# Generalized ƒ(R,Φ, X) Gravity and the Late-Time Cosmic Acceleration

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Generalised Gravity Models: Formalism

## 3. Cosmological Applications: Late-Time Cosmic Acceleration

#### 3.1. Brans–Dicke Type Models

**Figure 1.**The kinetic term (left panel) and scalar potential (right panel) for the ΛCDM model Equation (32) with ${\Omega}_{m}=0.31$.

#### 3.2. Minimally-Coupled Field Model

## 4. Conclusions

## Acknowledgements

## Author Contributions

## Conflicts of Interest

## References

- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Omega and Lambda from 42 high red shift supernovae. Astrophys. J.
**1999**, 517, 565–586. [Google Scholar] - Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiattia, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J.
**1998**, 116, 1009–1038. [Google Scholar] [CrossRef] - Maartens, R. Brane world gravity. Living Rev. Relativ.
**2004**, 7. [Google Scholar] [CrossRef] - Dvali, G.R.; Gabadadze, G.; Porrati, M. 4-D gravity on a brane in 5-D Minkowski space. Phys. Lett. B
**2000**, 485, 208–214. [Google Scholar] [CrossRef] - De Rham, C.; Hofmann, S.; Khoury, J.; Tolley, A.J. Cascading Gravity and Degravitation. J. Cosmol. Astropart. Phys.
**2008**, 2008, 011. [Google Scholar] [CrossRef] - Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys.
**2010**, 82, 451–497. [Google Scholar] [CrossRef] - De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ.
**2010**, 13, 3. [Google Scholar] [CrossRef] - Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep.
**2011**, 509, 167–321. [Google Scholar] [CrossRef] - Lobo, F.S.N. The Dark side of gravity: Modified theories of gravity. 2008; arXiv:0807.1640[gr-qc]. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep.
**2011**, 505, 59–144. [Google Scholar] [CrossRef] - De la Cruz-Dombriz, A.; Saez-Gomez, D. Black holes, cosmological solutions, future singularities, and their thermodynamical properties in modified gravity theories. Entropy
**2012**, 14, 1717–1770. [Google Scholar] [CrossRef] [Green Version] - Boehmer, C.G.; Tamanini, N. A New Approach to Modifying Theories of Gravity. Found. Phys.
**2013**, 43, 1478–1488. [Google Scholar] [CrossRef] - Boehmer, C.G.; Tamanini, N.; Wright, M. On galaxy rotation curves from a new approach to modified gravity. 2014; arXiv:gr-qc/1403.4110. [Google Scholar]
- Allemandi, G.; Borowiec, A.; Francaviglia, M.; Odintsov, S.D. Dark energy dominance and cosmic acceleration in first order formalism. Phys. Rev. D
**2005**, 72, 063505. [Google Scholar] [CrossRef] - Bertolami, O.; Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Extra force in f(R) modified theories of gravity. Phys. Rev. D
**2007**, 75, 104016. [Google Scholar] [CrossRef] - Harko, T.; Koivisto, T.S.; Lobo, F.S.N. Palatini formulation of modified gravity with a nonminimal curvature-matter coupling. Mod. Phys. Lett. A
**2011**, 26, 1467–1480. [Google Scholar] [CrossRef] - Harko, T.; Lobo, F.S.N. Generalized curvature-matter couplings in modified gravity. Galaxies
**2014**, 2, 410–465. [Google Scholar] [CrossRef] - Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D
**2011**, 84, 024020. [Google Scholar] [CrossRef] - Haghani, Z.; Harko, T.; Lobo, F.S.N.; Sepangi, H.R.; Shahidi, S. Further matters in space-time geometry: f(R,T,R
_{μν}T^{μν}) gravity. Phys. Rev. D**2013**, 88, 044023. [Google Scholar] [CrossRef] - Odintsov, S.D.; Sáez-Gómez, D. f(R,T,R
_{μ}νT^{μ}ν) gravity phenomenology and ΛCDM universe. Phys. Lett. B**2013**, 725, 437–444. [Google Scholar] [CrossRef] - Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D
**2004**, 70, 043528. [Google Scholar] [CrossRef] - Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D
**2006**, 15, 1753–1936. [Google Scholar] [CrossRef] - Olmo, G.J. Palatini Approach to Modified Gravity: f(R) Theories and Beyond. Int. J. Mod. Phys. D
**2011**, 20, 413–462. [Google Scholar] [CrossRef] - Sotiriou, T.P.; Liberati, S. Metric-affine f(R) theories of gravity. Ann. Phys.
**2007**, 322, 935–966. [Google Scholar] [CrossRef] - Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D
**2012**, 85, 084016. [Google Scholar] [CrossRef] - Goheer, N.; Larena, J.; Dunsby, P.K.S. Power-law cosmic expansion in f(R) gravity models. Phys. Rev. D
**2009**, 80, 061301. [Google Scholar] [CrossRef] - Myrzakulov, R.; Sáez-Gómez, D.; Tureanu, A. On the ΛCDM Universe in f(G) gravity. Gen. Relativ. Gravit.
**2011**, 43, 1671–1684. [Google Scholar] [CrossRef] - De la Cruz-Dombriz, A.; Dobado, A. A f(R) gravity without cosmological constant. Phys. Rev. D
**2006**, 74, 087501. [Google Scholar] [CrossRef] - Elizalde, E.; Myrzakulov, R.; Obukhov, V.V.; Sáez-Gómez, D. LambdaCDM epoch reconstruction from F(R,G) and modified Gauss-Bonnet gravities. Class. Quant. Grav.
**2010**, 27, 095007. [Google Scholar] [CrossRef] - Dunsby, P.K.S.; Elizalde, E.; Goswami, R.; Odintsov, S.; Sáez-Gómez, D. On the LCDM Universe in f(R) gravity. Phys. Rev. D
**2010**, 82, 023519. [Google Scholar] [CrossRef] - Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. 2015; arXiv:astro-ph.CO/1502.01589. [Google Scholar]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B
**1980**, 91, 99–102. [Google Scholar] [CrossRef] - Tsujikawa, S.; Sami, M. A Unified approach to scaling solutions in a general cosmological background. Phys. Lett. B
**2004**, 603, 113–123. [Google Scholar] [CrossRef] - Copeland, E.J.; Lee, S.J.; Lidsey, J.E.; Mizuno, S. Generalised cosmological scaling solutions. Phys. Rev. D
**2005**, 71, 023526. [Google Scholar] [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bahamonde, S.; Böhmer, C.G.; Lobo, F.S.N.; Sáez-Gómez, D.
Generalized ƒ(*R,Φ, X*) Gravity and the Late-Time Cosmic Acceleration. *Universe* **2015**, *1*, 186-198.
https://doi.org/10.3390/universe1020186

**AMA Style**

Bahamonde S, Böhmer CG, Lobo FSN, Sáez-Gómez D.
Generalized ƒ(*R,Φ, X*) Gravity and the Late-Time Cosmic Acceleration. *Universe*. 2015; 1(2):186-198.
https://doi.org/10.3390/universe1020186

**Chicago/Turabian Style**

Bahamonde, Sebastian, Christian G. Böhmer, Francisco S.N. Lobo, and Diego Sáez-Gómez.
2015. "Generalized ƒ(*R,Φ, X*) Gravity and the Late-Time Cosmic Acceleration" *Universe* 1, no. 2: 186-198.
https://doi.org/10.3390/universe1020186