburst of RS Ophiuchi. Astron. J. 2009, 137, 3414–3436. [Google Scholar] [CrossRef]
- Drake, J.J.; Delgado, L.; Laming, J.M.; Starrfield, S.; Kashyap, V.; Orlando, S.; Page, K.L.; Hernanz, M.; Ness, J.U.; Gehrz, R.D.; et al. Collimation and Asymmetry of the Hot Blast Wave from the Recurrent Nova V745 Sco. Astrophys. J. 2016, 825, 95. [Google Scholar] [CrossRef]
- Orlando, S.; Drake, J.J.; Laming, J.M. Three-dimensional modeling of the asymmetric blast wave from the 2006 outburst of RS Ophiuchi: Early X-ray emission. Astron. Astrophys. 2009, 493, 1049–1059. [Google Scholar] [CrossRef]
- Orlando, S.; Drake, J.J. Modelling the 2010 blast wave of the symbiotic-like nova V407 Cygni. Mon. Not. R. Astron. Soc. 2012, 419, 2329–2337. [Google Scholar] [CrossRef]
- Orlando, S.; Drake, J.J.; Miceli, M. Origin of asymmetries in X-ray emission lines from the blast wave of the 2014 outburst of nova V745 Sco. Mon. Not. R. Astron. Soc. 2017, 464, 5003–5017. [Google Scholar] [CrossRef]
- Orio, M.; Drake, J.J.; Ness, J.U.; Behar, E.; Luna, G.J.M.; Darnley, M.J.; Gallagher, J.; Gehrz, R.D.; Kuin, N.P.M.; Mikolajewska, J.; et al. Chandra High Energy Transmission Gratings Spectra of V3890 Sgr. Astrophys. J. 2020, 895, 80. [Google Scholar] [CrossRef]
- Orio, M.; Behar, E.; Luna, G.J.M.; Drake, J.J.; Gallagher, J.; Nichols, J.S.; Ness, J.U.; Dobrotka, A.; Mikolajewska, J.; Della Valle, M.; et al. Shocks in the Outflow of the RS Oph 2021 Eruption Observed with X-Ray Gratings. Astrophys. J. 2022, 938, 34. [Google Scholar] [CrossRef]
- Munari, U.; Giroletti, M.; Marcote, B.; O’Brien, T.J.; Veres, P.; Yang, J.; Williams, D.R.A.; Woudt, P. Radio interferometric imaging of RS Oph bipolar ejecta for the 2021 nova outburst. Astron. Astrophys. 2022, 666, L6. [Google Scholar] [CrossRef]
- Shara, M.M.; Lanzetta, K.M.; Masegian, A.; Garland, J.T.; Gromoll, S.; Mikolajewska, J.; Misiura, M.; Valls-Gabaud, D.; Walter, F.M.; Webb, J.K. The Newly Discovered Nova Super-remnant Surrounding Recurrent Nova T Coronae Borealis: Will it Light Up during the Coming Eruption? Astrophys. J. 2024, 977, L48. [Google Scholar] [CrossRef]
- Orio, M.; Gendreau, K.; Giese, M.; Luna, G.J.M.; Magdolen, J.; Strohmayer, T.E.; Zhang, A.E.; Altamirano, D.; Dobrotka, A.; Enoto, T.; et al. The RS Oph Outburst of 2021 Monitored in X-Rays with NICER. Astrophys. J. 2023, 955, 37. [Google Scholar] [CrossRef]
- Islam, N.; Mukai, K.; Sokoloski, J.L. X-Rays from RS Ophiuchi’s 2021 Eruption: Shocks In and Out of Ionization Equilibrium. Astrophys. J. 2024, 960, 125. [Google Scholar] [CrossRef]
- Iłkiewicz, K.; Mikołajewska, J.; Stoyanov, K.A. Symbiotic Star T CrB as an Extreme SU UMa-type Dwarf Nova. Astrophys. J. 2023, 953, L7. [Google Scholar] [CrossRef]
- Luna, G.J.M.; Carrera, R.; Enoto, T.; Mikolajewska, J.; Orio, M.; Ospina, N.; Aydi, E.; Carbajo-Hijarrubia, J.; Gendreau, K.; Maehara, H.; et al. Erratum for Atel #14872. Astron. Telegr. 2021, 14873, 1. [Google Scholar]
- Sokolovsky, K.; Aydi, E.; Chomiuk, L.; Strader, J.; Sokoloski, J.; Linford, J.; Mukai, K.; Buckley, D.A.H.; Mikolajewska, J.; Orio, M.; et al. NuSTAR hard X-ray detection and optical observations of Nova Scorpii 2023. Astron. Telegr. 2023, 16018, 1. [Google Scholar]
- Tofflemire, B.M.; Orio, M.; Page, K.L.; Osborne, J.P.; Ciroi, S.; Cracco, V.; Di Mille, F.; Maxwell, M. X-Ray Grating Observations of Recurrent Nova T Pyxidis during the 2011 Outburst. Astrophys. J. 2013, 779, 22. [Google Scholar] [CrossRef]
- Peretz, U.; Orio, M.; Behar, E.; Bianchini, A.; Gallagher, J.; Rauch, T.; Tofflemire, B.; Zemko, P. Chemical and Physical Parameters from X-Ray High-resolution Spectra of the Galactic Nova V959 Mon. Astrophys. J. 2016, 829, 2. [Google Scholar] [CrossRef]
- Shara, M.M.; Zurek, D.; Schaefer, B.E.; Bond, H.E.; Godon, P.; Mac Low, M.M.; Pagnotta, A.; Prialnik, D.; Sion, E.M.; Toraskar, J.; et al. HST Images Flash Ionization of Old Ejecta by the 2011 Eruption of Recurrent Nova T Pyxidis. Astrophys. J. 2015, 805, 148. [Google Scholar] [CrossRef]
- José, J.; Hernanz, M. Nucleosynthesis in Classical Novae: CO versus ONe White Dwarfs. Astrophys. J. 1998, 494, 680–690. [Google Scholar] [CrossRef]
- Starrfield, S.; Iliadis, C.; Hix, W.R.; Timmes, F.X.; Sparks, W.M. The Effects of the pep Nuclear Reaction and Other Improvements in the Nuclear Reaction Rate Library on Simulations of the Classical Nova Outburst. Astrophys. J. 2009, 692, 1532–1542. [Google Scholar] [CrossRef]
- Kelly, K.J.; Iliadis, C.; Downen, L.; José, J.; Champagne, A. Nuclear Mixing Meters for Classical Novae. Astrophys. J. 2013, 777, 130. [Google Scholar] [CrossRef]
- Lauffer, G.R.; Romero, A.D.; Kepler, S.O. New full evolutionary sequences of H- and He-atmosphere massive white dwarf stars using MESA. Mon. Not. R. Astron. Soc. 2018, 480, 1547–1562. [Google Scholar] [CrossRef]
- Siess, L. Evolution of massive AGB stars. II. model properties at non-solar metallicity and the fate of Super-AGB stars. Astron. Astrophys. 2007, 476, 893–909. [Google Scholar] [CrossRef]
- Iliadis, C.; Champagne, A.; Chieffi, A.; Limongi, M. The Effects of Thermonuclear Reaction Rate Variations on 26Al Production in Massive Stars: A Sensitivity Study. Astrophys. J. Suppl. 2011, 193, 16. [Google Scholar] [CrossRef]
- Bennett, M.B.; Wrede, C.; Chipps, K.A.; José, J.; Liddick, S.N.; Santia, M.; Bowe, A.; Chen, A.A.; Cooper, N.; Irvine, D.; et al. Classical-Nova Contribution to the Milky Way’s Al26 Abundance: Exit Channel of the Key Al25(p,γ)Si26 Resonance. Phys. Rev. Lett. 2013, 111, 232503. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, G.; Goswami, J.N.; Bhandari, N. 26Al in Eucrite Piplia Kalan: Plausible Heat Source and Formation Chronology. Science 1999, 284, 1348. [Google Scholar] [CrossRef]
- Contini, M.; Orio, M.; Prialnik, D. RS OPH at day 201: A test case for shocks in nova shells. Mon. Not. R. Astron. Soc. 1995, 275, 195–208. [Google Scholar] [CrossRef]
- Mitrani, S.; Behar, E.; Drake, J.J.; Orio, M.; Page, K.; Canton, V.; Ness, J.U.; Sokolovsky, K. Mixing of Hot Shocked Plasma with Cold Gas in Nova YZ Ret 2020. Astrophys. J. 2024, 970, 54. [Google Scholar] [CrossRef]
- Starrfield, S.; Timmes, F.X.; Iliadis, C.; Hix, W.R.; Arnett, W.D.; Meakin, C.; Sparks, W.M. Hydrodynamic Studies of the Evolution of Recurrent, Symbiotic and Dwarf Novae: The White Dwarf Components are Growing in Mass. Balt. Astron. 2012, 21, 76–87. [Google Scholar] [CrossRef]
- Wolf, W.M.; Bildsten, L.; Brooks, J.; Paxton, B. Hydrogen Burning on Accreting White Dwarfs: Stability, Recurrent Novae, and the Post-nova Supersoft Phase. Astrophys. J. 2013, 777, 136. [Google Scholar] [CrossRef]
- Rauch, T.; Orio, M.; Gonzales-Riestra, R.; Nelson, T.; Still, M.; Werner, K.; Wilms, J. Non-local Thermal Equilibrium Model Atmospheres for the Hottest White Dwarfs: Spectral Analysis of the Compact Component in Nova V4743 Sgr. Astrophys. J. 2010, 717, 363–371. [Google Scholar] [CrossRef]
- Ness, J.U.; Osborne, J.P.; Dobrotka, A.; Page, K.L.; Drake, J.J.; Pinto, C.; Detmers, R.G.; Schwarz, G.; Bode, M.F.; Beardmore, A.P.; et al. XMM-Newton X-ray and Ultraviolet Observations of the Fast Nova V2491 Cyg during the Supersoft Source Phase. Astrophys. J. 2011, 733, 70. [Google Scholar] [CrossRef]
- Pinto, C.; Ness, J.U.; Verbunt, F.; Kaastra, J.S.; Costantini, E.; Detmers, R.G. A phenomenological model for the X-ray spectrum of nova V2491 Cygni. Astron. Astrophys. 2012, 543, A134. [Google Scholar] [CrossRef]
- Balman, Ş.; Gamsızkan, Ç. Reanalysis of high-resolution XMM-Newton data of V2491 Cygni using models of collisionally ionized hot absorbers. A&A 2017, arXiv:astro-ph.HE/1610.08440]598, A129–A141. [Google Scholar]
- Orio, M.; Dobrotka, A.; Pinto, C.; Henze, M.; Ness, J.U.; Ospina, N.; Pei, S.; Behar, E.; Bode, M.F.; Her, S.; et al. Nova LMC 2009a as observed with XMM-Newton, compared with other novae. Mon. Not. R. Astron. Soc. 2021, 505, 3113–3134. [Google Scholar] [CrossRef]
- Ness, J.U.; Beardmore, A.P.; Bezak, P.; Dobrotka, A.; Drake, J.J.; Vander Meulen, B.; Osborne, J.P.; Orio, M.; Page, K.L.; Pinto, C.; et al. The super-soft source phase of the recurrent nova V3890 Sgr. Astron. Astrophys. 2022, 658, A169. [Google Scholar] [CrossRef]
- Orio, M.; Behar, E.; Gallagher, J.; Bianchini, A.; Chiosi, E.; Luna, G.J.M.; Nelson, T.; Rauch, T.; Schaefer, B.E.; Tofflemire, B. Thomson scattering and collisional ionization in the X-ray grating spectra of the recurrent nova U Scorpii. Mon. Not. R. Astron. Soc. 2013, 429, 1342–1353. [Google Scholar] [CrossRef]
- Beardmore, A.P.; Osborne, J.P.; Page, K.L.; Hakala, P.J.; Schwarz, G.J.; Rauch, T.; Balman, S.; Evans, P.A.; Goad, M.R.; Ness, J.U.; et al. The outburst of Nova CSS 081007:030559+054715 (HV Ceti). Astron. Astrophys. 2012, 545, A116. [Google Scholar] [CrossRef]
- Sala, G.; Ness, J.U.; Hernanz, M.; Greiner, J. The supersoft X-ray source in V5116 Sagittarius I. The high resolution spectra. Astron. Astrophys. 2017, 601, A93. [Google Scholar] [CrossRef]
- Orio, M.; Greiner, J. LMC 1995, the third supersoft X-ray nova. Astron. Astrophys. 1999, 344, L13–L16. [Google Scholar]
- Orio, M.; Ness, J.U.; Dobrotka, A.; Gatuzz, E.; Ospina, N.; Aydi, E.; Behar, E.; Buckley, D.A.H.; Ciroi, S.; Della Valle, M.; et al. What We Learn from the X-Ray Grating Spectra of Nova SMC 2016. Astrophys. J. 2018, 862, 164. [Google Scholar] [CrossRef]
- Gatuzz, E.; Ness, J.U.; Gorczyca, T.W.; Hasoglu, M.F.; Kallman, T.R.; García, J.A. Carbon X-ray absorption in the local ISM: Fingerprintsin X-ray Novae spectra. Mon. Not. R. Astron. Soc. 2018, 479, 2457–2463. [Google Scholar] [CrossRef]
- Drake, J.J.; Wagner, R.M.; Starrfield, S.; Butt, Y.; Krautter, J.; Bond, H.E.; Della Valle, M.; Gehrz, R.D.; Woodward, C.E.; Evans, A.; et al. The Extraordinary X-ray Light Curve of the Classical Nova V1494 Aquilae (1999 No. 2) in Outburst: The Discovery of Pulsations and a “Burst”. Astrophys. J. 2003, 584, 448–452. [Google Scholar] [CrossRef]
- Ness, J.U.; Starrfield, S.; Burwitz, V.; Wichmann, R.; Hauschildt, P.; Drake, J.J.; Wagner, R.M.; Bond, H.E.; Krautter, J.; Orio, M.; et al. A Chandra Low Energy Transmission Grating Spectrometer Observation of V4743 Sagittarii: A Supersoft X-Ray Source and a Violently Variable Light Curve. Astrophys. J. 2003, 594, L127–L130. [Google Scholar] [CrossRef]
- Ness, J.U.; Schaefer, B.E.; Dobrotka, A.; Sadowski, A.; Drake, J.J.; Barnard, R.; Talavera, A.; Gonzalez-Riestra, R.; Page, K.L.; Hernanz, M.; et al. From X-Ray Dips to Eclipse: Witnessing Disk Reformation in the Recurrent Nova U Sco. Astrophys. J. 2012, 745, 43. [Google Scholar] [CrossRef]
- Ness, J.U.; Beardmore, A.P.; Bode, M.F.; Darnley, M.J.; Dobrotka, A.; Drake, J.J.; Magdolen, J.; Munari, U.; Osborne, J.P.; Orio, M.; et al. High-resolution X-ray spectra of RS Ophiuchi (2006 and 2021): Revealing the cause of SSS variability. Astron. Astrophys. 2023, 670, A131. [Google Scholar] [CrossRef]
- Osborne, J.P.; Page, K.L.; Beardmore, A.P.; Bode, M.F.; Goad, M.R.; O’Brien, T.J.; Starrfield, S.; Rauch, T.; Ness, J.U.; Krautter, J.; et al. The Supersoft X-ray Phase of Nova RS Ophiuchi 2006. Astrophys. J. 2011, 727, 124. [Google Scholar] [CrossRef]
- Leibowitz, E.; Orio, M.; Gonzalez-Riestra, R.; Lipkin, Y.; Ness, J.U.; Starrfield, S.; Still, M.; Tepedelenlioglu, E. Variability and multiperiodic oscillations in the X-ray light curve of the classical nova V4743 Sgr. Mon. Not. R. Astron. Soc. 2006, 371, 424–430. [Google Scholar] [CrossRef]
- Dobrotka, A.; Ness, J.U. Counter-evidence against multiple frequency nature of 0.75 mHz oscillation in V4743 Sgr. Mon. Not. R. Astron. Soc. 2017, 467, 4865–4871. [Google Scholar] [CrossRef]
- Zemko, P.; Orio, M.; Mukai, K.; Bianchini, A.; Ciroi, S.; Cracco, V. V4743 Sgr, a magnetic nova? Mon. Not. R. Astron. Soc. 2016, arXiv:astro-ph.SR/1606.00225]460, 2744–2751. [Google Scholar] [CrossRef]
- Zemko, P.; Ciroi, S.; Orio, M.; Odendaal, A.; Shugarov, S.; Barsukova, E.; Bianchini, A.; Cracco, V.; Gabdeev, M.; Goranskij, V.; et al. Optical observations of `hot’ novae returning to quiescence. Mon. Not. R. Astron. Soc. 2018, 480, 4489–4504. [Google Scholar] [CrossRef]
- Aydi, E.; Orio, M.; Beardmore, A.P.; Ness, J.U.; Page, K.L.; Kuin, N.P.M.; Walter, F.M.; Buckley, D.A.H.; Mohamed, S.; Whitelock, P.; et al. Multiwavelength observations of V407 Lupi (ASASSN-16kt)—A very fast nova erupting in an intermediate polar. Mon. Not. R. Astron. Soc. 2018, 480, 572–609. [Google Scholar] [CrossRef]
- Ness, J.U.; Starrfield, S.; Beardmore, A.P.; Bode, M.F.; Drake, J.J.; Evans, A.; Gehrz, R.D.; Goad, M.R.; Gonzalez-Riestra, R.; Hauschildt, P.; et al. The SSS Phase of RS Ophiuchi Observed with Chandra and XMM-Newton. I. Data and Preliminary Modeling. Astrophys. J. 2007, 665, 1334. [Google Scholar] [CrossRef]
- Pei, S.; Orio, M.; Gendreau, K.; Mikolajewska, J.; Aydi, E.; Azourmanian, Z.; Buckley, D.; Carrera, R.; Carbajo-Hijarrubia, J.; Enoto, T.; et al. Spectral and flux variability in NICER observations and optical spectra of RS Oph. Astron. Telegr. 2021, 14901, 1. [Google Scholar]
- Wolf, W.M.; Townsend, R.H.D.; Bildsten, L. Nonradial Pulsations in Post-outburst Novae. Astrophys. J. 2018, 855, 127. [Google Scholar] [CrossRef]
- Mason, E.; Orio, M.; Mukai, K.; Bianchini, A.; de Martino, D.; di Mille, F.; Williams, R.E.; Abbot, T.; de Propris, R.; Luna, G.J.M. On the nature of CP Pup. Mon. Not. R. Astron. Soc. 2013, 436, 212–221. [Google Scholar] [CrossRef]
- Zemko, P.; Mukai, K.; Orio, M. Suzaku Observation of the Classical Nova V2491 Cyg in Quiescence. Astrophys. J. 2015, 807, 61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balman, Ş.; Orio, M.; Luna, G.J.M. Broad Observational Perspectives Achieved by the Accreting White Dwarf Sciences in the XMM-Newton and Chandra Eras. Universe 2025, 11, 105. https://doi.org/10.3390/universe11040105
Balman Ş, Orio M, Luna GJM. Broad Observational Perspectives Achieved by the Accreting White Dwarf Sciences in the XMM-Newton and Chandra Eras. Universe. 2025; 11(4):105. https://doi.org/10.3390/universe11040105
Chicago/Turabian StyleBalman, Şölen, Marina Orio, and Gerardo J. M. Luna. 2025. "Broad Observational Perspectives Achieved by the Accreting White Dwarf Sciences in the XMM-Newton and Chandra Eras" Universe 11, no. 4: 105. https://doi.org/10.3390/universe11040105
APA StyleBalman, Ş., Orio, M., & Luna, G. J. M. (2025). Broad Observational Perspectives Achieved by the Accreting White Dwarf Sciences in the XMM-Newton and Chandra Eras. Universe, 11(4), 105. https://doi.org/10.3390/universe11040105