On Energy-Momentum Conservation in Non-Minimal Geometry-Matter Coupling Theories
Abstract
1. Introduction
2. Field Equations of Gravity
3. Model Coupled to NED
3.1. Linear Case:
3.2. General Case
3.3. Invariant NEDs
3.3.1. Linear Case:
3.3.2. Power-Law Case:
4. Model Coupled to Scalar Matter
5. Model Coupled to Several Sources
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Knop, R.A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M.S.; Conley, A.; Deustua, S.E.; Doi, M.; Ellis, R.; et al. New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope. Astrophys. J. 2003, 598, 102. [Google Scholar] [CrossRef]
- Amanullah, R.; Lidman, C.; Rubin, D.; Aldering, G.; Astier, P.; Barbary, K.; Burns, M.S.; Conley, A.; Dawson, K.S.; Deustua, S.E.; et al. Spectra and Hubble Space Telescope Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation. Astrophys. J. 2010, 716, 712. [Google Scholar]
- Weinberg, D.H.; Mortonson, M.J.; Eisenstein, D.J.; Hirata, C.; Riess, A.G.; Rozo, E. Observational probes of cosmic acceleration. Phys. Rep. 2013, 530, 87. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck Collaboration]. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar]
- Di Valentino, E. et al. [CosmoVerse Network]. The CosmoVerse White Paper: Addressing observational tensions in cosmology with systematics and fundamental physics. Phys. Dark Univ. 2025, 49, 101965. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the Realm of the Hubble tension—A Review of Solutions. Class. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. f(R, Lm) gravity. Eur. Phys. J. C 2010, 70, 373–379. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R, T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Katırcı, N.; Kavuk, M. f(R, TμνTμν) gravity and Cardassian-like expansion as one of its consequences. Eur. Phys. J. Plus 2014, 129, 163. [Google Scholar] [CrossRef]
- Haghani, Z.; Harko, T.; Lobo, F.S.N.; Sepangi, H.R.; Shahidi, S. Further matters in space-time geometry: f(R, T, RμνTμν) gravity. Phys. Rev. D 2013, 88, 044023. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Otalora, G.; Saridakis, E.N. f(T, ) gravity and cosmology. JCAP 2014, 12, 021. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Otalora, G.; Saridakis, E.N. Nonminimal torsion-matter coupling extension of f(T) gravity. Phys. Rev. D 2014, 89, 124036. [Google Scholar] [CrossRef]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. Coupling matter in modified Q gravity. Phys. Rev. D 2018, 98, 084043. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Saridakis, E.N. Gravitationally Induced Particle Production through a Nonminimal Torsion–Matter Coupling. Universe 2021, 7, 227. [Google Scholar] [CrossRef]
- Bertolami, O.; Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Extra force in f(R) modified theories of gravity. Phys. Rev. D 2007, 75, 104016. [Google Scholar] [CrossRef]
- Harko, T. Thermodynamic interpretation of the generalized gravity models with geometry-matter coupling. Phys. Rev. D 2014, 90, 044067. [Google Scholar] [CrossRef]
- Pinto, M.A.S.; Harko, T.; Lobo, F.S.N. Irreversible Geometrothermodynamics of Open Systems in Modified Gravity. Entropy 2023, 25, 944. [Google Scholar] [CrossRef]
- Azevedo, R.P.L.; Avelino, P.P. Second law of thermodynamics in nonminimally coupled gravity. EPL 2020, 132, 30005. [Google Scholar] [CrossRef]
- Avelino, P.P.; Azevedo, R.P.L. On-shell Lagrangian of an ideal gas. Phys. Rev. D 2022, 105, 104005. [Google Scholar] [CrossRef]
- Fisher, S.B.; Carlson, E.D. Reexamining f(R, T) gravity. Phys. Rev. D 2019, 100, 064059. [Google Scholar] [CrossRef]
- Lacombe, O.; Mukohyama, S.; Seitz, J. Are f(R, Matter) theories really relevant to cosmology? J. Cosmol. Astropart. Phys. 2024, 5, 64. [Google Scholar] [CrossRef]
- Akarsu, Ö.; Bouhmadi-López, M.; Katırcı, N.; Nazari, E.; Roshan, M.; Uzun, N.M. Equivalence of matter-type modified gravity theories to general relativity with nonminimal matter interaction. Phys. Rev. D 2024, 109, 104055. [Google Scholar] [CrossRef]
- Pinto, M.A.S.; Maluf, R.V.; Olmo, G.J. Regular black hole solutions in (2+1)-dimensional f(R, T) gravity coupled to nonlinear electrodynamics. Eur. Phys. J. C 2025, 85, 835. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmo, G.J.; Pinto, M.A.S. On Energy-Momentum Conservation in Non-Minimal Geometry-Matter Coupling Theories. Universe 2025, 11, 386. https://doi.org/10.3390/universe11120386
Olmo GJ, Pinto MAS. On Energy-Momentum Conservation in Non-Minimal Geometry-Matter Coupling Theories. Universe. 2025; 11(12):386. https://doi.org/10.3390/universe11120386
Chicago/Turabian StyleOlmo, Gonzalo J., and Miguel A. S. Pinto. 2025. "On Energy-Momentum Conservation in Non-Minimal Geometry-Matter Coupling Theories" Universe 11, no. 12: 386. https://doi.org/10.3390/universe11120386
APA StyleOlmo, G. J., & Pinto, M. A. S. (2025). On Energy-Momentum Conservation in Non-Minimal Geometry-Matter Coupling Theories. Universe, 11(12), 386. https://doi.org/10.3390/universe11120386
