Study of Transverse-Spherocity Biased pp Collisions at the LHC Energies Using the PYTHIA 8 Event Generator
Abstract
:1. Introduction
2. Spherocity and PYTHIA 8 Event Generators
3. Average Transverse Momentum as a Function of Multiplicity and Spherocity
3.1. Color Reconnection Effects
3.2. Impact of Jets on Mean
4. Conclusions
- Regarding color reconnection, we show that slightly decreasing the reconnection range parameter notably reduces the discrepancy, improving the agreement for jetty events but keeping the third increase of the average with multiplicity. The reduction affects the results for isotropic pp collisions in the full measured multiplicity range. Other predictions like multiplicity distributions are still in agreement with data within 20%. Results from a new color reconnection model based on QCD rules yield the same predictions as PYTHIA 8 Monash for both jetty and isotropic events.
- Regarding the impact of jets at high multiplicity, PYTHIA 8 Monash is known to overestimate jet production, in particular at high multiplicities. Based on comparisons between jet yields measured in INEL > 0 collisions, the jet excess in PYTHIA 8 Monash relative to data was estimated and used to obtain a rough estimate of the potential impact of this discrepancy on . We define the survival probability of the event based on a data-motivated selection criterion applied to the leading jet. With this implementation, PYTHIA 8 Monash keeps a very good description of the data in isotropic events, but it reconciles the simulation with experimental measurements for d/d ≲ 30 in jetty events. If the selectivity in PYTHIA 8 Monash is applied to both leading and subleading jets, the agreement between data and PYTHIA 8 Monash for jetty events becomes significantly improved in the full multiplicity interval. The results suggest that the third rise of the average for in PYTHIA 8 Monash can be attributed to the presence of multijet topologies. The implication is that, in data, high multiplicities may be dominated by minijet topologies (MPI) rather than by multijet final states.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nagle, J.L.; Zajc, W.A. Small System Collectivity in Relativistic Hadronic and Nuclear Collisions. Ann. Rev. Nucl. Part. Sci. 2018, 68, 211–235. [Google Scholar] [CrossRef]
- Bzdak, A.; Schenke, B.; Tribedy, P.; Venugopalan, R. Initial state geometry and the role of hydrodynamics in proton-proton, proton-nucleus and deuteron-nucleus collisions. Phys. Rev. C 2013, 87, 064906. [Google Scholar] [CrossRef]
- Dusling, K.; Venugopalan, R. Evidence for BFKL and saturation dynamics from dihadron spectra at the LHC. Phys. Rev. D 2013, 87, 051502. [Google Scholar] [CrossRef]
- Mäntysaari, H.; Schenke, B.; Shen, C.; Tribedy, P. Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC. Phys. Lett. B 2017, 772, 681–686. [Google Scholar] [CrossRef]
- Greif, M.; Greiner, C.; Schenke, B.; Schlichting, S.; Xu, Z. Importance of initial and final state effects for azimuthal correlations in p+Pb collisions. Phys. Rev. D 2017, 96, 091504. [Google Scholar] [CrossRef]
- Schenke, B.; Venugopalan, R. Eccentric protons? sensitivity of flow to system size and shape in p + p, p + Pb, and Pb + Pb collisions. Phys. Rev. Lett. 2014, 113, 102301. [Google Scholar] [CrossRef] [PubMed]
- Sjöstrand, T.; Ask, S.; Christiansen, J.R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C.O.; Skands, P.Z. An introduction to PYTHIA 8.2. Comput. Phys. Commun. 2015, 191, 159–177. [Google Scholar] [CrossRef]
- Bierlich, C.; Gustafson, G.; Lönnblad, L.; Tarasov, A. Effects of overlapping strings in pp collisions. J. High Energy Phys. 2015, 2015, 148. [Google Scholar] [CrossRef]
- Skands, P.; Carrazza, S.; Rojo, J. Tuning PYTHIA 8.1: The monash 2013 tune. Eur. Phys. J. C 2014, 74, 3024. [Google Scholar] [CrossRef]
- Ortiz, A.; Christiansen, P.; Flores, E.C.; Cervantes, I.M.; Paić, G. Color reconnection and flowlike patterns in p p collisions. Phys. Rev. Lett. 2013, 111, 042001. [Google Scholar] [CrossRef]
- Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski, J.; et al. The Multiplicity dependence of inclusive pt spectra from pp collisions at = 200-GeV. Phys. Rev. D 2006, 74, 032006. [Google Scholar] [CrossRef]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Aoki, K.; Aphecetche, L.; Armendariz, R.; et al. Identified charged hadron production in p + p collisions at = 200 and 62.4 GeV. Phys. Rev. C 2011, 83, 064903. [Google Scholar] [CrossRef]
- Aamodt, K.; Abel, N.; Abeysekara, U.; Quintana, A.A.; Abramyan, A.; Adamová, D.; Aggarwal, M.M.; Rinella, G.A.; Agocs, A.G.; Salazar, S.A.; et al. Transverse momentum spectra of charged particles in proton–proton collisions at = 900 gev with ALICE at the LHC. Phys. Lett. B 2010, 693, 53–68. [Google Scholar] [CrossRef]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; et al. Charged Particle Multiplicities in pp Interactions at = 0.9, 2.36, and 7 TeV. J. High Energy Phys. 2011, 1, 79. [Google Scholar] [CrossRef]
- Aad, G.; Borjanović, I.; Božović-Jelisavčić, I.; Krstić, J.; Mamužić, J.; Mudrinić, M.; Popović, D.S.; Reljić, D.; Sijacki, D.; Simić, L.; et al. Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC. New J. Phys. 2011, 13, 053033. [Google Scholar] [CrossRef]
- Adam, J.; Adamová, D.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.U.; Aiola, S.; Akindinov, A.; et al. Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at = 13 TeV. Phys. Lett. B 2016, 753, 319–329. [Google Scholar] [CrossRef]
- ALICE Collaboration. Charged-particle production as a function of the relative transverse activity classifier in pp, p-Pb, and Pb-Pb collisions at the LHC. arXiv 2023, arXiv:2310.07490. [CrossRef]
- Christiansen, J.R.; Skands, P.Z. String formation beyond leading colour. J. High Energy Phys. 2015, 2015, 3. [Google Scholar] [CrossRef]
- Pierog, T.; Karpenko, I.; Katzy, J.M.; Yatsenko, E.; Werner, K. Epos lhc: Test of collective hadronization with data measured at the cern large hadron collider. Phys. Rev. C 2015, 92, 034906. [Google Scholar] [CrossRef]
- Acharya, S.; Adamová, D.; Adhya, S.P.; Adler, A.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; et al. Charged-particle production as a function of multiplicity and transverse spherocity in pp collisions at = 5.02 and 13 TeV. Eur. Phys. J. C 2019, 79, 857. [Google Scholar] [CrossRef]
- Ortiz, A.; Paić, G.; Cuautle, E. Mid-rapidity charged hadron transverse spherocity in pp collisions simulated with Pythia. Nucl. Phys. A 2015, 941, 78–86. [Google Scholar] [CrossRef]
- Ortiz, A. Experimental results on event shapes at hadron colliders. Adv. Ser. Direct. High Energy Phys. 2018, 29, 343–357. [Google Scholar] [CrossRef]
- Ortiz, A.; Khuntia, A.; Vázquez-Rueda, O.; Tripathy, S.; Bencedi, G.; Prasad, S.; Fan, F. Unveiling the effects of multiple soft partonic interactions in pp collisions at s = 13.6 TeV using a new event classifier. Phys. Rev. D 2023, 107, 076012. [Google Scholar] [CrossRef]
- ALICE Collaboration. Light-flavor particle production in high-multiplicity pp collisions at = 13 TeV as a function of transverse spherocity. arXiv 2023, arXiv:2310.10236. [CrossRef]
- ALICE Collaboration. Femtoscopic correlations of identical charged pions and kaons in pp collisions at = 13 TeV with event-shape selection. arXiv 2023, arXiv:2310.07509. [CrossRef]
- Banfi, A.; Salam, G.P.; Zanderighi, G. Phenomenology of event shapes at hadron colliders. J. High Energy Phys. 2010, 2010, 38. [Google Scholar] [CrossRef]
- Velasquez, A.O.; Paic, G. Event Shape Analysis in ALICE. arXiv 2009, arXiv:0912.0909. [Google Scholar] [CrossRef]
- ALICE Collaboration. The ALICE Definition of Primary Particles; ALICE-PUBLIC-2017-005 (2017). Available online: https://cds.cern.ch/record/2270008 (accessed on 1 January 2024).
- Acharya, S.; Adamová, D.; Adler, A.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.U.; et al. Multiplicity dependence of light-flavor hadron production in pp collisions at = 7 TeV. Phys. Rev. C 2019, 99, 024906. [Google Scholar] [CrossRef]
- Buckley, A.; Butterworth, J.; Gieseke, S.; Grellscheid, D.; Höche, S.; Hoeth, H.; Krauss, F.; Lönnblad, L.; Nurse, E.; Richardson, P.; et al. General-purpose event generators for LHC physics. Phys. Rep. 2011, 504, 145–233. [Google Scholar] [CrossRef]
- Ene, A.C.; Jipa, A.; Giubega, L.-E. Study of Monte Carlo event generators for proton-proton collisions at LHC energies in the forward region. Chin. Phys. C 2019, 43, 083001. [Google Scholar] [CrossRef]
- The ALICE experiment—A journey through QCD. arXiv 2022, arXiv:2211.04384. [CrossRef]
- Bierlich, C.; Chakraborty, S.; Desai, N.; Gellersen, L.; Helenius, I.; Ilten, P.; Lönnblad, L.; Mrenna, S.; Prestel, S.; Preuss, C.T.; et al. A comprehensive guide to the physics and usage of PYTHIA 8.3. Scipost Phys. Codebases 2022, 008. [Google Scholar] [CrossRef]
- Acharya, S.; Adamova, D.; Adler, A.; Adolfsson, J.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S.U.; et al. Multiplicity dependence of charged-particle jet production in pp collisions at = 13 TeV. Eur. Phys. J. C 2022, 82, 514. [Google Scholar] [CrossRef]
- Cacciari, M.; Salam, G.P.; Soyez, G. FastJet user manual. Eur. Phys. J. C 2012, 72, 1896. [Google Scholar] [CrossRef]
- Ortiz, A.; Zepeda, E.A. Extraction of the multiplicity dependence of multiparton interactions from LHC pp data using machine learning techniques. J. Phys. G 2021, 48, 085014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, A.; Valencia Palomo, L.; Minjares Neriz, V.M. Study of Transverse-Spherocity Biased pp Collisions at the LHC Energies Using the PYTHIA 8 Event Generator. Universe 2024, 10, 30. https://doi.org/10.3390/universe10010030
Ortiz A, Valencia Palomo L, Minjares Neriz VM. Study of Transverse-Spherocity Biased pp Collisions at the LHC Energies Using the PYTHIA 8 Event Generator. Universe. 2024; 10(1):30. https://doi.org/10.3390/universe10010030
Chicago/Turabian StyleOrtiz, Antonio, Lizardo Valencia Palomo, and Victor Manuel Minjares Neriz. 2024. "Study of Transverse-Spherocity Biased pp Collisions at the LHC Energies Using the PYTHIA 8 Event Generator" Universe 10, no. 1: 30. https://doi.org/10.3390/universe10010030
APA StyleOrtiz, A., Valencia Palomo, L., & Minjares Neriz, V. M. (2024). Study of Transverse-Spherocity Biased pp Collisions at the LHC Energies Using the PYTHIA 8 Event Generator. Universe, 10(1), 30. https://doi.org/10.3390/universe10010030