Urate and Nonanoate Mark the Relationship between Sugar-Sweetened Beverage Intake and Blood Pressure in Adolescent Girls: A Metabolomics Analysis in the ELEMENT Cohort
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Girls
3.2. Boys
3.3. Strengths and Weaknesses
4. Materials and Methods
4.1. Study Population
4.2. Dietary Assessment
4.3. Untargeted Metabolomics Profiling
4.4. Adiposity and Conventional Biomarkers of Metabolic Risk
4.4.1. Adiposity
4.4.2. Blood Pressure
4.4.3. Glycemia Biomarkers
4.4.4. Lipid Profile
4.5. Covariates
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
Appendix A. Liquid Chromatography–Mass Spectrometry (LC–MS) Methods
Appendix A.1. Chemicals and Reagents
Appendix A.2. Sample Preparation
Appendix A.3. Optimized LC–MS Methods
Appendix A.4. Data Analysis Workflow
References
- Lissner, L.; Troiano, R.P.; Midthune, D.; Heitmann, B.L.; Kipnis, V.; Subar, A.F.; Potischman, N. OPEN about obesity: Recovery biomarkers, dietary reporting errors and BMI. Int. J. Obes. 2007, 31, 956–961. [Google Scholar] [CrossRef]
- Potischman, N. Biologic and methodologic issues for nutritional biomarkers. J. Nutr. 2003, 133 (Suppl. 3), 875s–880s. [Google Scholar] [CrossRef]
- Bingham, S.A. Biomarkers in nutritional epidemiology. Public Health Nutr. 2002, 5, 821–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing Current Criticism Regarding the Value of Self-Report Dietary Data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [PubMed]
- Davy, B.; Jahren, H. New markers of dietary added sugar intake. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 282–288. [Google Scholar] [CrossRef]
- Gibbons, H.; McNulty, B.A.; Nugent, A.P.; Walton, J.; Flynn, A.; Gibney, M.J.; Brennan, L. A metabolomics approach to the identification of biomarkers of sugar-sweetened beverage intake. Am. J. Clin. Nutr. 2015, 101, 471–477. [Google Scholar] [PubMed] [Green Version]
- Mayengbam, S.; Virtanen, H.; Hittel, D.S.; Elliott, C.; Reimer, R.A.; Vogel, H.J.; Shearer, J. Metabolic consequences of discretionary fortified beverage consumption containing excessive vitamin B levels in adolescents. PLoS ONE 2019, 14, e0209913. [Google Scholar]
- Cantoral, A.; Tellez-Rojo, M.M.; Ettinger, A.S.; Hu, H.; Hernandez-Avila, M.; Peterson, K. Early introduction and cumulative consumption of sugar-sweetened beverages during the pre-school period and risk of obesity at 8–14 years of age. Pediatric Obes. 2016, 11, 68–74. [Google Scholar] [CrossRef]
- Jamnik, J.; Rehman, S.; Blanco Mejia, S.; de Souza, R.J.; Khan, T.A.; Leiter, L.A.; Wolever, T.M.; Kendall, C.W.; Jenkins, D.J.; Sievenpiper, J.L. Fructose intake and risk of gout and hyperuricemia: A systematic review and meta-analysis of prospective cohort studies. BMJ Open 2016, 6, e013191. [Google Scholar] [CrossRef] [PubMed]
- Osgood, K.; Krakoff, J.; Thearle, M. Serum Uric Acid Predicts Both Current and Future Components of the Metabolic Syndrome. Metab. Syndr. Relat. Disord. 2013, 11, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Reis, L.N.; Reuter, C.P.; Pollo Renner, J.D.; Burgos, L.T.; Rech Franke, S.I.; Burgos, M.S. High urate concentration is associated with elevated blood pressure in schoolchildren. J. Pediatric Endocrinol. Metab. JPEM 2018, 31, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Viazzi, F.; Antolini, L.; Giussani, M.; Brambilla, P.; Galbiati, S.; Mastriani, S.; Stella, A.; Pontremoli, R.; Valsecchi, M.G.; Genovesi, S. Serum Uric Acid and Blood Pressure in Children at Cardiovascular Risk. Pediatrics 2013, 132, e93. [Google Scholar] [CrossRef] [PubMed]
- Stirpe, F.; Della Corte, E.; Bonetti, E.; Abbondanza, A.; Abbati, A.; De Stefano, F. Fructose-induced hyperuricaemia. Lancet 1970, 2, 1310–1311. [Google Scholar] [CrossRef]
- Sun, D.; Li, S.; Zhang, X.; Fernandez, C.; Chen, W.; Srinivasan, S.R.; Berenson, G.S. Uric Acid Is Associated with Metabolic Syndrome in Children and Adults in a Community: The Bogalusa Heart Study. PLoS ONE 2014, 9, e89696. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, C.; Rudemiller, N.P.; Abais, J.M.; Mattson, D.L. Inflammation and hypertension: New understandings and potential therapeutic targets. Curr. Hypertens. Rep. 2015, 17, 507. [Google Scholar] [CrossRef] [PubMed]
- Gkaliagkousi, E.; Passacquale, G.; Douma, S.; Zamboulis, C.; Ferro, A. Platelet activation in essential hypertension: Implications for antiplatelet treatment. Am. J. Hypertens. 2010, 23, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Grayson, P.C.; Kim, S.Y.; LaValley, M.; Choi, H.K. Hyperuricemia and incident hypertension: A systematic review and meta-analysis. Arthritis Care Res. 2011, 63, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qin, T.; Chen, J.; Li, Y.; Wang, L.; Huang, H.; Li, J. Hyperuricemia and risk of incident hypertension: A systematic review and meta-analysis of observational studies. PLoS ONE 2014, 9, e114259. [Google Scholar] [CrossRef]
- Schliep, K.C.; Schisterman, E.F.; Mumford, S.L.; Pollack, A.Z.; Perkins, N.J.; Ye, A.; Zhang, C.J.; Stanford, J.B.; Porucznik, C.A.; Hammoud, A.O.; et al. Energy-containing beverages: Reproductive hormones and ovarian function in the BioCycle Study. Am. J. Clin. Nutr. 2013, 97, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Mumford, S.L.; Dasharathy, S.S.; Pollack, A.Z.; Perkins, N.J.; Mattison, D.R.; Cole, S.R.; Wactawski-Wende, J.; Schisterman, E.F. Serum uric acid in relation to endogenous reproductive hormones during the menstrual cycle: Findings from the BioCycle study. Hum. Reprod. 2013, 28, 1853–1862. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Database; CID=15606. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/methyl_nonanoate (accessed on 16 May 2019).
- Hay, N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat. Rev. Cancer 2016, 16, 635–649. [Google Scholar] [CrossRef]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.-P.; Willett, W.C.; Hu, F.B. Sugar Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes: A Meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. 2-Piperidone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2-Piperidone#section=Top (accessed on 16 May 2019).
- Yuan, D.L.; Liang, Y.Z.; Yi, L.Z.; Xu, Q.S.; Kvalheim, O.M. Uncorrelated linear discriminant analysis (ULDA): A powerful tool for exploration of metabolomics data. Chemom. Intell. Lab. 2008, 93, 70–79. [Google Scholar] [CrossRef]
- Mai, M.; Tönjes, A.; Kovacs, P.; Stumvoll, M.; Fiedler, G.M.; Leichtle, A.B. Serum levels of acylcarnitines are altered in prediabetic conditions. PLoS ONE 2013, 8, e82459. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Roman, M.A.; Sweetman, L.; Valdez, M.J.; Parks, E.J. Postprandial changes in plasma acylcarnitine concentrations as markers of fatty acid flux in overweight and obesity. Metab. Clin. Exp. 2012, 61, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Havel, P.J. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup. Am. J. Clin. Nutr. 2008, 88, 1733s–1737s. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Gillman, M.W.; Fleisch, A.F.; Michalek, R.D.; Watkins, S.M.; Isganaitis, E.; Patti, M.E.; Oken, E. Metabolomic profiles and childhood obesity. Obes. (Silver Springmd.) 2014, 22, 2570–2578. [Google Scholar] [CrossRef] [Green Version]
- Butte, N.F.; Liu, Y.; Zakeri, I.F.; Mohney, R.P.; Mehta, N.; Voruganti, V.S.; Goring, H.; Cole, S.A.; Comuzzie, A.G. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am. J. Clin. Nutr. 2015, 102, 256–267. [Google Scholar] [CrossRef]
- Hu, H.; Tellez-Rojo, M.M.; Bellinger, D.; Smith, D.; Ettinger, A.S.; Lamadrid-Figueroa, H.; Schwartz, J.; Schnaas, L.; Mercado-Garcia, A.; Hernandez-Avila, M. Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ. Health Perspect. 2006, 114, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Villalpando, S.; Garcia-Guerra, A.; Ramirez-Silva, C.I.; Mejia-Rodriguez, F.; Matute, G.; Shamah-Levy, T.; Rivera, J.A. Iron, zinc and iodide status in Mexican children under 12 years and women 12–49 years of age. A probabilistic national survey. Salud Publica Mex 2003, 45 (Suppl. 4), S520–S529. [Google Scholar] [CrossRef]
- Perng, W.; Fernandez, C.; Peterson, K.E.; Zhang, Z.; Cantoral, A.; Sanchez, B.N.; Solano-Gonzalez, M.; Tellez-Rojo, M.M.; Baylin, A. Dietary Patterns Exhibit Sex-Specific Associations with Adiposity and Metabolic Risk in a Cross-Sectional Study in Urban Mexican Adolescents. J. Nutr. 2017, 147, 1977–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantoral, A.; Contreras-Manzano, A.; Luna-Villa, L.; Batis, C.; Roldan-Valadez, E.A.; Ettinger, A.S.; Mercado, A.; Peterson, K.E.; Tellez-Rojo, M.M.; Rivera, J.A. Dietary Sources of Fructose and Its Association with Fatty Liver in Mexican Young Adults. Nutrients 2019, 11, 522. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture (USDA). USDA Food Composition Databases; National Agricultural Library, Ed.; 2009. Available online: https://ndb.nal.usda.gov/ndb/ (accessed on 16 May 2019).
- Willett, W.C. Implications of total energy intake for epidemiologic analyses. Nutr. Epidemiol. 1998, 30, 279–298. [Google Scholar]
- Perng, W.; Hector, E.C.; Song, P.X.K.; Tellez Rojo, M.M.; Raskind, S.; Kachman, M.; Cantoral, A.; Burant, C.F.; Peterson, K.E. Metabolomic Determinants of Metabolic Risk in Mexican Adolescents. Obes. (Silver Springmd.) 2017, 25, 1594–1602. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.; Roche, A.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Boeke, C.E.; Oken, E.; Kleinman, K.P.; Rifas-Shiman, S.L.; Taveras, E.M.; Gillman, M.W. Correlations among adiposity measures in school-aged children. BMC Pediatr. 2013, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Orphanidou, C.; McCargar, L.; Birmingham, C.L.; Mathieson, J.; Goldner, E. Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography. J. Am. Diet. Assoc. 1994, 94, 855–858. [Google Scholar] [CrossRef]
- Bonser, A.M.; Garcia-Webb, P. C-peptide measurement: Methods and clinical utility. Crit. Rev. Clin. Lab. Sci. 1984, 19, 297–352. [Google Scholar] [CrossRef]
- Chavarro, J.E.; Watkins, D.J.; Afeiche, M.C.; Zhang, Z.; Sánchez, B.N.; Cantonwine, D.; Mercado-García, A.; Blank-Goldenberg, C.; Meeker, J.D.; Téllez-Rojo, M.M.; et al. Validity of Self-Assessed Sexual Maturation Against Physician Assessments and Hormone Levels. J. Pediatrics 2017, 186, 172–178. [Google Scholar] [CrossRef]
- Watkins, D.J.; Peterson, K.E.; Ferguson, K.K.; Mercado-Garcia, A.; Ortiz, M.T.; Cantoral, A.; Meeker, J.D.; Tellez-Rojo, M.M. Relating phthalate and BPA exposure to metabolism in peripubescence: The role of exposure timing, sex, and puberty. J. Clin. Endocrinol. Metab. 2015, 101, 79–88. [Google Scholar] [CrossRef]
- Hernandez, B.; Gortmaker, S.; Laird, N.; GColditz, G.; Parra, S.; Peterson, K. Validez y reproducibilidad de un cuestionario de actividad e inactividad física para escolares de la ciudad de México. Salud Publica Mex. 2000, 42, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B 1974, 36, 111–147. [Google Scholar] [CrossRef]
- Bach, F.R. Bolasso: Model consistent lasso estimation through bootstrap. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 33–40. [Google Scholar]
- Davis, J.N.; Le, K.A.; Walker, R.W.; Vikman, S.; Spruijt-Metz, D.; Weigensberg, M.J.; Allayee, H.; Goran, M.I. Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in PNPLA3 and high dietary carbohydrate and sugar consumption. Am. J. Clin. Nutr. 2010, 92, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
Intake of Any Sugar-Sweetened Beverage a | Girls n = 128 | Boys n = 114 |
---|---|---|
Never to <1 time/month | 0.0% (0) | 4.4% (5) |
1–3 times/month | 4.7% (6) | 2.6% (3) |
Once per week | 8.6% (11) | 4.4% (5) |
2–4 times/week | 3.9% (5) | 2.6% (3) |
5–6 times/week | 3.9% (5) | 12.3% (14) |
Once per day | 4.7% (6) | 6.1% (7) |
2–3 times/day | 10.9% (14) | 7.9% (9) |
>4 times/day | 63.3% (81) | 59.7% (68) |
- | Associations (β a [95% Confidence Interval (CI)]) of Quartiles of SSB Intake with Adiposity and Metabolic Risk Biomarkers during Peripuberty | |||
---|---|---|---|---|
Girls (n = 128) | ||||
Q2 vs. Q1 | Q3 vs. Q1 | Q4 vs. Q1 | P-Trend | |
n = 32 vs. 32 | n = 32 vs. 32 | n = 32 vs. 32 | ||
Glycemia | ||||
Fasting glucose (mg/dL) | 0.02 (−5.09, 5.12) | 0.91 (−4.19, 6.00) | −0.13 (−5.23, 4.98) | 0.95 |
Fasting C-peptide (ng/mL) | 0.12 (−0.49, 0.74) | −0.23 (−0.85, 0.38) | 0.04 (−0.57, 0.65) | 0.81 |
CP-IR b | 0.05 (−0.14, 0.24) | −0.04 (−0.23, 0.14) | 0.04 (−0.15, 0.23) | 0.94 |
Leptin (ng/mL) | −1.33 (−6.04, 3.39) | −3.37 (−8.07, 1.34) | −0.72 (−5.43, 4.00) | 0.58 |
Lipid Profile | ||||
Total cholesterol (mg/dL) | 0.85 (−11.77, 13.47) | 6.29 (−6.31, 18.88) | 0.14 (−12.48, 12.76) | 0.77 |
HDL (mg/dL) | 2.81 (−2.83, 8.45) | 2.42 (−3.22, 8.05) | −1.14 (−6.78, 4.50) | 0.68 |
LDL (mg/dL) | −3.89 (−13.99, 6.20) | 3.14 (−6.93, 13.22) | −2.57 (−12.66, 7.53) | 0.98 |
Triglycerides (mg/dL) | 9.67 (−13.30, 32.63) | 3.61 (−19.31, 26.53) | 19.24 (−3.72, 42.19) | 0.17 |
Adiposity and Blood Pressure | ||||
BMI z-score c | 0.11 (−0.48, 0.70) | −0.20 (−0.79, 0.39) | 0.20 (−0.39, 0.79) | 0.76 |
Waist circumference (cm) | 0.30 (−4.65, 5.25) | −1.33 (−6.27, 3.61) | 2.04 (−2.90, 6.99) | 0.58 |
SS+TR (mm) | −0.37 (−5.86, 5.12) | −1.64 (−7.12, 3.84) | 1.50 (−3.99, 6.99) | 0.72 |
SBP (mmHg) | 1.11 (−3.90, 6.13) | 1.16 (−3.81, 6.13) | 4.65 (−0.22, 9.53) | 0.07 |
DBP (mmHg) | 0.02 (−3.61, 3.66) | 1.27 (−2.33, 4.86) | 3.08 (−0.45, 6.62) | 0.07 |
- | Boys (n = 114) | |||
Q2 vs. Q1 | Q3 vs. Q1 | Q4 vs. Q1 | P-Trend | |
n = 29 vs. 29 | n = 28 vs. 29 | n = 28 vs. 29 | ||
Glycemia | ||||
Fasting glucose (mg/dL) | 1.12 (−2.80, 5.03) | 1.70 (−2.27, 5.67) | 1.52 (−2.43, 5.47) | 0.42 |
Fasting C-peptide (ng/mL) | 0.27 (−0.28, 0.83) | 0.00 (−0.57, 0.56) | 0.72 (0.16, 1.27) | 0.04 |
CP-IR b | 0.06 (−0.06, 0.19) | 0.01 (−0.12, 0.14) | 0.17 (0.04, 0.30) | 0.03 |
Leptin (ng/mL) | 0.99 (−2.27, 4.25) | 1.78 (−1.53, 5.09) | 3.78 (0.49, 7.08) | 0.02 |
Lipid profile | ||||
Total cholesterol (mg/dL) | −1.20 (−15.68, 13.28) | 3.37 (−11.32, 18.07) | −2.39 (−17.01, 12.22) | 0.90 |
HDL (mg/dL) | −0.49 (−6.61, 5.62) | −1.24 (−7.44, 4.96) | −3.83 (−10.00, 2.34) | 0.22 |
LDL (mg/dL) | −2.70 (−14.80, 9.41) | 2.90 (−9.39, 15.18) | 0.26 (−11.96, 12.48) | 0.76 |
Triglycerides (mg/dL) | 9.97 (−9.76, 29.70) | 8.58 (−11.44, 28.61) | 5.89 (−14.02, 25.81) | 0.61 |
Adiposity and blood pressure | ||||
BMI z-score c | 0.40 (−0.21, 1.00) | 0.13 (−0.48, 0.74) | 0.55 (−0.05, 1.16) | 0.15 |
Waist circumference (cm) | 3.81 (−0.86, 8.48) | 1.69 (−3.05, 6.42) | 5.06 (0.35, 9.77) | 0.08 |
SS+TR (mm) | 2.69 (−2.80, 8.18) | 0.83 (−4.74, 6.40) | 5.51 (−0.03, 11.06) | 0.10 |
SBP (mmHg) | 4.18 (−0.90, 9.26) | 7.08 (2.00, 12.16) | 8.79 (3.69, 13.90) | 0.0004 |
DBP (mmHg) | 3.88 (0.24, 7.51) | 6.18 (2.55, 9.81) | 7.10 (3.45, 10.75) | <0.0001 |
- | Feature Characteristics and Annotation Methods | LASSO Parameters | |||||
---|---|---|---|---|---|---|---|
Ion Acquisition Mode | Retention Time (min) | m/z | Annotation Method | Level of Confidence | Selection | β a | |
Girls (n = 128) | |||||||
5-methyl-tetrohydrofolate (THF) | + | 3.63 | 460.194 | In-house library | Level 1 | 96 | −0.508 |
Urate | + | 1.00 | 169.037 | In-house library | Level 1 | 96 | 0.576 |
Unknown | + | 9.54 | 920.466 | 95 | −0.467 | ||
Phenylephrine | + | 0.94 | 168.102 | In-house library | Level 1 | 95 | 0.419 |
Unknown | + | 29.63 | 647.560 | 94 | −0.346 | ||
Unknown | − | 0.79 | 195.810 | 93 | 0.399 | ||
Unknown | + | 24.97 | 810.597 | 90 | −0.348 | ||
Unknown | + | 10.11 | 211.131 | 83 | 0.249 | ||
Unknown | + | 22.22 | 435.271 | 81 | −0.288 | ||
Nonanoate | − | 18.33 | 157.123 | In-house library | Level 1 | 81 | 0.287 |
Unknown | − | 18.57 | 473.275 | 80 | 0.335 | ||
Unknown | − | 8.47 | 516.006 | 78 | −0.247 | ||
Unknown | + | 22.91 | 359.317 | 77 | −0.238 | ||
Unknown | + | 19.33 | 501.317 | 76 | −0.241 | ||
Unknown | − | 16.19 | 398.036 | 75 | 0.265 | ||
Deoxyuridine | + | 1.67 | 251.066 | In-house library | Level 1 | 75 | 0.257 |
Unknown | + | 19.80 | 588.318 | 73 | −0.269 | ||
Unknown | − | 20.63 | 584.236 | 73 | 0.198 | ||
Unknown | + | 25.07 | 1614.146 | 72 | −0.216 | ||
Sn-glycero-3-phosphocholine | + | 0.61 | 258.111 | In-house library | 71 | 0.192 | |
Boys (n = 114) | |||||||
2-piperidinone | + | 2.68 | 100.077 | In-house library | Level 1 | 96 | 0.45 |
Unknown | − | 12.73 | 430.015 | 91 | 0.36 | ||
Unknown | + | 18.77 | 455.202 | 91 | 0.45 | ||
Unknown | + | 7.82 | 279.171 | 90 | 0.51 | ||
Octanoylcarnitine | + | 25.31 | 752.562 | In-house library | Level 1 | 86 | −0.42 |
Unknown | + | 11.65 | 311.147 | 86 | −0.38 | ||
Catechol | − | 2.50 | 109.029 | In-house library | Level 1 | 82 | 0.35 |
Unknown | − | 24.00 | 883.537 | 81 | 0.30 | ||
Unknown | + | 14.05 | 793.411 | 77 | −0.28 | ||
Unknown | + | 22.91 | 471.353 | 75 | 0.24 | ||
Unknown | + | 12.03 | 1238.497 | 75 | −0.37 |
- | β a (95% CI) per 1-SD Increment in Each SSB-Related Metabolite with Select Adiposity Indicators and Metabolic Biomarkers | |||||
---|---|---|---|---|---|---|
Girls (n = 128) | ||||||
5-Methyl-THF | Phenylephrine | Urate | Nonanoate | Deoxyuridine | Sn-Glycero-3-Phosphoholine | |
Blood pressure | ||||||
SBP (mmHg) | −1.18 (−2.92, 0.55) | 0.03 (−1.68, 1.73) | 3.09 (1.38, 4.79) | 2.27 (0.58, 3.97) | 0.04 (−1.73, 1.81) | −0.10 (−1.77, 1.57) |
DBP (mmHg) | −0.44 (−1.73, 0.84) | 0.26 (−1.00, 1.52) | 1.31 (0.01, 2.61) | 0.31 (−0.98, 1.60) | 0.44 (−0.86, 1.75) | −0.05 (−1.28, 1.19) |
- | Boys (n = 114) | |||||
2-Piperidinone | Octanoylcarnitine | Catechol | ||||
Metabolic biomarkers | ||||||
Fasting C-peptide (ng/mL) | 0.06 (−0.13, 0.25) | −0.15 (−0.37, 0.08) | 0.08 (−0.15, 0.30) | |||
CP-IR b | 0.01 (−0.03, 0.06) | −0.03 (−0.08, 0.02) | 0.02 (−0.03, 0.07) | |||
Leptin (ng/mL) | 0.79 (−0.32, 1.89) | 0.19 (−1.11, 0.15) | 0.06 (−1.28, 1.39) | |||
Adiposity | ||||||
BMI z-score | 0.16 (−0.05, 0.36) | −0.04 (−0.28, 0.20) | 0.01 (−0.23, 0.25) | |||
Waist circumference (cm) | 1.50 (−0.07, 3.07) | −0.37 (−2.24, 1.50) | 0.26 (−1.64, 2.16) | |||
SS+TR (mm) | 1.35 (−0.50, 3.21) | −0.62 (−2.81, 1.57) | −0.27 (−2.50, 1.96) | |||
Blood pressure | ||||||
SBP (mmHg) | 0.98 (−0.86, 2.83) | 0.37 (−1.68, 2.43) | 1.98 (−0.06, 4.02) | |||
DBP (mmHg) | 1.10 (−0.23, 2.43) | −0.98 (2.46, 0.51) | 1.23 (−0.26, 2.72) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perng, W.; Tang, L.; Song, P.X.K.; Goran, M.; Tellez Rojo, M.M.; Cantoral, A.; Peterson, K.E. Urate and Nonanoate Mark the Relationship between Sugar-Sweetened Beverage Intake and Blood Pressure in Adolescent Girls: A Metabolomics Analysis in the ELEMENT Cohort. Metabolites 2019, 9, 100. https://doi.org/10.3390/metabo9050100
Perng W, Tang L, Song PXK, Goran M, Tellez Rojo MM, Cantoral A, Peterson KE. Urate and Nonanoate Mark the Relationship between Sugar-Sweetened Beverage Intake and Blood Pressure in Adolescent Girls: A Metabolomics Analysis in the ELEMENT Cohort. Metabolites. 2019; 9(5):100. https://doi.org/10.3390/metabo9050100
Chicago/Turabian StylePerng, Wei, Lu Tang, Peter X. K. Song, Michael Goran, Martha Maria Tellez Rojo, Alejandra Cantoral, and Karen E. Peterson. 2019. "Urate and Nonanoate Mark the Relationship between Sugar-Sweetened Beverage Intake and Blood Pressure in Adolescent Girls: A Metabolomics Analysis in the ELEMENT Cohort" Metabolites 9, no. 5: 100. https://doi.org/10.3390/metabo9050100
APA StylePerng, W., Tang, L., Song, P. X. K., Goran, M., Tellez Rojo, M. M., Cantoral, A., & Peterson, K. E. (2019). Urate and Nonanoate Mark the Relationship between Sugar-Sweetened Beverage Intake and Blood Pressure in Adolescent Girls: A Metabolomics Analysis in the ELEMENT Cohort. Metabolites, 9(5), 100. https://doi.org/10.3390/metabo9050100