A Modified Kulka Micromethod for the Rapid and Safe Analysis of Fructose and 1-Deoxy-d-xylulose-5-phosphate
Abstract
:1. Introduction
2. Results
2.1. General Considerations
2.2. Spectral Analysis of the Fructose- and DXP-Resorcinol Reaction Mixtures
2.3. Calibration Guidelines for Fructose and DXP Using the Modified Kulka Method
2.3.1. Calibration with Fructose
2.3.2. Effects of Interfering Substances upon the Modified Kulka Assay
2.3.3. Application of the Modified Kulka Assay to Determine the Consumption of Fructose in a Bacterial Growth Experiment
2.3.4. The Determination of DXP Using the Modified Kulka Assay
2.3.5. Application to the Assay of DXP Synthase (DXS)
2.3.6. Reagent Interference in the Modified Kulka Assay for DXP
2.3.7. Adaptation of the Modified Kulka Method for a High-Throughput Format
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. The Modified Kulka Protocol
4.3. Deproteinization of Samples Prior to Fructose Determination
4.4. Absorption Spectroscopy
4.5. Simulation of a Progress Curve for DXS Enzyme Reaction
4.6. Procedures for Concentration of Sugar Phosphate Samples Using BaCl2 or n-Butanol
4.7. Adaptation of the Assay for High-Throughput Measurements Using 96-Well Plates
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anumula, K.R.; Du, P. Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins. Anal. Biochem. 1999, 275, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Sabbioni, C.; Heijden, R.V.D.; Verpoort, R. High-performance liquid chromatography assay for 1-deoxy-d-xylulose 5-phosphate synthase activity using fluorescence detection. J. Chromatogr. A 2003, 986, 291–296. [Google Scholar] [CrossRef]
- Li, B.W.; Schuhmann, P.J.; Wolf, W.R. Chromatographic determinations of sugars and starch in a diet composite reference material. J. Agric. Food Chem. 1985, 33, 531–536. [Google Scholar] [CrossRef]
- Kametani, S.; Shiga, Y.; Akanuma, H. Hepatic production of 1,5-anhydrofructose and 1,5-anhydroglucitol in rat by the third glycogenolytic pathway. Eur. J. Biochem. 1996, 242, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Langmeier, J.M.; Rogers, D.E. Rapid method for sugar analysis of doughs and baked products. Cereal Chem. 1995, 72, 349–351. [Google Scholar]
- Sprenger, G.A.; Schörken, U.; Wiegert, T.; Grolle, S.; Graff, A.A.D.; Taylor, S.V.; Begley, T.P.; Bringer-Meyer, S.; Sahm, H. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxal. Proc. Natl. Acad. Sci. USA 1997, 94, 12857–12862. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yuan, X.; Shi, Z.; Meng, D.; Jiang, W.; Wu, L.; Chen, J.; Chen, G. Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb. Cell Fact. 2012, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Bartos, J.; Pesez, M. Colorimetric and fluorimetric determination of aldehydes and ketones. Pure Appl. Chem. 1979, 51, 1803–1814. [Google Scholar]
- Jue, C.K.; Lipke, P.N. Determination of reducing sugars in the nanomole range with tetrazolium blue. J. Biochem. Biophys. Methods 1985, 11, 109–115. [Google Scholar] [CrossRef]
- Kulka, R.G. Colorimetric estimation of ketopentoses and ketohexoses. Biochemistry 1956, 63, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Bacon, J.S.D.; Bell, D.J. Fructose and glucose in the blood of the foetal sheep. Biochem. J. 1948, 42, 397–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauretin, A.; Edwards, C.A. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal. Biochem. 2002, 315, 143–145. [Google Scholar] [CrossRef]
- Monsigny, M.; Petit, C.; Roche, A. Colorimetric determination of neutral sugars by a resorcinol sulfuric acid micromethod. Anal. Biochem. 1988, 175, 525–530. [Google Scholar] [CrossRef]
- Somani, B.L.; Khanade, J.; Sinha, R. A modified anthrone-sulfuric acid method for the determination of fructose in the presence of certain proteins. Anal. Biochem. 1987, 167, 327–330. [Google Scholar] [CrossRef]
- Waffenschmidt, S.; Jaenicke, L. Assay of reducing sugars in the nanomole range with 2,2′-bicinchoninate. Anal. Biochem. 1987, 165, 337–340. [Google Scholar] [CrossRef]
- Dietrich, C.P.; Dietrich, S.M.C.; Pontis, H.G. Separation of sugar phosphates and sugar nucleotides by thin-layer chromatography. J. Chromatogr. A 1964, 15, 277–278. [Google Scholar] [CrossRef]
- Moczar, E.; Moczar, M.; Schillinger, G.; Robert, L. A rapid micro-determination of neutral sugars and aminosugars in glycopeptides by thin-layer chromatography. J. Chromatogr. A 1967, 31, 561–564. [Google Scholar] [CrossRef]
- Raadsveld, C.W.; Klomp, H. Thin-layer chromatographic analysis of sugar mixtures. J. Chromatogr. A 1971, 57, 99–106. [Google Scholar] [CrossRef]
- Waring, P.P.; Ziporin, Z.Z. The separation of hexosephosphates and triosephosphates by thin-layer chromatography. J. Chromatogr. A 1964, 15, 168–172. [Google Scholar] [CrossRef]
- Araujo, P. Key aspects of analytical method validation and linearity evaluation. J. Chromatogr. B 2009, 877, 2224–2234. [Google Scholar] [CrossRef] [PubMed]
- Harrington, W.F.; Johnson, P.; Ottewill, R.H. Bovine serum albumin and its behavior in acid solution. J. Biochem. 1956, 62, 569–582. [Google Scholar] [CrossRef]
- Ghosh, R.; Hardmeyer, A.; Thoenen, I.; Bachofen, R. Optimization of the Sistrom culture medium for large-scale batch cultivation of Rhodospirillum rubrum under semiaerobic conditions with maximal yield of photosynthetic membranes. Appl. Environ. Microbiol. 1994, 60, 1698–1700. [Google Scholar] [PubMed]
- Grammel, H.; Gilles, E.D.; Ghosh, R. Microaerophilic cooperation of reductive and oxidative pathways allows maximal photosynthetic membrane biosynthesis in Rhodospirillum rubrum. Appl. Environ. Microbiol. 2003, 69, 6577–6586. [Google Scholar] [CrossRef] [PubMed]
- Sistrom, W.R. A requirement for sodium in the growth of Rhodopseudomonas spheroides. Microbiology 1960, 22, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Erb, T.J.; Berg, I.A.; Brecht, V.; Müller, M.; Fuchs, G.; Alber, B.E. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: The ethylmalonyl-CoA pathway. Proc. Natl. Acad. Sci. USA 2007, 104, 10631–10636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eubanks, L.M.; Poulter, C. Rhodobacter capsulatus 1-deoxy-d-xylulose 5-phosphate synthase: Steady-state kinetics and substrate binding. Biochemistry 2003, 42, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- LePage, A.G. Phosphorylated intermediates in tumor glycolysis. II. Isolation of phosphate esters from tumors. Cancer Res. 1948, 8, 197–200. [Google Scholar] [PubMed]
- McGeown, G.M.; Malpress, H.F. Studies on the synthesis of lactose by the mammary gland 2. The sugar phosphate esters of milk. J. Biochem. 1952, 52, 606–611. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989; Appendix E.16; ISBN 978-0879693091. [Google Scholar]
- Lois, L.M.; Campos, N.; Putra, S.R.; Danielsen, K.; Rohmer, M.; Boronat, A. Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc. Natl. Acad. Sci. USA 1998, 95, 2105–2110. [Google Scholar] [CrossRef] [PubMed]
- Hoeffler, J.F.; Tritsch, D.; Grosdemange-Billiard, C.; Rohmer, M. Isoprenoid biosynthesis via the methylerythritol phosphate pathway–Mechanistic investigations of the 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Eur. J. Biochem. 2002, 269, 4446–4457. [Google Scholar] [CrossRef] [PubMed]
- Ajikumar, P.K.; Xiao, W.H.; Tyo, K.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeiffer, B.; Stephanopoulos, G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 2010, 330, 70–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, M.; Webb, E.C. Enzymes, 2nd ed.; Longmans Green: London, UK, 1964; pp. 114–116. ISBN 978-0582462144. [Google Scholar]
- Atkins, G.L.; Nimmo, I. The reliability of Michaelis constants and maximal velocities estimated using the integrated Michaelis-Menten equation. Biochem. J. 1973, 135, 779–784. [Google Scholar] [CrossRef] [PubMed]
Compound | Stock Soln a | µmol in Assay b | % of Control | Increase/Decrease |
---|---|---|---|---|
TrisHCl | 100 mM | 2 | 104 | + |
Na-Phosphate | 100 mM | 2 | 109 | + |
NaCl | 100 mM | 2 | 105 | + |
MgCl2 | 10 mM | 0.2 | 105 | + |
HEPES d | 100 mM | 2 | 107 | + |
MOPS d | 100 mM | 2 | 104 | + |
TCA d | 72% | 3.4–5% (w/v) | 96–107 | − |
BSA d | 100 µg/mL | 2 µg | 120 c | + |
BSA/TCA | 100 µg/mL | 2 µg | 99 | − |
Glucose | 2.5 mM | 20 nmol | 103 | + |
Glucose only | 2.5 mM | 20 nmol | 15 | − |
Glucose | 111 mM | 2.2 µmol | 195 | + |
Glucose only | 111 mM | 2.2 µmol | 142 | + |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaw, S.; Ghosh, R. A Modified Kulka Micromethod for the Rapid and Safe Analysis of Fructose and 1-Deoxy-d-xylulose-5-phosphate. Metabolites 2018, 8, 77. https://doi.org/10.3390/metabo8040077
Shaw S, Ghosh R. A Modified Kulka Micromethod for the Rapid and Safe Analysis of Fructose and 1-Deoxy-d-xylulose-5-phosphate. Metabolites. 2018; 8(4):77. https://doi.org/10.3390/metabo8040077
Chicago/Turabian StyleShaw, Shreya, and Robin Ghosh. 2018. "A Modified Kulka Micromethod for the Rapid and Safe Analysis of Fructose and 1-Deoxy-d-xylulose-5-phosphate" Metabolites 8, no. 4: 77. https://doi.org/10.3390/metabo8040077
APA StyleShaw, S., & Ghosh, R. (2018). A Modified Kulka Micromethod for the Rapid and Safe Analysis of Fructose and 1-Deoxy-d-xylulose-5-phosphate. Metabolites, 8(4), 77. https://doi.org/10.3390/metabo8040077