Are the Galaxies with Indefinitely Flat Circular Velocities Located Inside Large Dark Matter Haloes?
Abstract
:1. Introduction
2. MOND’s Prediction
3. The Theoretical Framework Describing a Galaxy Group
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertone, G.; Tait, T.M.P. A new era in the search for dark matter. Nature 2018, 562, 51. [Google Scholar] [PubMed]
- Cirelli, M.; Strumia, A.; Zupan, J. Dark matter. arXiv 2024, arXiv:2406.01705. [Google Scholar]
- Sanders, R.H.; McGaugh, S.S. Modified Newtonian Dynamics as an alternative to dark matter. Annu. Rev. Astron. Astrophys. 2002, 40, 263. [Google Scholar]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365. [Google Scholar]
- Verlinde, E.P. Emergent gravity and the dark universe. SciPost Phys. 2017, 2, 016. [Google Scholar]
- Abercrombie, D.; Akchurin, N.; Akilli, E.; Maestre, J.A.; Allen, B.; Gonzalez, B.A.; Andrea, J.; Arbey, A.; Azuelos, G.; Azzi, P.; et al. Dark matter benchmark models for early LHC run-2 searches: Report of the ATLAS/CMS dark matter forum. Phys. Dark Universe 2020, 27, 100371. [Google Scholar]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Baudis, L.; Bauermeister, B.; et al. Dark matter search results from a one ton-year exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar]
- Chan, M.H.; Lee, C.M. A new method to constrain annihilating dark matter. Mon. Not. R. Astron. Soc. 2023, 524, L61. [Google Scholar]
- Beck, G.; Sarkis, M. Galaxy clusters in high definition: A dark matter search. Phys. Rev. D 2023, 107, 023006. [Google Scholar]
- McGaugh, S.S.; Lelli, F.; Schombert, J.M. Radial acceleration relation in rotationally supported galaxies. Phys. Rev. Lett. 2016, 117, 201101. [Google Scholar]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M.; Desmond, H.; Katz, H. The baryonic Tully-Fisher relation for different velocity definitions and implications for galaxy angular momentum. Mon. Not. R. Astron. Soc. 2019, 484, 3267. [Google Scholar] [CrossRef]
- Chae, K.-H.; Bernardi, M.; Sanchez, H.D.; Sheth, R.K. On the presence of a universe acceleration scale in elliptical galaxies. Astrophys. J. 2020, 903, L31. [Google Scholar]
- Chan, M.H.; Law, K.C. A severe challenge to the Modified Newtonian Dynamics phenomenology in our Galaxy. Astrophys. J. 2023, 957, 24. [Google Scholar] [CrossRef]
- Chan, M.H.; Del Popolo, A. The radial acceleration relation in galaxy clusters. Mon. Not. R. Astron. Soc. 2020, 492, 5865. [Google Scholar] [CrossRef]
- Chan, M.H.; Desai, S.; Del Popolo, A. There is no universal acceleration scale in galaxies. Publ. Astron. Soc. Jpn. 2022, 74, 1441. [Google Scholar]
- Tian, Y.; Umetsu, K.; Ko, C.-M.; Donahue, M.; Chiu, I.N. The radial acceleration relation in CLASH galaxy clusters. Astrophys. J. 2020, 896, 70. [Google Scholar]
- Gopika, K.; Desai, S. A test of constancy of dark matter halo surface density and radial acceleration relation in relaxed galaxy groups. Phys. Dark Universe 2021, 33, 100874. [Google Scholar]
- Dabringhausen, J.; Kroupa, P. The integrated galaxy-wide stellar initial mass function over the radial acceleration range of early-type galaxies. Mon. Not. R. Astron. Soc. 2023, 526, 2301. [Google Scholar] [CrossRef]
- Stone, C.; Courteau, S. The intrinsic scatter of the radial acceleration relation. Astrophys. J. 2019, 882, 6. [Google Scholar]
- Paranjape, A.; Sheth, R.K. The radial acceleration in a ΛCDM universe. Mon. Not. R. Astron. Soc. 2021, 507, 632. [Google Scholar]
- Mistele, T.; McGaugh, S.; Lelli, F.; Schombert, J.; Li, P. Indefinitely flat circular velocities and the Baryonic Tully-Fisher relation from weak lensing. Astrophys. J. 2024, 969, L3. [Google Scholar] [CrossRef]
- Dutton, A.A.; Macció, A.V.; Obreja, A.; Buck, T. NIHAO-XVII. Origin of the MOND phenomenology of galactic rotation curves in a ΛCDM universe. Mon. Not. R. Astron. Soc. 2019, 485, 1886. [Google Scholar] [CrossRef]
- Freeman, K.C. On the disks of spiral and S0 galaxies. Astrophys. J. 1970, 160, 811. [Google Scholar] [CrossRef]
- Sofue, Y. Grand rotation curve and dark matter halo in the Milky Way Galaxy. Publ. Astron. Soc. Jpn. 2012, 64, 75. [Google Scholar] [CrossRef]
- Reiprich, T.H.; Böhringer, H. The mass function of an X-ray flux-limited sample of galaxy clusters. Astrophys. J. 2001, 567, 716. [Google Scholar] [CrossRef]
- Chen, Y.; Reiprich, T.H.; Böhringer, H.; Ikebe, Y.; Zhang, Y.-Y. Statistics of X-ray observables for the cooling-core and non-cooling galaxy clusters. Astron. Astrophys. 2007, 466, 805. [Google Scholar] [CrossRef]
- Biffi, V.; Borgani, S.; Murante, G.; Rasia, E.; Planelles, S.; Granato, G.L.; Ragone-Figueroa, C.; Back, A.M.; Gaspari, M.; Dolag, K. On the nature of hydrostatic equilibrium in galaxy clusters. Astrophys. J. 2016, 827, 112. [Google Scholar] [CrossRef]
- Logan, C.H.A.; Maughan, B.J.; Diaferio, A.; Duffy, R.T.; Geller, M.J.; Rines, K.; Sohn, J. Chandra follow-up of the Hectospec Cluster Survey: Comparison of caustic and hydrostatic masses and constraints on the hydrostatic bias. Astron. Astrophys. 2022, 665, A124. [Google Scholar] [CrossRef]
- Reiprich, T.H.; Basu, K.; Ettori, S.; Israel, H.; Lovisari, L.; Molendi, S.; Pointecouteau, E.; Roncarelli, M. Outskirts of galaxy clusters. Sp. Sci. Rev. 2013, 177, 195. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The structure of cold dark matter halos. Astrophys. J. 1996, 462, 563. [Google Scholar] [CrossRef]
- Lin, H.-N.; Li, X. The dark matter profiles in the Milky Way. Mon. Not. R. Astron. Soc. 2019, 487, 5679. [Google Scholar]
- Kravtsov, A.V.; Vikhlinin, A.A.; Meshcheryakov, A.V. Stellar mass-halo mass relation and star formation efficiency in high-mass halos. Astron. Lett. 2018, 44, 8. [Google Scholar]
- Macciò, A.V.; Dutton, A.A.; van den Bosch, F.C. Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results. Mon. Not. R. Astron. Soc. 2008, 391, 1940. [Google Scholar]
- Moore, B.; Ghigna, S.; Governato, F.; Lake, G.; Quinn, T.; Stadel, J.; Tozzi, P. Dark matter substructure within galactic halos. Astrophys. J. 1999, 524, L19. [Google Scholar]
- Simon, J.D.; Geha, M. The kinematics of the ultra-faint Milky Way satellites: Solving the missing satellite problem. Astrophys. J. 2007, 670, 313. [Google Scholar]
- Adams, E.A.K.; Giovanelli, R.; Haynes, M.P. A catalog of ultra-compact high velocity clouds from the ALFALFA survey: Local Group galaxy candidates? Astrophys. J. 2013, 768, 77. [Google Scholar]
- Kim, S.Y.; Peter, A.H.G.; Hargis, J.R. Missing satellites problem: Completeness corrections to the number of satellite galaxies in the Milky Way are consistent with cold dark matter predictions. Phys. Rev. Lett. 2018, 121, 211302. [Google Scholar]
- Belokurov, V.; Zucker, D.B.; Evans, N.W.; Kleyna, J.T.; Koposov, S.; Hodgkin, S.T.; Irwin, M.J.; Gilmore, G.; Wilkinson, M.I.; Fellhauer, M.; et al. Cats and dogs, hair and a hero: A quintet of new Milky Way companions. Astrophys. J. 2007, 654, 897. [Google Scholar]
- Willman, B.; Geha, M.; Strader, J.; Strigari, L.E.; Simon, J.D.; Kirby, E.; Ho, N.; Warres, A. Willman 1—A probable dwarf galaxy with an irregular kinematic distribution. Astron. J. 2011, 142, 128. [Google Scholar]
- Kelley, T.; Bullock, J.S.; Garrison-Kimmel, S.; Boylan-Kolchin, M.; Pawlowski, M.S.; Graus, A.S. Phat ELVIS: The inevitable effect of the Milky Way’s disc on its dark matter subhaloes. Mon. Not. R. Astron. Soc. 2019, 487, 4409. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, M.H.; Zhang, Y.; Del Popolo, A. Are the Galaxies with Indefinitely Flat Circular Velocities Located Inside Large Dark Matter Haloes? Universe 2025, 11, 104. https://doi.org/10.3390/universe11040104
Chan MH, Zhang Y, Del Popolo A. Are the Galaxies with Indefinitely Flat Circular Velocities Located Inside Large Dark Matter Haloes? Universe. 2025; 11(4):104. https://doi.org/10.3390/universe11040104
Chicago/Turabian StyleChan, Man Ho, Yangzhanhao Zhang, and Antonino Del Popolo. 2025. "Are the Galaxies with Indefinitely Flat Circular Velocities Located Inside Large Dark Matter Haloes?" Universe 11, no. 4: 104. https://doi.org/10.3390/universe11040104
APA StyleChan, M. H., Zhang, Y., & Del Popolo, A. (2025). Are the Galaxies with Indefinitely Flat Circular Velocities Located Inside Large Dark Matter Haloes? Universe, 11(4), 104. https://doi.org/10.3390/universe11040104