Modelling of Hydrophilic Interaction Liquid Chromatography Stationary Phases Using Chemometric Approaches
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Retention Factors
2.2. Evaluation of HILIC Stationary Phases Behavior
2.3. Exploratory Relationship between Physicochemical Properties and HILIC Chromatographic Retention
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation
3.3. Data Analysis
3.3.1. Retention Factor Determination
3.3.2. Molecular Descriptors Determination
3.3.3. Evaluation of HILIC Chromatographic Performance
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gorrochategui, E.; Jaumot, J.; Lacorte, S.; Tauler, R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends Anal. Chem. 2016, 82, 425–442. [Google Scholar] [CrossRef]
- Rochat, B. From targeted quantification to untargeted metabolomics: Why LC-high-resolution-MS will become a key instrument in clinical labs. TrAC Trends Anal. Chem. 2016, 84, 151–164. [Google Scholar] [CrossRef]
- Jorge, T.F.; Rodrigues, J.A.; Caldana, C.; Schmidt, R.; van Dongen, J.T.; Thomas-Oates, J.; António, C. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrom. Rev. 2016, 35, 620–649. [Google Scholar] [CrossRef] [PubMed]
- Horvatovich, P.L.; Bischoff, R. Current technological challenges in biomarker discovery and validation. Eur. J. Mass Spectrom. 2010, 16, 101–121. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.S.; Carvalho, M.; Bastos, M.L.; De Pinho, P.G. Metabolomics analysis for biomarker discovery: Advances and challenges. Curr. Med. Chem. 2013, 20, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Madji Hounoum, B.; Blasco, H.; Emond, P.; Mavel, S. Liquid chromatography-high-resolution mass spectrometry-based cell metabolomics: Experimental design, recommendations, and applications. TrAC Trends Anal. Chem. 2016, 75, 118–128. [Google Scholar] [CrossRef]
- Naz, S.; Moreira Dos Santos, D.C.; García, A.; Barbas, C. Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues. Bioanalysis 2014, 6, 1657–1677. [Google Scholar] [CrossRef] [PubMed]
- Cubbon, S.; Antonio, C.; Wilson, J.; Thomas-Oates, J. Metabolomic applications of HILIC–LC–MS. Mass Spectrom. Rev. 2010, 29, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Spagou, K.; Tsoukali, H.; Raikos, N.; Gika, H.; Wilson, I.D.; Theodoridis, G. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. J. Sep. Sci. 2010, 33, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.Q.; Zou, L.; Yin, X.X.; Ong, C.N. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. Mass Spectrom. Rev. 2016, 35, 574–600. [Google Scholar] [CrossRef] [PubMed]
- Taraji, M.; Haddad, P.R.; Amos, R.I.J.; Talebi, M.; Szucs, R.; Dolan, J.W.; Pohl, C.A. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures. J. Chromatogr. A 2017, 1486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y. Recent progress in the fundamental understanding of hydrophilic interaction chromatography (HILIC). Analyst 2015, 140, 6452–6466. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, S.; Adams, E.; Cabooter, D. Recent advances in the application of hydrophilic interaction chromatography for the analysis of biological matrices. Bioanalysis 2015, 7, 2927–2945. [Google Scholar] [CrossRef] [PubMed]
- Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A 1990, 499, 177–196. [Google Scholar] [CrossRef]
- Jandera, P. Stationary and mobile phases in hydrophilic interaction chromatography: A review. Anal. Chim. Acta 2011, 692, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Noga, S. Hydrophilic interaction liquid chromatography (HILIC)—A powerful separation technique. Anal. Bioanal. Chem. 2012, 402, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Villanueva, E.; Navarro-Reig, M.; Jaumot, J.; Tauler, R. Chemometric evaluation of hydrophilic interaction liquid chromatography stationary phases: Resolving complex mixtures of metabolites. Anal. Method. 2017, 9, 774–785. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Smilde, A.K.; Jansen, J.J.; Hoefsloot, H.C.J.; Lamers, R.J.A.N.; van der Greef, J.; Timmerman, M.E. ANOVA-simultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics 2005, 21, 3043–3048. [Google Scholar] [CrossRef] [PubMed]
- Creek, D.J.; Jankevics, A.; Breitling, R.; Watson, D.G.; Barrett, M.P.; Burgess, K.E.V. Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: Improved metabolite identification by retention time prediction. Anal. Chem 2011, 83, 8703–8710. [Google Scholar] [CrossRef] [PubMed]
- Falchi, F.; Bertozzi, S.M.; Ottonello, G.; Ruda, G.F.; Colombano, G.; Fiorelli, C.; Martucci, C.; Bertorelli, R.; Scarpelli, R.; Cavalli, A.; et al. Kernel-based, partial least squares quantitative structure-retention relationship model for UPLC retention time prediction: A useful tool for metabolite identification. Anal. Chem. 2016, 88, 9510–9517. [Google Scholar] [CrossRef] [PubMed]
- Yousefinejad, S.; Hemmateenejad, B. Chemometrics tools in QSAR/QSPR studies: A historical perspective. Chemom. Intell. Lab. Syst. 2015, 149, 177–204. [Google Scholar] [CrossRef]
- Goryński, K.; Bojko, B.; Nowaczyk, A.; Buciński, A.; Pawliszyn, J.; Kaliszan, R. Quantitative structure-retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: Endogenous metabolites and banned compounds. Anal. Chim. Acta 2013, 797, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Zisi, C.; Sampsonidis, I.; Fasoula, S.; Papachristos, K.; Witting, M.; Gika, H.G.; Nikitas, P.; Pappa-Louisi, A. QSRR modeling for metabolite standards analyzed by two different chromatographic columns using multiple linear regression. Metabolites 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, G.M.; Tonoli, D.; Hambye, S.; Guillarme, D.; Jeanneret, F.; Nurisso, A.; Goracci, L.; Boccard, J.; Rudaz, S. Prediction of retention time in reversed-phase liquid chromatography as a tool for steroid identification. Anal. Chim. Acta 2016, 916, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Kritikos, N.; Tsantili-Kakoulidou, A.; Loukas, Y.L.; Dotsikas, Y. Liquid chromatography coupled to quadrupole-time of flight tandem mass spectrometry based quantitative structure–retention relationships of amino acid analogues derivatized via n-propyl chloroformate mediated reaction. J. Chromatogr. A 2015, 1403, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Haddad, P.R.; Talebi, M.; Tyteca, E.; Amos, R.I.J.; Szucs, R.; Dolan, J.W.; Pohl, C.A. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model. J. Chromatogr. A 2017, 1486, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Aicheler, F.; Li, J.; Hoene, M.; Lehmann, R.; Xu, G.; Kohlbacher, O. Retention time prediction improves identification in nontargeted lipidomics approaches. Anal. Chem. 2015, 87, 7698–7704. [Google Scholar]
- Wolfer, A.M.; Lozano, S.; Umbdenstock, T.; Croixmarie, V.; Arrault, A.; Vayer, P. UPLC–MS retention time prediction: A machine learning approach to metabolite identification in untargeted profiling. Metabolomics. 2015, 12, 8. [Google Scholar] [CrossRef]
- Cao, M.; Fraser, K.; Huege, J.; Featonby, T.; Rasmussen, S.; Jones, C. Predicting retention time in hydrophilic interaction liquid chromatography mass spectrometry and its use for peak annotation in metabolomics. Metabolomics 2015, 11, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Devinyak, O.; Havrylyuk, D.; Lesyk, R. 3D-MoRSE descriptors explained. J. Mol. Graph. Model. 2014, 54, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, J.; Sadowski, J.; Schuur, J.; Selzer, P.; Steinhauer, L.; Steinhauer, V. Chemical information in 3D space. J. Chem. Inf. Comput. Sci. 1996, 36, 1030–1037. [Google Scholar] [CrossRef]
- Schuur, J.H.; Selzer, P.; Gasteiger, J. The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J. Chem. Inf. Comput. Sci. 1996, 36, 334–344. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008. [Google Scholar]
- Balaban, A.T. Highly discriminating distance-based topological index. Chem. Phys. Lett. 1982, 89, 399–404. [Google Scholar] [CrossRef]
- Balaban, A.T. Chemical graphs-XXXIV. Five new topological indices for the branching of tree-like graphs. Theor. Chim. Acta 1979, 53, 355–375. [Google Scholar] [CrossRef]
- Gozalbes, R.; Doucet, J.P.; Derouin, F. Application of topological descriptors in QSAR and drug design: History and new trends. Curr. Drug Targets Infect. Disord. 2002, 2, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Hollas, B. An analysis of the autocorrelation descriptor for molecules. J. Math. Chem. 2003, 33, 91–101. [Google Scholar] [CrossRef]
- Broto, P.; Moreau, G.; Vandycke, C. Molecular structures: Perception, autocorrelation descriptor and sar studies. Eur. J. Med. Chem. 1984, 19, 66–70. [Google Scholar]
- Burden, F.R. A chemically intuitive molecular index based on the eigenvalues of a modified adjacency matrix. Quant. Struct.-Act. Relationsh. 1997, 16, 309–314. [Google Scholar] [CrossRef]
- Randić, M. Molecular shape profiles. J. Chem. Inform. Comp. Sci. 1995, 35, 373–382. [Google Scholar] [CrossRef]
- Tautenhahn, R.; Bottcher, C.; Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 2008, 9. [Google Scholar] [CrossRef] [PubMed]
- Stolt, R.; Torgrip, R.J.O.; Lindberg, J.; Csenki, L.; Kolmert, J.; Schuppe-Koistinen, I.; Jacobsson, S.P. Second-order peak detection for multicomponent high-resolution LC/MS data. Anal. Chem. 2006, 78, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37, D603–D610. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.J.; Hoefsloot, H.C.J.; Van Der Greef, J.; Timmerman, M.E.; Smilde, A.K. Multilevel component analysis of time-resolved metabolic fingerprinting data. Anal. Chim. Acta 2005, 530, 173–183. [Google Scholar] [CrossRef]
- Vis, D.J.; Westerhuis, J.A.; Smilde, A.K.; van der Greef, J. Statistical validation of megavariate effects in ASCA. BMC Bioinform. 2007, 8. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.J.; Hoefsloot, H.C.J.; Van Der Greef, J.; Timmerman, M.E.; Westerhuis, J.A.; Smilde, A.K. ASCA: Analysis of multivariate data obtained from an experimental design. J. Chem. 2005, 19, 469–481. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Wold, H. Multivariate Analysis; Academic Press: New York, NY, USA, 1966; pp. 391–420. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chem. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Chong, I.G.; Jun, C.H. Performance of some variable selection methods when multicollinearity is present. Chem. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
Metabolite Families | |||||
---|---|---|---|---|---|
Nucleosides | Amino Acids | Sugars | Organic Acids | Others | |
1-methyladenosine | 1-methyl-l-histidine | l-citrulline | d(−)-ribose | citric acid | hypoxanthine |
2′′-O-methylcytidine | 3-methyl-l-histidine | l-glutamic acid | glucose | ketoglutaric acid | l-carnitine |
2-thiocytidine | 4-hydroxy-l-proline | l-histidine | trehalose | pimelic acid | serotonin |
5-methylcytidine | 5-hydroxylysine | l-homocystine | mannitol | succinic acid | tryptamine |
cytidine | β-alanine | l-isoleucine | - | creatine | - |
guanosine | creatinine | l-leucine | - | - | - |
inosine | cysteine | l-methionine | - | - | - |
pseudouridine | l-(−)-proline | l-ornithine | - | - | - |
ribothymidine | l-(+)-arginine | l-serine | - | - | - |
uridine | l-(+)-cystathionine | l-threonine | - | - | - |
- | l-(+)-lysine | l-tryptophan | - | - | - |
- | l-2-aminoadipic acid | l-valine | - | - | - |
- | l-2-amino-n-butyric acid | taurine | - | - | - |
- | l-alanine | sarcosine | - | - | - |
- | l-anserine | l-aspartic acid | - | - | - |
- | l-carnosine | - | - | - | - |
BEH Amide Acid | BEH Amide Moderately Acid | BEH Amide Neutral | Amide Acid | Amide Moderately Acid | Amide Neutral | ||||||
MD | VIP | MD | VIP | MD | VIP | MD | VIP | MD | VIP | MD | VIP |
EEig10r | 13.4 | RTe | 9.62 | Mor24u | 8.80 | G2p | 12.3 | Mor02e | 8.27 | Mor31e | 13.8 |
MWC03 | 11.5 | BELe3 | 7.92 | Mor24e | 8.62 | G2m | 11.5 | ESpm02x | 7.89 | Mor31u | 13.8 |
Mor31e | 9.76 | BLTD48 | 7.92 | RDF080v | 7.95 | G2u | 11.1 | Mor31u | 6.76 | Mor08u | 9.85 |
GATS2v | 8.72 | BLTA96 | 7.89 | GATS2e | 6.10 | G2v | 11.1 | Mor31e | 6.70 | Mor08e | 8.85 |
GATS2p | 8.66 | Mor08u | 7.84 | BELe3 | 5.64 | G2e | 11.0 | Mor10m | 6.61 | EPS1 | 7.04 |
Mor31u | 8.56 | Mor24u | 7.19 | BLTA96 | 5.61 | Mor31e | 9.29 | ESpm09d | 5.87 | Mor06m | 6.08 |
Mor02p | 8.50 | Lop | 6.69 | BLTD48 | 5.61 | BELe2 | 9.05 | GATS2e | 5.81 | GATS6v | 6.00 |
GATS2m | 8.33 | G3v | 6.63 | ESpm09x | 5.00 | Mor02p | 8.74 | Mor06m | 5.74 | Mor15v | 5.79 |
ESpm05d | 8.08 | Mor08e | 6.59 | ESpm14d | 4.980 | Mor31u | 8.45 | RDF020p | 5.54 | Mor08p | 5.64 |
Mor06m | 8.04 | G3p | 6.57 | Mor19e | 4.87 | BEHp1 | 7.32 | CIC0 | 5.41 | Mor15p | 5.50 |
MATS4m | 7.45 | G3u | 6.39 | R4e | 4.76 | G1u | 6.99 | Mor08u | 5.39 | Mor10m | 5.40 |
MATS4e | 6.74 | G3s | 6.29 | TIC4 | 4.73 | G1e | 6.64 | WA | 5.32 | RDF080m | 5.31 |
MATS4v | 6.44 | G3e | 6.27 | Mor08u | 4.71 | G1m | 6.60 | Mor08e | 5.08 | GATS2v | 5.00 |
Mor16e | 5.39 | Mor10p | 6.05 | TIC3 | 4.59 | G1p | 6.48 | R5e | 4.98 | Mor10v | 4.64 |
GATS4v | 5.35 | Mor24e | 6.02 | AAC | 4.56 | G1v | 6.45 | RTm | 4.80 | RTm | 4.54 |
HVcpx | 5.33 | G3m | 5.91 | IC0 | 4.56 | MWC03 | 6.21 | Mor01m | 4.74 | Mor08v | 4.52 |
SP03 | 5.23 | Mor10v | 5.54 | piID | 4.49 | BELp2 | 6.10 | VDA | 4.68 | ESpm14x | 4.48 |
Mor17e | 5.16 | RDF075m | 5.39 | ESpm02u | 4.41 | Mor10m | 5.25 | RDF070u | 4.64 | RBN | 4.47 |
MATS4p | 4.92 | VRp2 | 5.37 | Mor19u | 4.41 | HVcpx | 5.22 | Mor19u | 4.30 | ALOGP | 4.32 |
GATS2e | 4.71 | VRv2 | 5.37 | ESpm12r | 4.41 | MATS4m | 5.15 | RBN | 4.27 | Mor19u | 4.32 |
Zwitterionic Acid | Zwitterionic Moderately Acid | Zwitterionic Neutral | Diol Acid | Diol Moderately Acid | Diol Neutral | ||||||
MD | VIP | MD | VIP | MD | VIP | MD | VIP | MD | VIP | MD | VIP |
MATS7v | 9.20 | EEig10r | 7.99 | MATS4m | 1.11 | ESpm09d | 1.50 | G(O..O) | 9.65 | Ui | 6.84 |
Mor24u | 8.03 | L3u | 7.07 | MATS4e | 1.00 | ESpm02r | 1.42 | IC3 | 8.52 | ESpm07d | 6.54 |
HTv | 7.87 | Mor18e | 6.69 | MATS4v | 9.75 | ESpm06d | 1.12 | ATS3m | 7.82 | J | 6.49 |
Mor24e | 7.42 | TIC4 | 6.65 | Mor31e | 7.65 | ESpm13d | 7.21 | T(O..O) | 7.66 | ESpm01d | 6.41 |
BELe3 | 6.72 | TIC3 | 6.40 | Mor31u | 7.51 | RTe | 7.08 | nO | 7.64 | nDB | 6.13 |
BLTD4 | 6.52 | TIC5 | 6.22 | GATS1m | 7.05 | MWC05 | 7.05 | EEig10d | 7.46 | MWC04 | 6.05 |
BELe3 | 6.51 | Mor01m | 6.22 | EEig10r | 6.36 | GNar | 6.88 | J | 7.25 | Mor23u | 5.44 |
BLTA96 | 6.48 | Lop | 5.92 | MATS4p | 6.24 | ATS1p | 6.30 | ESpm14r | 7.12 | Mor23e | 5.28 |
Mor08e | 5.52 | ESpm11x | 5.49 | ESpm05u | 6.11 | ATS3m | 6.26 | MWC04 | 6.61 | ESpm14r | 5.21 |
Mor10p | 5.29 | GATS2e | 5.26 | HATS3u | 6.09 | ESpm14d | 6.25 | ESpm01d | 6.50 | ESpm13d | 4.77 |
Mor15p | 5.29 | Mor31e | 5.22 | Jhetm | 5.75 | MLOGP | 5.83 | nDB | 6.41 | RDF040m | 4.67 |
MLOGP | 5.11 | VRv1 | 5.17 | ADDD | 5.33 | GATS2e | 5.78 | H0p | 6.20 | GGI2 | 4.65 |
Lop | 5.09 | Mor31u | 4.96 | MLOGP | 5.31 | MATS6p | 5.23 | ESpm07d | 6.16 | SPAN | 4.65 |
Mor10v | 5.05 | ATS2p | 4.95 | GATS2p | 5.23 | MATS7v | 5.21 | AMW | 5.93 | ATS3m | 4.62 |
Mor31e | 4.98 | Mor24u | 4.95 | Mor15p | 5.08 | ATS1m | 5.19 | X1sol | 5.90 | RARS | 4.61 |
Mor15v | 4.87 | L3e | 4.92 | Mor07u | 4.95 | RARS | 4.91 | AECC | 5.79 | EEig09d | 4.61 |
VRp2 | 4.74 | ICR | 4.82 | GATS2v | 4.92 | Mor24e | 4.85 | Mor02p | 5.73 | QXXv | 4.58 |
VRv2 | 4.74 | ESpm08u | 4.80 | MATS6e | 4.78 | GATS2m | 4.78 | Ui | 5.68 | Mor21u | 4.21 |
Mor31u | 4.63 | ESpm10x | 4.72 | GATS2m | 4.77 | CIC1 | 4.78 | HDcpx | 5.08 | ALOGP | 4.17 |
Mor03u | 4.60 | Mor08e | 4.64 | RBN | 4.75 | L2e | 4.67 | ESpm13d | 5.03 | EEig10x | 4.12 |
Column Specifications | Chromatographic Separation Conditions | ||||
---|---|---|---|---|---|
Name | Manufacturer | Stationary Phase | Dimensions | Flow (mL·min−1) | Elution Gradient (A: Acetonitrile; B: Water with Ammonium Acetate) |
XBridgeTM Amide | Waters (Milford, MA, USA) | BEH amide | 150 × 4.6 mm2 i.d., 5 μm | 0.15 | 0–4 min, at 5% B; 4–34 min, from 5% to 70% B; 34–42 min, at 70% B; and 42–44 min, at 5%B |
TSK Gel Amide-80 | Tosoh Bioscience (Tokyo, Japan) | Amide | 250 × 2.0 mm2 i.d., 5 μm | 0.15 | 0–3 min, at 5% B; 3–27 min, from 5% to 70% B; 27–30 min, at 70% B; and 30–32 min, at 5%B |
ZIC-HILIC | SeQuant (Umeå, Sweden) | Zwitterionic | 250 × 2.1 mm2 i.d., 5 μm | 0.15 | 0–3 min, at 5% B; 3–27 min, from 5% to 70% B; 27–30 min, at 70% B; and 30–32 min, at 5%B |
AcclaimTM Mixed-Mode HILIC-1 | Thermo Scientific (Sunnyvale, CA, USA) | Mixed-mode diol | 150 × 2.1 mm2 i.d., 5 μm | 0.15 | 0–2 min, at 5% B; 2–16 min, from 5% to 70% B; 16–20 min, at 70% B; and 20–22 min, at 5%B |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Reig, M.; Ortiz-Villanueva, E.; Tauler, R.; Jaumot, J. Modelling of Hydrophilic Interaction Liquid Chromatography Stationary Phases Using Chemometric Approaches. Metabolites 2017, 7, 54. https://doi.org/10.3390/metabo7040054
Navarro-Reig M, Ortiz-Villanueva E, Tauler R, Jaumot J. Modelling of Hydrophilic Interaction Liquid Chromatography Stationary Phases Using Chemometric Approaches. Metabolites. 2017; 7(4):54. https://doi.org/10.3390/metabo7040054
Chicago/Turabian StyleNavarro-Reig, Meritxell, Elena Ortiz-Villanueva, Romà Tauler, and Joaquim Jaumot. 2017. "Modelling of Hydrophilic Interaction Liquid Chromatography Stationary Phases Using Chemometric Approaches" Metabolites 7, no. 4: 54. https://doi.org/10.3390/metabo7040054
APA StyleNavarro-Reig, M., Ortiz-Villanueva, E., Tauler, R., & Jaumot, J. (2017). Modelling of Hydrophilic Interaction Liquid Chromatography Stationary Phases Using Chemometric Approaches. Metabolites, 7(4), 54. https://doi.org/10.3390/metabo7040054