# Hybrid Metric-Palatini Gravity

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Hybrid Metric-Palatini Gravity: The General Formalism

#### 2.1. Action and Gravitational Field Equations

#### 2.2. Scalar-Tensor Representation

#### 2.3. The Cauchy Problem

#### 2.4. More General Hybrid Metric-Palatini Theories

#### 2.4.1. Metric $f\left(R\right)$ Models

#### 2.4.2. Palatini $f\left(\mathcal{R}\right)$ Models

#### 2.4.3. Hybrid $f\left(X\right)$ Models

#### 2.4.4. The Hybrid $f(R,\mathcal{R})$ Models

_{+}> 0 and r

_{−}> 0. The second condition would require that

#### 2.4.5. The hybrid Ricci-Squared $f(\mathcal{R},\widehat{Q})$ Theories

## 3. Hybrid-Gravity Cosmology

#### 3.1. Background Expansion

#### 3.1.1. The Friedmann Equations

#### 3.1.2. Dynamical System Analysis

- The matter dominated fixed point should be a saddle point, the de Sitter fixed point an attractor. Then we naturally obtain a transition to acceleration following standard cosmological evolution.
- At the present epoch the field value should be sufficiently close to zero. Then we avoid conflict with the Solar System tests of gravity (this will be clarified in Section 4.1).

#### 3.1.3. On Cosmological Solutions

#### 3.2. Cosmological Perturbations

#### 3.2.1. Field Equations and Conservation Laws

#### 3.2.2. Matter Dominated Cosmology

#### 3.2.3. Vacuum Fluctuations

## 4. Astrophysical Applications

#### 4.1. The Weak Field Limit

#### 4.2. Galactic Phenomenology: Stable Circular Orbits of Test Particles around Galaxies

#### 4.2.1. Galactic Geometry and Tangential Velocity Curves in Hybrid Metric-Palatini Gravity

#### 4.2.2. On Astrophysical Tests of Hybrid Metric-Palatini Gravity at the Galactic Level

#### 4.3. Galactic Clusters: The Generalized Virial Theorem in Hybrid Metric-Palatini Gravity

#### 4.3.1. Galaxy Cluster As a System of Identical and Collisionless Point Particles

#### 4.3.2. The Relativistic Boltzmann Equation

#### 4.3.3. Geometrical Quantities Characterizing Galactic Clusters

#### 4.3.4. The Generalized Virial Theorem in Hybrid Metric-Palatini Gravity

#### 4.3.5. On Astrophysical Tests of Hybrid Metric-Palatini Gravity at the Cluster Level

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Iorio, L. Editorial for the Special Issue 100 Years of Chronogeometrodynamics: The Status of the Einstein’s Theory of Gravitation in Its Centennial Year. Universe
**2015**, 1, 38–81. [Google Scholar] [CrossRef] - Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J.
**1999**, 517, 565–586. [Google Scholar] [CrossRef] - Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiattia, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J.
**1998**, 116, 1009–1038. [Google Scholar] [CrossRef] - Riess, A.G.; Strolger, L.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J.
**2004**, 607, 665–687. [Google Scholar] [CrossRef] - Riess, A.G.; Nugent, P.E.; Schmidt, B.P.; Tonry, J.; Dickinson, M.; Gilliland, R.L.; Thompson, R.I.; Budavari, T.; Casertano, S.; Evans, A.S.; et al. The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys. J.
**2001**, 560, 49–71. [Google Scholar] [CrossRef] - Perlmutter, S.; Turner, M.S.; White, M.J. Constraining dark energy with SNe Ia and large scale structure. Phys. Rev. Lett.
**1999**, 83, 670–673. [Google Scholar] [CrossRef] - Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S.S.; Page, L.; Spergel, D.N.; Tucker, G.S.; et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. Astrophys. J. Suppl.
**2003**. [Google Scholar] [CrossRef] - Hinshaw, G.; Spergel, D.N.; Verde, L.; Hill, R.S.; Meyer, S.S.; Barnes, C.; Bennett, C.L.; Halpern, M.; Jarosik, N.; Kogut, A.; et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: The Angular power spectrum. Astrophys. J. Suppl.
**2003**. [Google Scholar] [CrossRef] - Capozziello, S. Curvature quintessence. Int. J. Mod. Phys. D
**2002**, 11, 483–492. [Google Scholar] [CrossRef] - Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D
**2006**, 15, 1753–1936. [Google Scholar] [CrossRef] - De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Rel.
**2010**. [Google Scholar] [CrossRef] - Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D
**2004**, 70, 043528. [Google Scholar] [CrossRef] - Lobo, F.S.N. The dark side of gravity: Modified theories of gravity. 2009; arXiv:0807.1640. [Google Scholar]
- Capozziello, S.; de Laurentis, M. Extended Theories of Gravity. Phys. Rept.
**2011**. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys.
**2007**, 4, 115–146. [Google Scholar] [CrossRef] - Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci.
**2012**, 342, 155–228. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept.
**2011**, 505, 59–144. [Google Scholar] [CrossRef] - Olmo, G.J. Palatini Approach to Modified Gravity: f(R) Theories and Beyond. Int. J. Mod. Phys. D
**2011**, 20, 413–462. [Google Scholar] [CrossRef] - Joyce, A.; Jain, B.; Khoury, J.; Trodden, M. Beyond the Cosmological Standard Model. Phys. Rept.
**2015**, 568, 1–98. [Google Scholar] [CrossRef] - Brax, P. Screened modified gravity. Acta Phys. Polon. B
**2012**, 43, 2307. [Google Scholar] [CrossRef] - Koivisto, T.S.; Mota, D.F.; Zumalacarregui, M. Screening Modifications of Gravity through Disformally Coupled Fields. Phys. Rev. Lett.
**2012**, 109, 241102. [Google Scholar] [CrossRef] [PubMed] - Brax, P.; van de Bruck, C.; Mota, D.F.; Nunes, N.J.; Winther, H.A. Chameleons with Field Dependent Couplings. Phys. Rev. D
**2010**, 82, 083503. [Google Scholar] [CrossRef] - Brax, P.; Davis, A.-C.; Li, B.; Winther, H.A. A Unified Description of Screened Modified Gravity. Phys. Rev. D
**2012**, 86, 044015. [Google Scholar] [CrossRef] - Koivisto, T.; Kurki-Suonio, H. Cosmological perturbations in the Palatini formulation of modified gravity. Class. Quant. Grav.
**2006**, 23, 2355. [Google Scholar] [CrossRef] - Koivisto, T. The matter power spectrum in f(r) gravity. Phys. Rev. D
**2006**, 73, 083517. [Google Scholar] [CrossRef] - Olmo, G.J. Hydrogen atom in Palatini theories of gravity. Phys. Rev. D
**2008**, 77, 084021. [Google Scholar] [CrossRef] - Olmo, G.J. Violation of the Equivalence Principle in Modified Theories of Gravity. Phys. Rev. Lett.
**2007**, 98, 061101. [Google Scholar] [CrossRef] [PubMed] - Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D
**2012**, 85, 084016. [Google Scholar] [CrossRef] - Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J. Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration. Int. J. Mod. Phys. D
**2013**, 22, 1342006. [Google Scholar] [CrossRef] - Amendola, L.; Enqvist, K.; Koivisto, T. Unifying Einstein and Palatini gravities. Phys. Rev. D
**2011**, 83, 044016. [Google Scholar] [CrossRef] - Koivisto, T.S.; Mota, D.F.; Sandstad, M. Novel aspects of C-theories in Cosmology. 2013; arXiv:1305.4754. [Google Scholar]
- Koivisto, T.S. On new variational principles as alternatives to the Palatini method. Phys. Rev. D
**2011**, 83, 101501. [Google Scholar] [CrossRef] - Baykal, A.; Delice, O. A Unified Approach to Variational Derivatives of Modified Gravitational Actions. Class. Quant. Grav.
**2011**, 28, 015014. [Google Scholar] [CrossRef] - Jimenez, J.B.; Golovnev, A.; Karciauskas, M.; Koivisto, T.S. The Bimetric variational principle for General Relativity. Phys. Rev. D
**2012**, 86, 084024. [Google Scholar] [CrossRef] - Baykal, A.; Delice, O. Multi-Scalar-Tensor Equivalents for Modified Gravitational Actions. Phys. Rev. D
**2013**, 88, 084041. [Google Scholar] [CrossRef] - Sandstad, M.; Koivisto, T.S.; Mota, D.F. Non-locality of the C- and D-theories. Class. Quant. Grav.
**2013**, 30, 155005. [Google Scholar] [CrossRef] - Jimenez, J.B.; Koivisto, T.S. Extended Gauss-Bonnet gravities in Weyl geometry. Class. Quant. Grav.
**2014**, 31, 135002. [Google Scholar] [CrossRef] - Golovnev, A.; Karciauskas, M.; Nyrhinen, H.J. ADM Analysis of Gravity Models within the Framework of Bimetric Variational Formalism. J. Cosmo. Astropart. Phys
**2015**, 2015, 021. [Google Scholar] [CrossRef] - Koivisto, T. Covariant conservation of energy momentum in modified gravities. Class. Quant. Grav.
**2006**, 23, 4289–4296. [Google Scholar] [CrossRef] - Allemandi, G.; Borowiec, A.; Francaviglia, M.; Odintsov, S.D. Dark energy dominance and cosmic acceleration in first order formalism. Phys. Rev. D
**2005**, 72, 063505. [Google Scholar] [CrossRef] - Olmo, G.J.; Rubiera-Garcia, D. Brane-world and loop cosmology from a gravity-matter coupling perspective. Phys. Lett. B
**2015**, 740, 73. [Google Scholar] [CrossRef] - Harko, T.; Lobo, F.S.N. f(R,L
_{m}) gravity. Eur. Phys. J. C**2010**, 70, 373–379. [Google Scholar] [CrossRef] - Bertolami, O.; Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Extra force in f(R) modified theories of gravity. Phys. Rev. D
**2007**, 75, 104016. [Google Scholar] [CrossRef] - Bertolami, O.; Paramos, J. Do f(R) theories matter? Phys. Rev. D
**2008**, 77, 084018. [Google Scholar] [CrossRef] - Bertolami, O.; Lobo, F.S.N.; Paramos, J. Non-minimum coupling of perfect fluids to curvature. Phys. Rev. D
**2008**, 78, 064036. [Google Scholar] [CrossRef] - Bertolami, O.; Paramos, J.; Harko, T.; Lobo, F.S.N. Non-minimal curvature-matter couplings in modified gravity. 2008; arXiv:0811.2876 [gr-qc]. [Google Scholar]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N. Palatini formulation of modified gravity with a nonminimal curvature-matter coupling. Mod. Phys. Lett. A
**2011**, 26, 1467–1480. [Google Scholar] [CrossRef] - Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R, T) gravity. Phys. Rev. D
**2011**, 84, 024020. [Google Scholar] [CrossRef] - Haghani, Z.; Harko, T.; Lobo, F.S.N.; Sepangi, H.R.; Shahidi, S. Further matters in space-time geometry: f(R, T, R
_{μν}T^{μν}) gravity. Phys. Rev. D**2013**, 88, 044023. [Google Scholar] [CrossRef] - Odintsov, S.D.; Sáez-Gómez, D. f(R, T, R
_{μν}T^{μν}) gravity phenomenology and ΛCDM universe. Phys. Lett. B**2013**, 725, 437–444. [Google Scholar] [CrossRef] - Harko, T.; Lobo, F.S.N. Geodesic deviation, Raychaudhuri equation, and tidal forces in modified gravity with an arbitrary curvature-matter coupling. Phys. Rev. D
**2012**, 86, 124034. [Google Scholar] [CrossRef] - Tamanini, N.; Koivisto, T.S. Consistency of nonminimally coupled f(R) gravity. Phys. Rev. D
**2013**, 88, 064052. [Google Scholar] [CrossRef] - Ayuso, I.; Jimenez, J.B.; de la Cruz Dombriz, A. Consistency of universally nonminimally coupled f(R, T, R
_{μν}T^{μν}) theories. Phys. Rev. D**2015**, 91, 104003. [Google Scholar] [CrossRef] - Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Cosmology of hybrid metric-Palatini f(X)-gravity. J. Cosmo. Astropart. Phys.
**2013**, 2013, 011. [Google Scholar] [CrossRef] - Olmo, G.J. The Gravity Lagrangian according to Solar System experiments. Phys. Rev. Lett.
**2005**, 95, 261102. [Google Scholar] [CrossRef] [PubMed] - Olmo, G.J. Post-Newtonian constraints on f(R) cosmologies in metric and Palatini formalism. Phys. Rev. D
**2005**, 72, 083505. [Google Scholar] [CrossRef] - Koivisto, T.S. Cosmology of modified (but second order) gravity. AIP Conf. Proc.
**2010**, 1206, 79–96. [Google Scholar] - Capozziello, S.; Vignolo, S. On the well formulation of the initial value problem of metric-affine f(R)-gravity. Int. J. Geom. Meth. Mod. Phys.
**2009**, 6, 985–1001. [Google Scholar] [CrossRef] - Capozziello, S.; Vignolo, S. The Cauchy problem for metric-affine f(R)-gravity in presence of perfect-fluid matter. Class. Quant. Grav.
**2009**, 26, 175013. [Google Scholar] [CrossRef] - Capozziello, S.; Vignolo, S. The Cauchy problem for metric-affine f(R)-gravity in presence of a Klein-Gordon scalar field. Int. J. Geom. Meth. Mod. Phys.
**2011**, 8, 167–176. [Google Scholar] [CrossRef] - Capozziello, S.; Vignolo, S. The Cauchy problem for f(R)-gravity: An Overview. Int. J. Geom. Meth. Mod. Phys.
**2012**, 9, 1250006. [Google Scholar] [CrossRef] - Olmo, G.J.; Sanchis-Alepuz, H. Hamiltonian Formulation of Palatini f(R) theories a la Brans-Dicke. Phys. Rev. D
**2011**, 83, 104036. [Google Scholar] [CrossRef] - Choquet–Bruhat, Y. General Relativity and the Einstein Equations; Oxford University Press Inc.: New York, NY, USA, 2009. [Google Scholar]
- Salgado, M. The Cauchy problem of scalar tensor theories of gravity. Class. Quant. Grav.
**2006**, 23, 4719–4742. [Google Scholar] [CrossRef] - Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J.; Vignolo, S. The Cauchy problem in hybrid metric-Palatini f(X)-gravity. Int. J. Geom. Meth. Mod. Phys.
**2014**, 11, 1450042. [Google Scholar] [CrossRef] - Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Leray, J. Hyperbolic Differential Equations; Institute for Advanced Study Pub.: Princeton, NJ, USA, 1953. [Google Scholar]
- Choquet–Bruhat, Y. Cauchy Problem, in Gravitation: An Introduction to Current Research; Witten, L., Ed.; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Fourés–Bruhat, Y. Bull. de la SMF; Societe Matematique de France: Marseille, France, 1958; Volume 86, p. 155. [Google Scholar]
- Woodard, R.P. Avoiding dark energy with 1/r modifications of gravity. Lect. Notes Phys.
**2007**, 720, 403–433. [Google Scholar] - Koivisto, T.S.; Tamanini, N. Ghosts in pure and hybrid formalisms of gravity theories: A unified analysis. Phys. Rev. D
**2013**, 87, 104030. [Google Scholar] [CrossRef] - Biswas, T.; Gerwick, E.; Koivisto, T.; Mazumdar, A. Towards singularity and ghost free theories of gravity. Phys. Rev. Lett.
**2012**, 108, 031101. [Google Scholar] [CrossRef] [PubMed] - Biswas, T.; Koivisto, T.; Mazumdar, A. Nonlocal theories of gravity: The flat space propagator. 2013; arXiv:1302.0532 [gr-qc]. [Google Scholar]
- Flanagan, E.E. Higher order gravity theories and scalar tensor theories. Class. Quant. Grav.
**2003**, 21, 417–426. [Google Scholar] [CrossRef] - Tamanini, N.; Boehmer, C.G. Generalized hybrid metric-Palatini gravity. Phys. Rev. D
**2013**, 87, 084031. [Google Scholar] [CrossRef] - Carloni, S.; Koivisto, T.; Lobo, F.S.N. A dynamical system analysis of hybrid metric-Palatini cosmologies. 2015; arXiv:1507.04306 [gr-qc]. [Google Scholar]
- Böhmer, C.G.; Lobo, F.S.N.; Tamanini, N. Einstein static Universe in hybrid metric-Palatini gravity. Phys. Rev. D
**2013**, 88, 104019. [Google Scholar] [CrossRef] - Lima, N.A. Dynamics of Linear Perturbations in the hybrid metric-Palatini gravity. Phys. Rev. D
**2014**, 89, 083527. [Google Scholar] [CrossRef] - Lima, N.A.; Smer-Barreto, V. Constraints on hybrid metric-Palatini models from background evolution. 2015; arXiv:1501.05786 [astro-ph.CO]. [Google Scholar]
- Borowiec, A.; Capozziello, S.; de Laurentis, M.; Lobo, F.S.N.; Paliathanasis, A.; Paolella, M.; Wojnar, A. Invariant solutions and Noether symmetries in Hybrid Gravity. Phys. Rev. D
**2015**, 91, 023517. [Google Scholar] [CrossRef] - Ma, C.P.; Bertschinger, E. Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophys. J.
**1995**, 455, 7–25. [Google Scholar] [CrossRef] [Green Version] - Boisseau, B.; Esposito-Farese, G.; Polarski, D.; Starobinsky, A.A. Reconstruction of a scalar tensor theory of gravity in an accelerating universe. Phys. Rev. Lett.
**2000**, 85, 2236. [Google Scholar] [CrossRef] [PubMed] - Koivisto, T.S.; Saridakis, E.N.; Tamanini, N. Scalar-Fluid theories: Cosmological perturbations and large-scale structure. 2015; arXiv:1505.07556 [astro-ph.CO]. [Google Scholar]
- De la Cruz-Dombriz, A.; Dobado, A.; Maroto, A.L. On the evolution of density perturbations in f(R) theories of gravity. Phys. Rev. D
**2008**, 77, 123515. [Google Scholar] [CrossRef] - Abebe, A.; Abdelwahab, M.; de la Cruz-Dombriz, A.; Dunsby, P.K.S. Covariant gauge-invariant perturbations in multifluid f(R) gravity. Class. Quant. Grav.
**2012**, 29, 135011. [Google Scholar] [CrossRef] - Llinares, C.; Mota, D. Releasing scalar fields: cosmological simulations of scalar-tensor theories for gravity beyond the static approximation. Phys. Rev. Lett.
**2013**, 110, 161101. [Google Scholar] [CrossRef] [PubMed] - Sawicki, I.; Bellini, E. Limits of Quasi-Static Approximation in Modified-Gravity Cosmologies. 2015; arXiv:1503.06831 [astro-ph.CO]. [Google Scholar]
- Cembranos, J.A.R. Dark Matter from R2-gravity. Phys. Rev. Lett.
**2009**, 102, 141301. [Google Scholar] [CrossRef] [PubMed] - Arbuzova, E.V.; Dolgov, A.D.; Reverberi, L. Cosmological evolution in R2 gravity. J. Cosmo. Astropart. Phys
**2012**, 2012, 049. [Google Scholar] [CrossRef] - Koivisto, T.S. The post-Newtonian limit in C-theories of gravitation. Phys. Rev. D
**2011**, 84, 121502. [Google Scholar] [CrossRef] - Iorio, L. Gravitational anomalies in the solar system? Int. J. Mod. Phys. D
**2015**, 24, 1530015. [Google Scholar] [CrossRef] - Pritchard, J.R.; Loeb, A. 21-cm cosmology. Rept. Prog. Phys.
**2012**, 75, 086901. [Google Scholar] [CrossRef] [PubMed] - Rubin, V.C.; Thonnard, N.; Ford, W.K., Jr. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4kpc) to UGC 2885 (R = 122 kpc). Astrophys. J.
**1980**, 238, 471–487. [Google Scholar] [CrossRef] - Persic, M.; Salucci, P.; Stel, F. The Universal rotation curve of spiral galaxies: 1. The Dark matter connection. Mon. Not. Roy. Astron. Soc.
**1996**, 281, 27–47. [Google Scholar] [CrossRef] - Nucamendi, U.; Salgado, M.; Sudarsky, D. An Alternative approach to the galactic dark matter problem. Phys. Rev. D
**2001**, 63, 125016. [Google Scholar] [CrossRef] - Harko, T. Galactic rotation curves in modified gravity with non-minimal coupling between matter and geometry. Phys. Rev. D
**2010**, 81, 084050. [Google Scholar] [CrossRef] - Lake, K. Galactic potentials. Phys. Rev. Lett.
**2004**, 92, 051101. [Google Scholar] [CrossRef] [PubMed] - Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Galactic rotation curves in hybrid metric-Palatini gravity. Astropart. Phys.
**2013**, 50, 65–75. [Google Scholar] [CrossRef] - Arnaud, M. X-ray Observations of Clusters of Galaxies. In Background Microwave Radiation and Intracluster Cosmology, Proceedings of the International School of Physics “Enrico Fermi”, Varenna, Italy, 6–16 July 2004; Melchiorri, F., Rephaeli, Y., Eds.; IOS Press: Amsterdam, The Netherlands, 2004; p. 77. [Google Scholar]
- Reiprich, T.H.; Boehringer, H. The Mass function of an X-ray flux-limited sample of galaxy clusters. Astrophys. J.
**2002**, 567, 716. [Google Scholar] [CrossRef] - Schuecker, P.; Boehringer, H.; Arzner, K.; Reiprich, T.H. Cosmic mass functions from Gaussian stochastic diffusion processes. Astron. Astrophys.
**2001**, 370, 715–728. [Google Scholar] [CrossRef] - Baldi, M.; Pettorino, V.; Robbers, G.; Springel, V. Hydrodynamical N-body simulations of coupled dark energy cosmologies. Mon. Not. Roy. Astron. Soc.
**2010**, 403, 1684–1702. [Google Scholar] [CrossRef] - Li, B.; Barrow, J.D. N-Body Simulations for Coupled Scalar Field Cosmology. Phys. Rev. D
**2011**, 83, 024007. [Google Scholar] [CrossRef] - Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. The virial theorem and the dark matter problem in hybrid metric-Palatini gravity. J. Cosmo. Astropart. Phys.
**2013**, 2013, 024. [Google Scholar] [CrossRef] - Harko, T.; Cheng, K.S. The Virial theorem and the dynamics of clusters of galaxies in the brane world models. Phys. Rev. D
**2007**, 76, 044013. [Google Scholar] [CrossRef] - Maartens, R.; Maharaj, S.D. Collision free gases in spatially homogeneous space-times. J. Math. Phys.
**1990**, 22, 595–607. [Google Scholar] [CrossRef] - Bildhauer, S. Transport Equations for Freely Propagating Photons in Curved Space-times: A Derivation by Wigner Transformation. Class. Quant. Grav.
**1989**, 6, 1171–1187. [Google Scholar] [CrossRef] - Jackson, J.C. The dynamics of clusters of galaxies in universes with non-zero cosmological constant, and the virial theorem mass discrepancy[J]. Monthly Notices of the Royal Astronomical Society. Month. Not. R. Astr. Soc.
**1970**, 148, 249–260. [Google Scholar] [CrossRef] - Borka, B.; Capozziello, S.; Jovanovic, P.; Jovanovic, V.B. Probing hybrid modified gravity by stellar motion around Galactic Centre. 2015; arXiv:1504.07832 [gr-qc]. [Google Scholar]
- Amendola, L.; Appleby, S.; Bacon, D.; Baker, T.M.; Baldi, M.; Bartolo, N. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel.
**2013**, 16, 6. [Google Scholar] [CrossRef] - Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Wormholes supported by hybrid metric-Palatini gravity. Phys. Rev. D
**2012**, 86, 127504. [Google Scholar] [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Hybrid Metric-Palatini Gravity. *Universe* **2015**, *1*, 199-238.
https://doi.org/10.3390/universe1020199

**AMA Style**

Capozziello S, Harko T, Koivisto TS, Lobo FSN, Olmo GJ.
Hybrid Metric-Palatini Gravity. *Universe*. 2015; 1(2):199-238.
https://doi.org/10.3390/universe1020199

**Chicago/Turabian Style**

Capozziello, Salvatore, Tiberiu Harko, Tomi S. Koivisto, Francisco S. N. Lobo, and Gonzalo J. Olmo.
2015. "Hybrid Metric-Palatini Gravity" *Universe* 1, no. 2: 199-238.
https://doi.org/10.3390/universe1020199