Applications of NMR in Dairy Research
Abstract
:1. Inroduction
Early Nuclear Magnetic Resonance Studies on Milk and Milk Products
2. 1H NMR Studies
3. 31P NMR Studies
4. Conclusion
Author Contributions
Conflicts of Interest
References
- Odeblad, E.; Westin, B. Proton magnetic resonance of human milk. Acta Radiol. 1958, 49, 389–392. [Google Scholar] [CrossRef]
- Chandan, R.C.; Cullen, J.; Chapman, D. Physicochemical analyses of the bovine milk fat globule membrane. 3. Proton magnetic resonance spectroscopy. J. Dairy Sci. 1972, 55, 1232–1236. [Google Scholar] [CrossRef]
- Belloque, J.; Ramos, M. Application of NMR spectroscopy to milk and dairy products. Trends Food Sci. Tech. 1999, 10, 313–320. [Google Scholar] [CrossRef]
- Lucas, T.; Le Ray, D.; Barey, P.; Mariette, F. NMR assessment of ice cream: Effect of formulation on liquid and solid fat. Int. Dairy J. 2005, 15, 1225–1233. [Google Scholar] [CrossRef]
- Salomonsen, T.; Sejersen, M.T.; Viereck, N.; Ipsen, R.; Engelsen, S.B. Water mobility in acidified milk drinks studied by low-field 1H NMR. Int. Dairy J. 2007, 17, 294–301. [Google Scholar] [CrossRef]
- Gianferri, R.; Maioli, M.; Delfini, M.; Brosio, E. A low-resolution and high-resolution nuclear magnetic resonance integrated approach to investigate the physical structure and metabolic profile of Mozzarella di Bufala Campana cheese. Int. Dairy J. 2007, 17, 167–176. [Google Scholar]
- Danthine, S. Physicochemical and structural properties of compound dairy fat blends. Food Res. Int. 2012, 48, 187–195. [Google Scholar] [CrossRef]
- Chaland, B.; Mariette, F.; Marchal, P.; de Certaines, J. 1H nuclear magnetic resonance relaxometric characterization of fat and water states in soft and hard cheese. J. Dairy Res. 2000, 67, 609–618. [Google Scholar] [CrossRef]
- Song, Y.Q. A 2D NMR method to characterize granular structure of dairy products. Prog. Nucl. Mag. Res. Sp. 2009, 55, 324–334. [Google Scholar] [CrossRef]
- Castell-Palou, A.; Rossello, C.; Femenia, A.; Simal, S. Simultaneous quantification of fat and water content in cheese by TD-NMR. Food Bioprocess Tech. 2013, 6, 2685–2694. [Google Scholar] [CrossRef]
- Schmitz-Schug, I.; Gianfrancesco, A.; Kulozik, U.; Foerst, P. Physical state, molecular mobility and chemical stability of powdered dairy formulations. Food Res. Int. 2013, 53, 268–277. [Google Scholar] [CrossRef]
- Hu, F.Y.; Furihata, K.; Ito-Ishida, M.; Kaminogawa, S.; Tanokura, M. Nondestructive observation of bovine milk by NMR spectroscopy: Analysis of existing states of compounds and detection of new compounds. J. Agr. Food Chem. 2004, 52, 4969–4974. [Google Scholar] [CrossRef]
- Andreotti, G.; Trivellone, E.; Lamanna, R.; Di Luccia, A.; Motta, A. Milk identification of different species: 13C-NMR spectroscopy of triacylglycerols from cows and buffaloes’ milks. J. Dairy Sci. 2000, 83, 2432–2437. [Google Scholar] [CrossRef]
- Scano, P.; Anedda, R.; Melis, M.P.; Dessi, M.A.; Lai, A.; Roggio, T. 1H and 13C-NMR Characterization of the Molecular Components of the Lipid Fraction of Pecorino Sardo Cheese. J. Am. Oil Chem. Soc. 2011, 88, 1305–1316. [Google Scholar] [CrossRef]
- Tan, H.L.; McGrath, K.M. The microstructural and rheological properties of Na-caseinate dispersions. J. Colloid Interf. Sci. 2010, 342, 399–406. [Google Scholar]
- Le Feunteun, S.; Ouethrani, M.; Mariette, F. The rennet coagulation mechanisms of a concentrated casein suspension as observed by PFG-NMR diffusion measurements. Food Hydrocolloid. 2012, 27, 456–463. [Google Scholar] [CrossRef]
- Kasinos, M.; Sabatino, P.; Vanloo, B.; Gevaert, K.; Martins, J.C.; van der Meeren, P. Effect of phospholipid molecular structure on its interaction with whey proteins in aqueous solution. Food Hydrocolloid. 2013, 32, 312–321. [Google Scholar] [CrossRef]
- Mulas, G.; Roggio, T.; Uzzau, S.; Anedda, R. A new magnetic resonance imaging approach for discriminating Sardinian sheep milk cheese made from heat-treated or raw milk. J. Dairy Sci. 2013, 96, 7393–7403. [Google Scholar] [CrossRef]
- Bouteille, R.; Gaudet, M.; Lecanu, B.; This, H. Monitoring lactic acid production during milk fermentation by in situ quantitative proton nuclear magnetic resonance spectroscopy. J. Dairy Sci. 2013, 96, 2071–2080. [Google Scholar] [CrossRef]
- Bouteille, R.; Perez, J.; Khifer, F.; Jouan-Rimbaud-Bouveresse, D.; Lecanu, B.; This, H. Influence of the colloidal structure of dairy gels on milk fat fusion behavior: Quantification of the liquid fat content by in situ quantitative proton nuclear magnetic resonance spectroscopy (isq 1H NMR). J. Food Sci. 2013, 78, E535–E541. [Google Scholar] [CrossRef]
- Sundekilde, U.; Larsen, L.; Bertram, H. NMR-based milk metabolomics. Metabolites 2013, 3, 204–222. [Google Scholar] [CrossRef]
- Sundekilde, U.K.; Frederiksen, P.D.; Clausen, M.R.; Larsen, L.B.; Bertram, H.C. Relationship between the metabolite profile and technological properties of bovine milk from two dairy breeds elucidated by NMR-based metabolomics. J. Agric. Food Chem. 2011, 59, 7360–7367. [Google Scholar] [CrossRef]
- Lamanna, R.; Braca, A.; Di Paolo, E.; Imparato, G. Identification of milk mixtures by 1H NMR profiling. Magn. Reson. Chem. 2011, 49, S22–S26. [Google Scholar] [CrossRef]
- Sacco, D.; Brescia, M.A.; Sgaramella, A.; Casiello, G.; Buccolieri, A.; Ogrinc, N.; Sacco, A. Discrimination between Southern Italy and foreign milk samples using spectroscopic and analytical data. Food Chem. 2009, 114, 1559–1563. [Google Scholar] [CrossRef]
- Klein, M.S.; Almstetter, M.F.; Schlamberger, G.; Nurnberger, N.; Dettmer, K.; Oefner, P.J.; Meyer, H.H.; Wiedemann, S.; Gronwald, W. Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation. J. Dairy Sci. 2010, 93, 1539–1550. [Google Scholar] [CrossRef]
- Klein, M.S.; Buttchereit, N.; Miemczyk, S.P.; Immervoll, A.K.; Louis, C.; Wiedemann, S.; Junge, W.; Thaller, G.; Oefner, P.J.; Gronwald, W. NMR metabolomic analysis of dairy cows reveals milk glycerophosphocholine to phosphocholine ratio as prognostic biomarker for risk of ketosis. J. Proteome Res. 2012, 11, 1373–1381. [Google Scholar] [CrossRef]
- Ilves, A.; Harzia, H.; Ling, K.; Ots, M.; Soomets, U.; Kilk, K. Alterations in milk and blood metabolomes during the first months of lactation in dairy cows. J. Dairy Sci. 2012, 95, 5788–5797. [Google Scholar] [CrossRef]
- Crockford, D.J.; Holmes, E.; Lindon, J.C.; Plumb, R.S.; Zirah, S.; Bruce, S.J.; Rainville, P.; Stumpf, C.L.; Nicholson, J.K. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal. Chem. 2006, 78, 363–371. [Google Scholar] [CrossRef]
- Maher, A.D.; Cysique, L.A.; Brew, B.J.; Rae, C.D. Statistical integration of 1H NMR and MRS data from different biofluids and tissues enhances recovery of biological information from individuals with HIV-1 infection. J. Proteome Res. 2011, 10, 1737–1745. [Google Scholar] [CrossRef]
- Bertram, H.C.; Yde, C.C.; Zhang, X.M.; Kristensen, N.B. Effect of Dietary Nitrogen Content on the Urine Metabolite Profile of Dairy Cows Assessed by Nuclear Magnetic Resonance (NMR)-Based Metabolomics. J. Agr. Food Chem. 2011, 59, 12499–12505. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Kuballa, T.; Leitz, J.; Andlauer, C.; Lachenmeier, D.W. NMR spectroscopy as a screening tool to validate nutrition labeling of milk, lactose-free milk, and milk substitutes based on soy and grains. Dairy Sci. Technol. 2012, 92, 109–120. [Google Scholar] [CrossRef]
- Buitenhuis, A.J.; Sundekilde, U.K.; Poulsen, N.A.; Bertram, H.C.; Larsen, L.B.; Sorensen, P. Estimation of genetic parameters and detection of quantitative trait loci for metabolites in Danish Holstein milk. J. Dairy Sci. 2013, 96, 3285–3295. [Google Scholar] [CrossRef]
- Rodrigues, D.; Santos, C.H.; Rocha-Santos, T.A.; Gomes, A.M.; Goodfellow, B.J.; Freitas, A.C. Metabolic profiling of potential probiotic or synbiotic cheeses by nuclear magnetic resonance (NMR) spectroscopy. J. Agric. Food Chem. 2011, 59, 4955–4961. [Google Scholar]
- Lamanna, R.; Piscioneri, I.; Romanelli, V.; Sharma, N. A preliminary study of soft cheese degradation in different packaging conditions by (1)H-NMR. Magn. Reson. Chem. 2008, 46, 828–831. [Google Scholar] [CrossRef]
- Mazzei, P.; Piccolo, A. 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chem. 2012, 132, 1620–1627. [Google Scholar] [CrossRef]
- Marseglia, A.; Caligiani, A.; Comino, L.; Righi, F.; Quarantelli, A.; Palla, G. Cyclopropyl and omega-cyclohexyl fatty acids as quality markers of cow milk and cheese. Food Chem. 2013, 140, 711–716. [Google Scholar] [CrossRef]
- Brescia, M.A.; Monfreda, M.; Buccolieri, A.; Carrino, C. Characterisation of the geographical origin of buffalo milk and mozzarella cheese by means of analytical and spectroscopic determinations. Food Chem. 2005, 89, 139–147. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L.R. Ripening and geographical characterization of Parmigiano Reggiano cheese by 1H NMR spectroscopy. Talanta 2008, 76, 200–205. [Google Scholar] [CrossRef]
- Piras, C.; Marincola, F.C.; Savorani, F.; Engelsen, S.B.; Cosentino, S.; Viale, S.; Pisano, M.B. A NMR metabolomics study of the ripening process of the Fiore Sardo cheese produced with autochthonous adjunct cultures. Food Chem. 2013, 141, 2137–2147. [Google Scholar] [CrossRef]
- Curtis, S.D.; Curini, R.; Delfini, M.; Brosio, E.; D’Ascenzo, F.; Bocca, B. Amino acid profile in the ripening of Grana Padano cheese: a NMR study. Food Chem. 2000, 71, 495–502. [Google Scholar] [CrossRef]
- Bertram, H.C.; Kristensen, N.B.; Malmendal, A.; Nielsen, N.C.; Bro, R.; Andersen, H.J.; Harmon, D.L. A metabolomic investigation of splanchnic metabolism using H-1 NMR spectroscopy of bovine blood plasma. Anal. Chim. Acta 2005, 536, 1–6. [Google Scholar] [CrossRef]
- Bertram, H.C.; Kristensen, N.B.; Vestergaard, M.; Jensen, S.K.; Sehested, J.; Nielsen, N.C.; Malmendal, A. Metabolic characterization of rumen epithelial tissue from dairy calves fed different starter diets using 1H NMR spectroscopy. Livest. Sci. 2009, 120, 127–134. [Google Scholar] [CrossRef]
- Bertram, H.C.; Petersen, B.O.; Duus, J.O.; Larsen, M.; Raun, B.M.; Kristensen, N.B. Proton nuclear magnetic resonance spectroscopy based investigation on propylene glycol toxicosis in a Holstein cow. Acta Vet. Scand. 2009, 51, 25. [Google Scholar] [CrossRef]
- Sundekilde, U.K.; Poulsen, N.A.; Larsen, L.B.; Bertram, H.C. Nuclear magnetic resonance metabonomics reveals strong association between milk metabolites and somatic cell count in bovine milk. J. Dairy Sci. 2013, 96, 290–299. [Google Scholar] [CrossRef]
- Ametaj, B.N.; Zebeli, Q.; Saleem, F.; Psychogios, N.; Lewis, M.J.; Dunn, S.M.; Xia, J.G.; Wishart, D.S. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 2010, 6, 583–594. [Google Scholar] [CrossRef]
- Sun, L.W.; Zhang, H.Y.; Wu, L.; Shu, S.; Xia, C.; Xu, C.; Zheng, J.S. 1H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis. J. Dairy Sci. in press.
- Saleem, F.; Bouatra, S.; Guo, A.C.; Psychogios, N.; Mandal, R.; Dunn, S.M.; Ametaj, B.N.; Wishart, D.S. The bovine ruminal fluid metabolome. Metabolomics 2013, 9, 360–378. [Google Scholar] [CrossRef]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013, 41, D801–D807. [Google Scholar] [CrossRef]
- Belton, P.S.; Lyster, R.L.; Richards, C.P. The 31P nuclear magnetic resonance spectrum of cows’ milk. J. Dairy Res. 1985, 52, 47–54. [Google Scholar] [CrossRef]
- Murgia, S.; Mele, S.; Monduzzi, M. Quantitative characterization of phospholipids in milk fat via 31P NMR using a monophasic solvent mixture. Lipids 2003, 38, 585–591. [Google Scholar] [CrossRef]
- Rulliere, C.; Rondeau-Mouro, C.; Raouche, S.; Dufrechou, M.; Marchesseau, S. Studies of polyphosphate composition and their interaction with dairy matrices by ion chromatography and 31P NMR spectroscopy. Int. Dairy J. 2013, 28, 102–108. [Google Scholar] [CrossRef]
- Belloque, J.; Carrascosa, A.V.; Lopez-Fandino, R. Changes in phosphoglyceride composition during storage of ultrahigh-temperature milk, as assessed by 31P-nuclear magnetic resonance: Possible involvement of thermoresistant microbial enzymes. J. Food Protect. 2001, 64, 850–855. [Google Scholar]
- Andreotti, G.; Trivellone, E.; Motta, A. Characterization of buffalo milk by 31P-nuclear magnetic resonance spectroscopy. J. Food Compos. Anal. 2006, 19, 843–849. [Google Scholar] [CrossRef]
- Contarini, G.; Povolo, M. Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef]
- Karoui, R.; de Baerdemaeker, J. A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chem. 2007, 102, 621–640. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Maher, A.D.; Rochfort, S.J. Applications of NMR in Dairy Research. Metabolites 2014, 4, 131-141. https://doi.org/10.3390/metabo4010131
Maher AD, Rochfort SJ. Applications of NMR in Dairy Research. Metabolites. 2014; 4(1):131-141. https://doi.org/10.3390/metabo4010131
Chicago/Turabian StyleMaher, Anthony D., and Simone J. Rochfort. 2014. "Applications of NMR in Dairy Research" Metabolites 4, no. 1: 131-141. https://doi.org/10.3390/metabo4010131
APA StyleMaher, A. D., & Rochfort, S. J. (2014). Applications of NMR in Dairy Research. Metabolites, 4(1), 131-141. https://doi.org/10.3390/metabo4010131