Dietary Modulation of Metabolic Health: From Bioactive Compounds to Personalized Nutrition
Abstract
1. Introduction
2. Methodology
3. Metabolic Health: Key Biomarkers and Pathways
3.1. Body Composition
3.1.1. Insulin Sensitivity and Insulin Resistance
3.1.2. Lipid Profile
3.1.3. Inflammatory Markers
3.2. Dietary Responsiveness of Metabolic Biomarkers
3.3. Metabolomics in Personalized Nutrition: Opportunities and Challenges
4. The Influence of Dietary Patterns on Metabolic Health
4.1. Western Diet
4.2. Mediterranean Diet
4.3. DASH Diet
4.4. Ketogenic and Low-Carbohydrate Diets
4.5. Plant-Based and Vegan Diet
4.6. Distinct Effects of Dietary Approaches on Metabolic Health and Long-Term Disease Prevention
5. Bioactive Compounds and Their Role in Metabolic Regulation
5.1. Polyphenols
5.2. Omega-3 Fatty Acids
5.3. Dietary Fibers and Prebiotics
5.4. Probiotics and Postbiotics
5.5. Vitamin D
5.6. Magnesium
6. Advances in Metabolomics and Nutritional Biomarker Discovery
6.1. Role of Metabolomics in Detecting Subtle Metabolic Changes
6.2. Metabolomics in Dietary Intervention Research
6.3. Personalized Nutrition Approaches
6.4. Integrating Environmental, Microbiological, and Genetic Factors into Personalized Nutrition for Metabolic Health
7. Dietary Supplements and Functional Foods
7.1. Supplements in the Context of Poor-Quality Diets
7.2. Regulation and Safety
7.3. Efficacy of Supplements in Clinical Trials
7.4. Supplements vs. Functional Foods: Which Is More Effective?
8. Challenges and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AC | abdominal circumference |
| ALP | alkaline phosphatase |
| ALT | alanine transaminase |
| AMPK | AMP-activated protein kinase |
| apoA-I | apolipoprotein A-I |
| apoB | apolipoprotein B |
| BCAAs | branched-chain amino acids |
| BMI | body mass index |
| CE | capillary electrophoresis |
| DASH | Dietary Approaches to Stop Hypertension |
| DBP | diastolic blood pressure |
| DEXA | dual-energy X-ray absorptiometry |
| DHA | docosahexaenoic acid |
| DHEA | dehydroepiandrosterone |
| DSHEA | Dietary Supplement Health and Education Act |
| EFSA | European Food Safety Authority |
| EPA | eicosapentaenoic acid |
| FBG | fasting blood glucose |
| FBI | fasting blood insulin |
| FDA | Food and Drug Administration |
| FSH | follicle-stimulating hormone |
| FT-IR | fourier transform infrared spectroscopy |
| GC-MS | gas chromatography-MS |
| GLP-1 | glucagon-like peptide-1 |
| GLUT4 | glucose transporter-4 |
| HbA1c | glycated hemoglobin |
| HC | hip circumference |
| HDL-C | high-density lipoprotein cholesterol |
| HOMA-IR | homeostasis model assessment of insulin resistance |
| hs-CRP | high-sensitivity C-reactive protein |
| IL | interleukin |
| IR | insulin resistance |
| LC-MS | liquid chromatography-MS |
| LDL-C | low-density lipoprotein cholesterol |
| LH | luteinizing hormone |
| Lp(a) | lipoprotein(a) |
| LPIR | lipoprotein insulin resistance |
| MAFLD | metabolically associated fatty liver disease |
| MedDiet | Mediterranean Diet |
| MetS | metabolic syndrome |
| MHO | metabolically healthy obesity |
| MO | morbid obesity |
| MRI | magnetic resonance imaging |
| MS | mass spectrometry |
| MUO | metabolically unhealthy obesity |
| NF-κB | nuclear factor kappa B |
| NMR | nuclear magnetic resonance |
| PCOS | polycystic ovary syndrome |
| PUFAs | polyunsaturated fatty acids |
| RCT | randomized controlled trial |
| ROS | reactive oxygen species |
| SBP | systolic blood pressure |
| SCFAs | short-chain fatty acids |
| sdLDL | small, dense LDL |
| T2D | type 2 diabetes |
| TAC | total antioxidant capacity |
| TC | thigh circumference |
| TCh | total cholesterol |
| TGs | triglycerides |
| TNF-α | tumor necrosis factor-alpha |
| TRL-P | triglyceride-rich lipoprotein |
| VLDL | very-low-density lipoproteins |
| WC | waist circumference |
| WHO | World Health Organisation |
| WHR | waist-to-hip ratio |
References
- Sharma, P. Metabolic health: Understanding its significance, challenges, and pathways for optimization. J. Diabetes Metab. 2024, 15, 1193. [Google Scholar] [CrossRef]
- Magkos, F.; Yannakoulia, M.; Chan, J.L.; Mantzoros, C.S. Management of the metabolic syndrome and type 2 diabetes through lifestyle modification. Annu. Rev. Nutr. 2009, 29, 223–256. [Google Scholar] [CrossRef]
- Smith, R.L.; Soeters, M.R.; Wüst, R.C.I.; Houtkooper, R.H. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr. Rev. 2018, 39, 489–517. [Google Scholar] [CrossRef]
- Carbillon, L.; Boujenah, J.; Benbara, A.; Cosson, E. Adverse outcomes and potential targets for intervention in gestational diabetes and obesity. Obstet. Gynecol. 2015, 126, 1309–1310. [Google Scholar] [CrossRef]
- Panuganti, K.K.; Nguyen, M.; Kshirsagar, R.K. Obesity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555956/ (accessed on 24 July 2025).
- Mathew, H.; Farr, O.M.; Mantzoros, C.S. Metabolic health and weight: Understanding metabolically unhealthy normal weight or metabolically healthy obese patients. Metabolism 2016, 65, 73–80. [Google Scholar] [CrossRef]
- Duque, A.P.; Rodrigues Junior, L.F.; Mediano, M.F.F.; Tibiriça, E.; De Lorenzo, A. Emerging concepts in metabolically healthy obesity. Am. J. Cardiovasc. Dis. 2020, 10, 48–61. [Google Scholar]
- Blüher, M. Metabolically healthy obesity: A contradiction in terms? Diabetologia 2020, 63, 1445–1453. [Google Scholar] [CrossRef]
- Wondmkun, Y.T. Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes Metab. Syndr. Obes. 2020, 13, 3611–3616. [Google Scholar] [CrossRef]
- Pillon, N.J.; Loos, R.J.F.; Marshall, S.M.; Zierath, J.R. Metabolic consequences of obesity and type 2 diabetes: Balancing genes and environment for personalized care. Cell 2021, 184, 1530–1544. [Google Scholar] [CrossRef]
- Popkin, B.M.; Ng, S.W. The nutrition transition to a stage of high obesity and noncommunicable disease prevalence dominated by ultra-processed foods is not inevitable. Obes. Rev. 2022, 23, e13366. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight [Fact Sheet]. 2025. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 24 July 2025).
- Dobrowolski, P.; Prejbisz, A.; Kuryłowicz, A.; Bąska, A.; Burchardt, P.; Chlebus, K. Zespół PTNT, PTLO, PTL, PTH, PTMR, PTMSŻ. Zespół metaboliczny—nowa definicja i postępowanie w praktyce. Nadciśnienie Tętnicze W Prakt. 2022, 8, 47–72. Available online: https://www.nadcisnienietetnicze.pl/sites/scm/files/2022-07/Zespol_metaboliczny_stanowisko.pdf (accessed on 24 July 2025).
- Ho, C.S.; Zhang, M.W.; Mak, A.; Ho, R.C. Metabolic syndrome in psychiatry: Advances in understanding and management. Adv. Psychiatr. Treat. 2014, 20, 101–112. [Google Scholar] [CrossRef]
- Mohanan, P. Metabolic syndrome in the Indian population: Public health implications. Hypertens. J. 2016, 2, 1–6. [Google Scholar] [CrossRef]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef]
- Carreiro, A.L.; Dhillon, J.; Gordon, S.; Higgins, K.A.; Jacobs, A.G.; McArthur, B.M.; Redan, B.W.; Rivera, R.L.; Schmidt, L.R.; Mattes, R.D. The macronutrients, appetite, and energy intake. Annu. Rev. Nutr. 2016, 36, 73–103. [Google Scholar]
- Xiao, Y.L.; Gong, Y.; Qi, Y.J.; Shao, Z.M.; Jiang, Y.Z. Effects of dietary intervention on human diseases: Molecular mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 2024, 9, 59. [Google Scholar] [CrossRef]
- McMacken, M.; Shah, S. A plant-based diet for the prevention and treatment of type 2 diabetes. J. Geriatr. Cardiol. 2017, 14, 342–354. [Google Scholar] [CrossRef]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of type 2 diabetes—Global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef]
- Conrad, N.; Molenberghs, G.; Verbeke, G.; Zaccardi, F.; Lawson, C.; Friday, J.M.; Su, H.; Jhund, P.; Sattar, N.; Rahimi, J.; et al. Trends in cardiovascular disease incidence among 22 million people in the UK over 20 years: Population based study. BMJ 2024, 385, e078523. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Mark, H.E.; Anstee, Q.M.; Arab, J.; Batterham, R.; Castera, L.; Cortez-Pinto, H.; Crespo, J.; Cusi, K.; Dirac, M.; et al. Advancing the global public health agenda for NAFLD: A consensus statement. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 60–78. [Google Scholar] [CrossRef]
- International Diabetes Federation; Mgliano, D.; Boyko, E.; Ali, M.; Anstay, K.; Booth, G.; Duncan, B.B.; Hanley, A.J.; Herman, W.H.; Huang, E.; et al. IDF Diabetes Atlas, 11th ed.; International Diabetes Federation: Brussels, Belgium, 2025; Available online: https://diabetesatlas.org/ (accessed on 24 July 2025).
- Zinöcker, M.K.; Lindseth, I.A. The Western diet–microbiome–host interaction and its role in metabolic disease. Nutrients 2018, 10, 365. [Google Scholar] [CrossRef]
- Charles-Messance, H.; Mitchelson, K.; De Marco Castro, E.; Sheedy, F.J.; Roche, H.M. Regulating metabolic inflammation by nutritional modulation. J. Allergy Clin. Immunol. 2020, 146, 706–720. [Google Scholar] [CrossRef]
- Picó, C.; Serra, F.; Rodríguez, A.M.; Keijer, J.; Palou, A. Biomarkers of nutrition and health: New tools for new approaches. Nutrients 2019, 11, 1092. [Google Scholar] [CrossRef]
- Rangel-Huerta, O.D.; Pastor-Villaescusa, B.; Gil, A. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics 2019, 15, 93. [Google Scholar] [CrossRef]
- Ahmadizar, F.; Younossi, Z.M. Exploring biomarkers in nonalcoholic fatty liver disease among individuals with type 2 diabetes mellitus. J. Clin. Gastroenterol. 2025, 59, 36–46. [Google Scholar] [CrossRef]
- Efrem, I.C.; Moța, M.; Vladu, I.M.; Mitrea, A.; Clenciu, D.; Timofticiuc, D.C.P.; Diaconu, I.D.; Turcu, A.; Crisan, A.; Geormaneanu, C.; et al. A study of biomarkers associated with metabolic dysfunction-associated fatty liver disease in patients with type 2 diabetes. Diagnostics 2022, 12, 2426. [Google Scholar] [CrossRef] [PubMed]
- Netala, V.R.; Hou, T.; Wang, Y.; Zhang, Z.; Teertam, S.K. Cardiovascular biomarkers: Tools for precision diagnosis and prognosis. Int. J. Mol. Sci. 2025, 26, 3218. [Google Scholar] [CrossRef]
- Van Namen, M.; Prendergast, L.; Peiris, C. Supervised lifestyle intervention for people with metabolic syndrome improves outcomes and reduces individual risk factors of metabolic syndrome: A systematic review and meta-analysis. Metabolism 2019, 101, 153988. [Google Scholar] [CrossRef]
- Telle-Hansen, V.H.; Christensen, J.J.; Formo, G.A.; Holven, K.B.; Ulven, S.M. A comprehensive metabolic profiling of the metabolically healthy obesity phenotype. Lipids Health Dis. 2020, 19, 90. [Google Scholar] [CrossRef]
- Sweatt, K.; Garvey, W.T.; Martins, C. Strengths and limitations of BMI in the diagnosis of obesity: What is the path forward? Curr. Obes. Rep. 2024, 13, 584–595. [Google Scholar] [CrossRef]
- Jabłonowska-Lietz, B.; Wrzosek, M.; Włodarczyk, M.; Nowicka, G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol. Pol. 2017, 75, 1185–1191. [Google Scholar] [CrossRef]
- Sakers, A.; De Siqueira, M.K.; Seale, P.; Villanueva, C.J. Adipose-tissue plasticity in health and disease. Cell 2022, 185, 419–446. [Google Scholar] [CrossRef]
- Holmes, C.J.; Racette, S.B. The utility of body composition assessment in nutrition and clinical practice: An overview of current methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.K.; Jensen, M.D. Metabolic changes in aging humans: Current evidence and therapeutic strategies. J. Clin. Investig. 2022, 132, e158451. [Google Scholar] [CrossRef]
- Si, J.; Kang, L.; Liu, Y. Association between body fat percentage and cardiometabolic diseases in general population. Endocr. Metab. Immune Disord. Drug Targets 2024, 24, 1395–1400. [Google Scholar] [CrossRef] [PubMed]
- Genest, F.; Schneider, M.; Zehnder, A.; Lieberoth-Leden, D.; Seefried, L. Differential impact of osteoporosis, sarcopenia and obesity on physical performance in aging men. Endocr. Connect. 2021, 10, 256–264. [Google Scholar] [CrossRef]
- Khanna, D.; Peltzer, C.; Kahar, P.; Parmar, M.S. Body mass index (BMI): A screening tool analysis. Cureus 2022, 14, e22119. [Google Scholar] [CrossRef] [PubMed]
- Freeman, A.M.; Acevedo, L.A.; Pennings, N. Insulin resistance. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499830/ (accessed on 24 July 2025).
- Horáková, D.; Štěpánek, L.; Pastucha, D.; Janoutová, J.; Janout, V.; Kron, V.; Verner, M.; Martiník, D. What are the real associations of homeostasis model assessment (HOMA) with body mass index and age? Endokrynol. Pol. 2022, 73, 736–742. [Google Scholar] [CrossRef]
- Kasuga, M. Insulin resistance and pancreatic beta cell failure. J. Clin. Investig. 2006, 116, 1756–1760. [Google Scholar] [CrossRef]
- Fernandez, M.L. The metabolic syndrome. Nutr. Rev. 2007, 65, S30–S34. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R.; Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 32–42. [Google Scholar] [CrossRef]
- Sun, R.; Wang, J.; Li, M.; Li, J.; Pan, Y.; Liu, B.; Lip, G.Y.H.; Zhang, L. Association of insulin resistance with cardiovascular disease and all-cause mortality in type 1 diabetes: Systematic review and meta-analysis. Diabetes Care 2024, 47, 2266–2274. [Google Scholar] [CrossRef]
- Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Cummings, N.E.; Arriola Apelo, S.I.; Neuman, J.; Kasza, I.; Schmidt, B.; Cava, E.; Spelta, F.; Tosti, V.; Syed, F.; et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016, 16, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Siddiqui, W.J. Cholesterol levels. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK542294/ (accessed on 24 July 2025).
- Busquets-Cortés, C.; López, C.; Paublini, H.; Bote, S.A.; Lopez-Gonzales, A.; Ramirez-Manent, J. Relationship between atherogenic dyslipidaemia and lipid triad with different scales of overweight and obesity in 418,343 Spanish workers. J. Nutr. Metab. 2022, 2022, 9946255. [Google Scholar] [CrossRef]
- Feingold, K.R. The effect of diet on cardiovascular disease and lipid and lipoprotein levels. In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570127/ (accessed on 24 July 2025).
- Berberich, A.J.; Hegele, R.A. A modern approach to dyslipidemia. Endocr. Rev. 2022, 43, 611–653. [Google Scholar] [CrossRef]
- Bays, H.E.; Toth, P.P.; Kris-Etherton, P.M.; Abate, N.; Aronne, L.; Brown, W.V.; Gonzales-Campoy, J.M.; Jones, S.; Kumar, R.; La Forge, R.; et al. Obesity, adiposity, and dyslipidemia: A consensus statement from the National Lipid Association. J. Clin. Lipidol. 2013, 7, 304–383. [Google Scholar] [CrossRef]
- Klop, B.; Elte, J.W.; Cabezas, M.C. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Wollam, J.; Olefsky, J.M. An integrated view of immunometabolism. Cell 2018, 172, 22–40. [Google Scholar] [CrossRef]
- Bigornia, S.J.; Farb, M.G.; Mott, M.M.; Hess, D.T.; Carmine, B.; Fiscale, A.; Joseph, L.; Apovian, C.M.; Gokce, N. Relation of depot-specific adipose inflammation to insulin resistance in human obesity. Nutr. Diabetes 2012, 2, e30. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Mittendorfer, B.; Klein, S. Metabolically healthy obesity: Facts and fantasies. J. Clin. Investig. 2019, 129, 3978–3989. [Google Scholar] [CrossRef]
- Fabbrini, E.; Cella, M.; McCartney, S.A.; Fuchs, A.; Abumrad, N.; Pietka, T.; Chen, Z.; Finck, B.; Han, D.H.; Magkos, F.; et al. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology 2013, 145, 366–374.e7. [Google Scholar] [CrossRef]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front. Physiol. 2020, 10, 1607. [Google Scholar] [CrossRef]
- Piché, M.E.; Lemieux, S.; Weisnagel, S.J.; Corneau, L.; Nadeau, A.; Bergeron, J. Relation of high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor-alpha, and fibrinogen to abdominal adipose tissue, blood pressure, and cholesterol and triglyceride levels in healthy postmenopausal women. Am. J. Cardiol. 2005, 96, 92–97. [Google Scholar] [CrossRef]
- Lainampetch, J.; Panprathip, P.; Phosat, C.; Chumpathat, N.; Prangthip, P.; Soonthornworasiri, N.; Puduang, S.; Wechjakwen, N.; Kwanbunjan, K. Association of tumor necrosis factor alpha, interleukin 6, and C-reactive protein with the risk of developing type 2 diabetes: A retrospective cohort study of rural Thais. J. Diabetes Res. 2019, 2019, 9051929. [Google Scholar] [CrossRef] [PubMed]
- Karelis, A.D.; Faraj, M.; Bastard, J.P.; St-Pierre, D.H.; Brochu, M.; Prud'homme, D.; Rabasa-Lhoret, R. The metabolically healthy but obese individual presents a favorable inflammation profile. J. Clin. Endocrinol. Metab. 2005, 90, 4145–4150. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.H.; Lee, M.J.; Kang, Y.M.; Jang, J.E.; Leem, J.; Hwang, J.Y.; Kim, E.H.; Park, J.Y.; Kim, H.K.; Lee, W.J. The risk of incident type 2 diabetes in a Korean metabolically healthy obese population: The role of systemic inflammation. J. Clin. Endocrinol. Metab. 2015, 100, 934–941. [Google Scholar] [CrossRef]
- Ying, W.; Riopel, M.; Bandyopadhyay, G.; Dong, Y.; Birnmingham, A.; Seo, J.B.; Ofrecio, J.; Wollam, J.; Hernandez-Carretero, A.; Wenxian, F.; et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 2017, 171, 372–384.e12. [Google Scholar] [CrossRef]
- Pokushalov, E.; Ponomarenko, A.; Shrainer, E.; Kudlay, D.; Miller, R. Biomarker-guided dietary supplementation: A narrative review of precision in personalized nutrition. Nutrients 2024, 16, 4033. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Lee, E.; Park, Y.J.; Kim, Y.; Kwon, O.; Kim, Y. A review of recent evidence from meal-based diet interventions and clinical biomarkers for improvement of glucose regulation. Prev. Nutr. Food Sci. 2020, 25, 9–24. [Google Scholar] [CrossRef]
- Naseem, S.; Rizwan, M. Imo-induced changes in gut hormones and glucose metabolism: A key to improving insulin sensitivity in type 2 diabetes. Diabetes Res. Clin. Pract. 2025, 226, 112285. [Google Scholar] [CrossRef] [PubMed]
- Hamamah, S.; Iatcu, O.C.; Covasa, M. Dietary influences on gut microbiota and their role in metabolic dysfunction-associated steatotic liver disease (MASLD). Nutrients 2025, 17, 143. [Google Scholar] [CrossRef]
- Singar, S.; Nagpal, R.; Arjmandi, B.H.; Akhavan, N.S. Personalized nutrition: Tailoring dietary recommendations through genetic insights. Nutrients 2024, 16, 2673. [Google Scholar] [CrossRef]
- Bush, C.L.; Blumberg, J.B.; El-Sohemy, A.; Minich, D.M.; Ordovás, J.M.; Reed, D.G.; Behm, V.A.Y. Toward the definition of personalized nutrition: A proposal by the American Nutrition Association. J. Am. Coll. Nutr. 2020, 39, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Pendyala, S.; Walker, J.M.; Holt, P.R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 2012, 142, 1100. [Google Scholar] [CrossRef]
- Shively, C.A.; Appt, S.E.; Vitolins, M.Z.; Uberseder, B.; Michalson, K.T.; Silverstein-Metzler, M.G.; Register, T.C. Mediterranean versus Western Diet Effects on Caloric Intake, Obesity, Metabolism, and Hepatosteatosis in Nonhuman Primates. Obesity 2019, 27, 777–784. [Google Scholar] [CrossRef]
- Schönknecht, Y.B.; Crommen, S.; Stoffel-Wagner, B.; Coenen, M.; Fimmers, R.; Holst, J.J.; Simon, M.C.; Stehle, P.; Egert, S. Acute Effects of Three Different Meal Patterns on Postprandial Metabolism in Older Individuals with a Risk Phenotype for Cardiometabolic Diseases: A Randomized Controlled Crossover Trial. Mol. Nutr. Food Res. 2020, 64, e1901035. [Google Scholar] [CrossRef] [PubMed]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health benefits of the Mediterranean diet: Metabolic and molecular mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61 (Suppl. S6), 1402S–1406S. [Google Scholar] [CrossRef]
- de Graaf, C. Texture and satiation: The role of orosensory exposure time. Physiol. Behav. 2012, 107, 496–501. [Google Scholar] [CrossRef]
- PlanesMuñoz, D.; FrontelaSaseta, C.; RosBerruezo, G.; LópezNicolás, R. Effect of gazpacho, hummus and ajoblanco on satiety and appetite in adult humans: A randomised crossover study. Foods 2021, 10, 606. [Google Scholar] [CrossRef]
- de Lorgeril, M.; Renaud, S.; Mamelle, N.; Salen, P.; Martin, J.L.; Monjaud, I.; Guidollet, J.; Touboul, P.; Delaye, J. Mediterranean alphalinolenic acidrich diet in secondary prevention of coronary heart disease. Lancet 1994, 343, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- MonserratMesquida, M.; QuetglasLlabrés, M.; Bouzas, C.; García, S.; Mateos, D.; Gómez, C.; Gámez, J.M.; Poulsen, H.E.; Tur, J.A.; Sureda, A. Effects of 2year nutritional and lifestyle intervention on oxidative and inflammatory statuses in individuals of 55 years of age and over at high cardiovascular risk. Antioxidants 2022, 11, 1326. [Google Scholar] [CrossRef]
- Di Daniele, N.; Petramala, L.; Di Renzo, L.; Sarlo, F.; Della Rocca, D.G.; Rizzo, M.; Fondacaro, V.; Iacopino, L.; Pepine, C.J.; De Lorenzo, A. Body composition changes and cardiometabolic benefits of a balanced Italian Mediterranean diet in obese patients with metabolic syndrome. Acta Diabetol. 2013, 50, 409–416. [Google Scholar] [CrossRef]
- Fechner, E.; Bilet, L.; Peters, H.P.F.; Hiemstra, H.; Jacobs, D.M.; Op ‘t Eyndt, C.; Kornips, E.; Mensink, R.P.; Schrauwen, P. Effects of a whole diet approach on metabolic flexibility, insulin sensitivity and postprandial glucose responses in overweight and obese adults—A randomized controlled trial. Clin. Nutr. 2020, 39, 2734–2742. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.; Miller, M.; Rimm, E.; Rudel, L.; Robinson, J.; et al. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Cholesterol Treatment Trialists’ (CTT) Collaborators; Mihaylova, B.; Emberson, J.; Blackwell, L.; Keech, A.; Simes, J.; Barnes, E.H.; Voysey, M.; Gray, A.; Collins, R.; et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: Meta-analysis of individual data from 27 randomised trials. Lancet 2012, 380, 581–590. [Google Scholar] [CrossRef]
- Asoudeh, F.; Fallah, M.; Aminianfar, A.; Djafarian, K.; Shirzad, N.; Clark, C.C.T.; Larijani, B.; Esmaillzadeh, A. The effect of Mediterranean diet on inflammatory biomarkers and components of metabolic syndrome in adolescent girls. J. Endocrinol. Investig. 2023, 46, 1995–2004. [Google Scholar] [CrossRef]
- VelázquezLópez, L.; SantiagoDíaz, G.; NavaHernández, J.; MuñozTorres, A.V.; MedinaBravo, P.; TorresTamayo, M. Mediterraneanstyle diet reduces metabolic syndrome components in obese children and adolescents with obesity. BMC Pediatr. 2014, 14, 175. [Google Scholar] [CrossRef]
- Noubiap, J.J.; Nansseu, J.R.; LontchiYimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: A systematic review and modelling analysis. Lancet Child Adolesc. Health 2022, 6, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Yurtdaş, G.; Akbulut, G.; Baran, M.; Yılmaz, C. The effects of Mediterranean diet on hepatic steatosis, oxidative stress, and inflammation in adolescents with non-alcoholic fatty liver disease: A randomized controlled trial. Pediatr. Obes. 2022, 17, e12872. [Google Scholar] [CrossRef] [PubMed]
- Vogt, T.M.; Appel, L.J.; Obarzanek, E.; Moore, T.J.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Cutler, J.A.; Windhauser, M.M.; et al. Dietary approaches to stop hypertension: Rationale, design, and methods. J. Am. Diet. Assoc. 1999, 99 (Suppl. S8), S12–S18. [Google Scholar] [CrossRef]
- Campbell, A.P. DASH eating plan: An eating pattern for diabetes management. Diabetes Spectr. 2017, 30, 76–81. [Google Scholar] [CrossRef]
- Kucharska, A.; Gajewska, D.; Kiedrowski, M.; Sińska, B.; Juszczyk, G.; Czerw, A.; Augustynowicz, A.; Bobiński, K.; Deptała, A.; Niegowska, J. The impact of individualised nutritional therapy according to DASH diet on blood pressure, body mass, and selected biochemical parameters in overweight/obese patients with primary arterial hypertension: A prospective randomised study. Kardiol. Pol. 2018, 76, 158–165. [Google Scholar] [CrossRef]
- Razavi Zade, M.; Telkabadi, M.H.; Bahmani, F.; Salehi, B.; Farshbaf, S.; Asemi, Z. The effects of DASH diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: A randomized clinical trial. Liver Int. 2016, 36, 563–571. [Google Scholar] [CrossRef]
- Nilghaz, M.; Sadeghi, A.; Koochakpoor, G.; Poustchi, H.; Khodadadi, N.; Narimani, B.; Ghods, M.; Shafiee, M.; Shahparvari, M.R.; Hekmatdoost, A. The efficacy of DASH combined with time-restricted feeding (16/8) on metabolic associated fatty liver disease management: A randomized controlled trial. Sci. Rep. 2025, 15, 7020. [Google Scholar] [CrossRef]
- Farhadnejad, H.; Darand, M.; Teymoori, F.; Asghari, G.; Mirmiran, P.; Azizi, F. The association of Dietary Approach to Stop Hypertension (DASH) diet with metabolic healthy and metabolic unhealthy obesity phenotypes. Sci. Rep. 2019, 9, 1869. [Google Scholar] [CrossRef]
- Zare, P.; Bideshki, M.V.; Sohrabi, Z.; Behzadi, M.; Sartang, M. Effect of Dietary Approaches to Stop Hypertension (DASH) diet on lipid profile in individuals with overweight/obesity: A GRADE-assessed systematic review and meta-analysis of clinical trials. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 104057. [Google Scholar] [CrossRef]
- Barakat, B.; Almeida, M.E.F. Biochemical and immunological changes in obesity. Arch. Biochem. Biophys. 2021, 708, 108951. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, C.P.; González-Torres, M.C.; Aguilar-Salinas, C.A.; Nájera-Medina, O. DASH Diet as a Proposal for Improvement in Cellular Immunity and Its Association with Metabolic Parameters in Persons with Overweight and Obesity. Nutrients 2021, 13, 3540. [Google Scholar] [CrossRef]
- Foroozanfard, F.; Rafiei, H.; Samimi, M.; Gilasi, H.R.; Gorjizadeh, R.; Heidar, Z.; Asemi, Z. The effects of dietary approaches to stop hypertension diet on weight loss, anti-Müllerian hormone and metabolic profiles in women with polycystic ovary syndrome: A randomized clinical trial. Clin. Endocrinol. 2017, 87, 51–58. [Google Scholar] [CrossRef]
- Asemi, Z.; Esmaillzadeh, A. DASH diet, insulin resistance, and serum hs-CRP in polycystic ovary syndrome: A randomized controlled clinical trial. Horm. Metab. Res. 2015, 47, 232–238. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, M.; Nie, W.; Yuan, J.; Zhang, B.; Wang, Z.; Wu, Z. Dietary magnesium sulfate supplementation protects heat stress-induced oxidative damage by restoring the activities of anti-oxidative enzymes in broilers. Biol. Trace Elem. Res. 2012, 146, 53–58. [Google Scholar] [CrossRef]
- Almoznino-Sarafian, D.; Berman, S.; Mor, A.; Shteinshnaider, M.; Gorelik, O.; Tzur, I.; Alon, I.; Modai, D.; Cohen, N. Magnesium and C-reactive protein in heart failure: An anti-inflammatory effect of magnesium administration? Eur. J. Nutr. 2007, 46, 230–237. [Google Scholar] [CrossRef]
- Pikilidou, M.I.; Lasaridis, A.N.; Sarafidis, P.A.; Befani, C.D.; Koliakos, G.C.; Tziolas, I.M.; Kazakos, K.A.; Yovos, J.G.; Nilsson, P.M. Insulin sensitivity increase after calcium supplementation and change in intraplatelet calcium and sodium-hydrogen exchange in hypertensive patients with Type 2 diabetes. Diabet. Med. 2009, 26, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Boison, D. New insights into the mechanisms of the ketogenic diet. Curr. Opin. Neurol. 2017, 30, 187–192. [Google Scholar] [CrossRef] [PubMed]
- McGaugh, E.; Barthel, B. A Review of Ketogenic Diet and Lifestyle. Mo. Med. 2022, 119, 84–88. [Google Scholar] [PubMed]
- Paoli, A.; Bianco, A.; Moro, T.; Mota, J.F.; Coelho-Ravagnani, C.F. The Effects of Ketogenic Diet on Insulin Sensitivity and Weight Loss, Which Came First: The Chicken or the Egg? Nutrients 2023, 15, 3120. [Google Scholar] [CrossRef]
- Cicero, A.F.; Benelli, M.; Brancaleoni, M.; Dainelli, G.; Merlini, D.; Negri, R. Middle and Long-Term Impact of a Very Low-Carbohydrate Ketogenic Diet on Cardiometabolic Factors: A Multi-Center, Cross-Sectional, Clinical Study. High Blood Press. Cardiovasc. Prev. 2015, 22, 389–394. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Ejtahed, H.S.; Marvasti, F.E.; Taghavi, M.; Siadat, S.D.; Hasani-Ranjbar, S.; Larijani, B.; Esmaillzadeh, A. The Effect of a Moderately Restricted Carbohydrate Diet on Cardiometabolic Risk Factors in Overweight and Obese Women with Metabolic Syndrome: A Randomized Controlled Trial. Clin. Ther. 2023, 45, e103–e114. [Google Scholar] [CrossRef]
- Sun, J.; Ruan, Y.; Xu, N.; Wu, P.; Lin, N.; Yuan, K.; An, S.; Kang, P.; Li, S.; Huang, Q.; et al. The effect of dietary carbohydrate and calorie restriction on weight and metabolic health in overweight/obese individuals: A multi-center randomized controlled trial. BMC Med. 2023, 21, 192. [Google Scholar] [CrossRef]
- Ebbeling, C.B.; Knapp, A.; Johnson, A.; Wong, J.M.W.; Greco, K.F.; Ma, C.; Mora, S.; Ludwig, D.S. Effects of a low-carbohydrate diet on insulin-resistant dyslipoproteinemia—A randomized controlled feeding trial. Am. J. Clin. Nutr. 2022, 115, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Retterstøl, K.; Svendsen, M.; Narverud, I.; Holven, K.B. Effect of low carbohydrate high fat diet on LDL cholesterol and gene expression in normal-weight, young adults: A randomized controlled study. Atherosclerosis 2018, 279, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Al-Reshed, F.; Sindhu, S.; Al Madhoun, A.; Bahman, F.; AlSaeed, H.; Akhter, N.; Malik, M.Z.; Alzaid, F.; Al-Mulla, F.; Ahmad, R. Low carbohydrate intake correlates with trends of insulin resistance and metabolic acidosis in healthy lean individuals. Front. Public Health 2023, 11, 1115333. [Google Scholar] [CrossRef]
- Michalczyk, M.M.; Klonek, G.; Maszczyk, A.; Zajac, A. The Effects of a Low Calorie Ketogenic Diet on Glycaemic Control Variables in Hyperinsulinemic Overweight/Obese Females. Nutrients 2020, 12, 1854. [Google Scholar] [CrossRef]
- Sharifi, M.; Saber, A.; Moludi, J.; Salimi, Y.; Jahan-Mihan, A. The effects of portfolio moderate-carbohydrate and ketogenic diets on anthropometric indices, metabolic status, and hormonal levels in overweight or obese women with polycystic ovary syndrome: A randomized controlled trial. Nutr. J. 2024, 23, 152. [Google Scholar] [CrossRef]
- Melina, V.; Craig, W.; Levin, S. Position of the academy of nutrition and dietetics: Vegetarian diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef]
- Key, T.J.; Papier, K.; Tong, T.Y.N. Plant-based diets and long-term health: Findings from the EPIC-Oxford study. Proc. Nutr. Soc. 2022, 81, 190–198. [Google Scholar] [CrossRef]
- Kahleova, H.; Petersen, K.F.; Shulman, G.I.; Alwarith, J.; Rembert, E.; Tura, A.; Hill, M.; Holubkov, R.; Barnard, N.D. Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2025454. [Google Scholar] [CrossRef]
- Kahleova, H.; Fleeman, R.; Hlozkova, A.; Holubkov, R.; Barnard, N.D. A plant-based diet in overweight individuals in a 16-week randomized clinical trial: Metabolic benefits of plant protein. Nutr. Diabetes 2018, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Tura, A.; Hill, M.; Holubkov, R.; Barnard, N.D. A plant-based dietary intervention improves beta-cell function and insulin resistance in overweight adults: A 16-week randomized clinical trial. Nutrients 2018, 10, 189. [Google Scholar] [CrossRef]
- Kahleova, H.; Hlozkova, A.; Fleeman, R.; Fletcher, K.; Holubkov, R.; Barnard, N.D. Fat quantity and quality, as part of a low-fat, vegan diet, are associated with changes in body composition, insulin resistance, and insulin secretion: A 16-week randomized controlled trial. Nutrients 2019, 11, 615. [Google Scholar] [CrossRef]
- Kahleova, H.; Matoulek, M.; Malinska, H.; Oliyarnik, O.; Kazdova, L.; Neskudla, T.; Skoch, A.; Hajek, M.; Hill, M.; Kahle, M.; et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet. Med. 2011, 28, 549–559. [Google Scholar] [CrossRef]
- Ilari, S.; Proietti, S.; Milani, F.; Vitiello, L.; Muscoli, C.; Russo, P.; Bonassi, S. Dietary Patterns, Oxidative Stress, and Early Inflammation: A Systematic Review and Meta-Analysis Comparing Mediterranean, Vegan, and Vegetarian Diets. Nutrients 2025, 17, 548. [Google Scholar] [CrossRef]
- Fontes, T.; Lopes, S.; Menezes, R.; Esgalhado, M.; Monteiro Rodrigues, L.; Ferreira-Pêgo, C. Exploring Vegetarian and Omnivorous Approaches to Cardiovascular Risk and Body Composition. Nutrients 2024, 16, 2013. [Google Scholar] [CrossRef]
- Hussain, M.B.; Hassan, S.; Waheed, M.; Javed, A.; Farooq, M.A.; Tahir, A. Bioavailability and metabolic pathway of phenolic compounds. In Plant Physiological Aspects of Phenolic Compounds; Soto-Hernández, M., Ed.; IntechOpen: London, UK, 2019; pp. 347–376. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Polyphenols as Antioxidant/Pro-Oxidant Compounds and Donors of Reducing Species: Relationship with Human Antioxidant Metabolism. Processes 2023, 11, 2771. [Google Scholar] [CrossRef]
- Zang, M.; Xu, S.; Maitland-Toolan, K.A.; Zuccollo, A.; Hou, X.; Jiang, B.; Wierzbicki, M.; Verbeuren, T.J.; Cohen, R.A. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 2006, 55, 2180–2191. [Google Scholar] [CrossRef]
- Barger, J.L.; Kayo, T.; Vann, J.M.; Arias, E.B.; Wang, J.; Hacker, T.A.; Wang, Y.; Raederstorff, D.; Morrow, J.; Leeuwenburgh, C.; et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 2008, 3, e2264. [Google Scholar] [CrossRef]
- Arner, P.; Kulyté, A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol. 2015, 11, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Gracia, A.; Miranda, J.; Fernández-Quintela, A.; Eseberri, I.; Garcia-Lacarte, M.; Milagro, F.I.; Martínez, J.A. Involvement of miR-539–5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue. Food Funct. 2016, 7, 1680–1688. [Google Scholar] [CrossRef] [PubMed]
- Lau, F.C.; Bielinski, D.F.; Joseph, J.A. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J. Neurosci. Res. 2007, 85, 1010–1017. [Google Scholar] [CrossRef]
- Nani, A.; Murtaza, B.; Sayed Khan, A.; Khan, N.A.; Hichami, A. Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules 2021, 26, 985. [Google Scholar] [CrossRef]
- Suh, J.H.; Wang, Y.; Ho, C.T. Natural dietary products and their effects on appetite control. J. Agric. Food Chem. 2018, 66, 36–39. [Google Scholar] [CrossRef]
- Corrêa, T.A.F.; Rogero, M.M.; Hassimotto, N.M.A.; Lajolo, F.M. The two-way polyphenols–microbiota interactions and their effects on obesity and related metabolic diseases. Front. Nutr. 2019, 6, 188. [Google Scholar] [CrossRef]
- Burdge, G.C.; Calder, P.C. Introduction to fatty acids and lipids. World Rev. Nutr. Diet. 2015, 112, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. New evidence that ω-3 fatty acids have a role in primary prevention of coronary heart disease. J. Public Health Emerg. 2017, 1, 35. [Google Scholar] [CrossRef]
- Skulas-Ray, A.C.; Wilson, P.F.W.; Harris, W.S.; Brinton, E.A.; Kris-Etherton, P.M.; Richter, C.K.; Jacobson, T.A.; Engler, M.B.; Miller, M.; Robinson, J.G.; et al. Omega-3 fatty acids for the management of hypertriglyceridemia: A science advisory from the American Heart Association. Circulation 2019, 140, e673–e691. [Google Scholar] [CrossRef] [PubMed]
- Bhaswant, M.; Poudyal, H.; Brown, L. Mechanisms of enhanced insulin secretion and sensitivity with N-3 unsaturated fatty acids. J. Nutr. Biochem. 2015, 26, 571–584. [Google Scholar] [CrossRef]
- Lepretti, M.; Martucciello, S.; Burgos Aceves, M.A.; Putti, R.; Lionetti, L. Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients 2018, 10, 350. [Google Scholar] [CrossRef]
- Neschen, S.; Morino, K.; Dong, J.; Wang-Fischer, Y.; Cline, G.W.; Romanelli, A.J.; Rossbacher, J.; Moore, I.; Reggittnig, W.; Munoz, D.; et al. n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner. Diabetes 2007, 56, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res. 2008, 57, 451–455. [Google Scholar] [CrossRef]
- Martínez-Fernández, L.; Laiglesia, L.M.; Huerta, A.E.; Martínez, J.A.; Moreno-Aliaga, M.J. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat. 2015, 121 Pt A, 24–41. [Google Scholar] [CrossRef]
- Fenton, J.I.; Hord, N.G.; Ghosh, S.; Gurzell, E.A. Immunomodulation by dietary long chain omega-3 fatty acids and the potential for adverse health outcomes. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 379–390. [Google Scholar] [CrossRef]
- Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Impact of omega-3 fatty acids on the gut microbiota. Int. J. Mol. Sci. 2017, 18, 2645. [Google Scholar] [CrossRef]
- Kumar, M.; Pal, N.; Sharma, P.; Kumawat, M.; Sarma, D.K.; Nabi, B.; Verma, V.; Tiwari, R.; Shubham, S.; Arjmandi, B. Omega-3 fatty acids and their interaction with the gut microbiome in the prevention and amelioration of type-2 diabetes. Nutrients 2022, 14, 1723. [Google Scholar] [CrossRef]
- Lovegrove, A.; Edwards, C.H.; De Noni, I.; Patel, H.; El Sohemy, A.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.; et al. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr. 2017, 57, 237–253. [Google Scholar] [CrossRef]
- Flesch, A.G.; Poziomyck, A.K.; Damin, D.C. The therapeutic use of symbiotics. Arq. Bras. De Cir. Dig. 2014, 27, 206–209. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, G.T.; Macfarlane, S. Fermentation in the human large intestine: Its physiologic consequences and the potential contribution of prebiotics. J. Clin. Gastroenterol. 2011, 45, S120–S127. [Google Scholar] [CrossRef]
- Rayes, N.; Seehofer, D.; Theruvath, T.; Mogl, M.; Langrehr, J.M.; Nüssler, N.C.; Bengmark, S.; Neuhaus, P. Effect of enteral nutrition and synbiotics on bacterial infection rates after pylorus-preserving pancreatoduodenectomy: A randomized, double-blind trial. Ann. Surg. 2007, 246, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Probert, H.M.; Van Loo, J.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef]
- Megur, A.; Daliri, E.B.; Baltriukienė, D.; Burokas, A. Prebiotics as a tool for the prevention and treatment of obesity and diabetes: Classification and ability to modulate the gut microbiota. Int. J. Mol. Sci. 2022, 23, 6097. [Google Scholar] [CrossRef]
- Slavin, J.L. Dietary fiber and body weight. Nutrition 2005, 21, 411–418. [Google Scholar] [CrossRef]
- Pistol, G.C.; Pertea, A.M.; Taranu, I. The use of fruit and vegetable by-products as enhancers of health status of piglets after weaning: The role of bioactive compounds from apple and carrot industrial wastes. Vet. Sci. 2024, 11, 15. [Google Scholar] [CrossRef]
- Abdel Tawab, F.I.; Abd Elkadr, M.H.; Sultan, A.M.; Hamed, E.O.; El-Zayat, A.S.; Ahmed, M.N. Probiotic potentials of lactic acid bacteria isolated from Egyptian fermented food. Sci. Rep. 2023, 13, 16601. [Google Scholar] [CrossRef]
- Grajek, W.; Olejnik, A.; Sip, A. Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim Pol. 2005, 52, 665–671. [Google Scholar] [CrossRef]
- Seeliger, S.; Janssen, P.H.; Schink, B. Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiol. Lett. 2002, 211, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Lee, J.H.; Lloyd, J.; Walter, P.; Rane, S.G. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J. Biol. Chem. 2013, 288, 25088–25097. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Forsythe, P.; Bienenstock, J. Live Lactobacillus rhamnosus Is Essential for the Inhibitory Effect on Tumor Necrosis Factor Alpha-Induced Interleukin-8 Expression. Infect. Immun. 2011, 79, 2961. [Google Scholar] [CrossRef]
- Ejtahed, H.S.; Mohtadi-Nia, J.; Homayouni-Rad, A.; Niafar, M.; Asghari-Jafarabadi, M.; Mofid, V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition 2012, 28, 539–543. [Google Scholar] [CrossRef]
- Bourebaba, Y.; Marycz, K.; Mularczyk, M.; Bourebaba, L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed. Pharmacother. 2022, 153, 113138. [Google Scholar] [CrossRef]
- Liang, B.; Xing, D. The Current and Future Perspectives of Postbiotics. Probiotics Antimicrob. Proteins 2023, 15, 1626–1643. [Google Scholar] [CrossRef]
- Sharma, M.; Shukla, G. Metabiotics: One step ahead of probiotics; an insight into mechanisms involved in anticancerous effect in colorectal cancer. Front. Microbiol. 2016, 7, 1940. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Holick, M.F. Immunologic effects of vitamin D on human health and disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Earthman, C.P.; Beckman, L.M.; Masodkar, K.; Sibley, S.D. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: Considerations and implications. Int. J. Obes. 2012, 36, 387–396. [Google Scholar] [CrossRef]
- Bachmann, K.N. Responses to vitamin D supplementation in individuals with overweight and obesity. JAMA Netw. Open 2023, 6, e2250695. [Google Scholar] [CrossRef]
- Tobias, D.K.; Luttmann-Gibson, H.; Mora, S.; Danik, J.; Bubes, V.; Copeland, T.; LeBoff, M.S.; Cook, N.R.; Lee, I.M.; Buring, J.E.; et al. Association of body weight with response to vitamin D supplementation and metabolism. JAMA Netw. Open 2023, 6, e2250681. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J. Vitamin D deficiency and diabetes. Biochem. J. 2017, 474, 1321–1332. [Google Scholar] [CrossRef]
- Maestro, B.; Campión, J.; Dávila, N.; Calle, C. Stimulation by 1,25-dihydroxyvitamin D3 of insulin receptor expression and insulin responsiveness for glucose transport in U-937 human promonocytic cells. Endocr. J. 2000, 47, 383–391. [Google Scholar] [CrossRef]
- Dunlop, T.W.; Väisänen, S.; Frank, C.; Molnár, F.; Sinkkonen, L.; Carlberg, C. The human peroxisome proliferator-activated receptor delta gene is a primary target of 1alpha,25-dihydroxyvitamin D3 and its nuclear receptor. J. Mol. Biol. 2005, 349, 248–260. [Google Scholar] [CrossRef]
- Vázquez-Lorente, H.; Herrera-Quintana, L.; Jiménez-Sánchez, L.; Fernández-Perea, B.; Plaza-Diaz, J. Antioxidant functions of vitamin D and CYP11A1-derived vitamin D, tachysterol, and lumisterol metabolites: Mechanisms, clinical implications, and future directions. Antioxidants 2024, 13, 996. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zemel, M.B. 1Alpha,25-dihydroxyvitamin D3 modulation of adipocyte reactive oxygen species production. Obesity 2007, 15, 1944–1953. [Google Scholar] [CrossRef]
- Kunadian, V.; Ford, G.A.; Bawamia, B.; Qiu, W.; Manson, J.E. Vitamin D deficiency and coronary artery disease: A review of the evidence. Am. Heart J. 2014, 167, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Nie, Y.; Zhu, A.; Chen, Z.; Wu, P.; Zhang, L.; Luo, M.; Sun, Q.; Cai, L.; Lai, Y.; et al. Vitamin D signaling through induction of Paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models. Front. Physiol. 2016, 7, 498. [Google Scholar] [CrossRef] [PubMed]
- Wolf, F.I.; Cittadini, A. Chemistry and biochemistry of magnesium. Mol. Asp. Med. 2003, 24, 3–9. [Google Scholar] [CrossRef]
- Hruby, A.; McKeown, N.M.; Song, Y.; Djoussé, L. Dietary magnesium and genetic interactions in diabetes and related risk factors: A brief overview of current knowledge. Nutrients 2013, 5, 4990–5011. [Google Scholar] [CrossRef]
- Morakinyo, A.O.; Samuel, T.A.; Adekunbi, D.A. Magnesium upregulates insulin receptor and glucose transporter-4 in streptozotocin-nicotinamide-induced type-2 diabetic rats. Endocr. Regul. 2018, 52, 6–16. [Google Scholar] [CrossRef]
- Tannou, T.; Koeberle, S.; Manckoundia, P.; Aubry, R. Multifactorial immunodeficiency in frail elderly patients: Contributing factors and management. Med. Et Mal. Infect. 2019, 49, 167–172. [Google Scholar] [CrossRef]
- Liu, M.; Dudley, S.C., Jr. Magnesium, oxidative stress, inflammation, and cardiovascular disease. Antioxidants 2020, 9, 907. [Google Scholar] [CrossRef]
- Fröhlich, M.; Imhof, A.; Berg, G.; Hutchinson, W.; Pepys, M.; Boeing, H.; Muche, R.; Brenner, H.; Koenig, W. Association between C-reactive protein and features of the metabolic syndrome: A population-based study. Diabetes Care 2000, 23, 1835–1839. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Rodríguez-Morán, M. Relationship between serum magnesium levels and C-reactive protein concentration, in non-diabetic, non-hypertensive obese subjects. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 469–474. [Google Scholar] [CrossRef]
- Pachikian, B.D.; Neyrinck, A.M.; Deldicque, L.; De Backer, F.; Catry, E.; Dewulf, E.; Sohet, F.; Bindels, L.; Everard, A.; Francaux, M.; et al. Changes in intestinal bifidobacteria levels are associated with the inflammatory response in magnesium-deficient mice. J. Nutr. 2010, 140, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008, 27, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Roessner, U.; Bowne, J. What is metabolomics all about? BioTechniques 2009, 46, 363–365. [Google Scholar] [CrossRef]
- Villas-Bas, S.G.; Nielsen, J.; Smedsgaard, J.; Hansen, M.A.E.; Roessner-Tunali, U. Metabolome Analysis: An Introduction; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Marchev, A.S.; Vasileva, L.V.; Amirova, K.M.; Savova, M.; Balcheva-Sivenova, Z.; Georgiev, M. Metabolomics and health: From nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell. Mol. Life Sci. 2021, 78, 6487–6503. [Google Scholar] [CrossRef]
- Badoud, F.; Lam, K.P.; Perreault, M.; Zulyniak, M.A.; Britz-McKibbin, P.; Mutch, D.M. Metabolomics Reveals Metabolically Healthy and Unhealthy Obese Individuals Differ in their Response to a Caloric Challenge. PLoS ONE 2015, 10, e0134613. [Google Scholar] [CrossRef]
- Hameed, A.; Mojsak, P.; Buczynska, A.; Suleria, H.A.R.; Kretowski, A.; Ciborowski, M. Altered metabolome of lipids and amino acids species: A source of early signature biomarkers of T2D. J. Clin. Med. 2020, 9, 2257. [Google Scholar] [CrossRef]
- Auguet, T.; Bertran, L.; Capellades, J.; Abelló, S.; Aguilar, C.; Sabench, F.; Del Castillo, D.; Correig, X.; Yanes, O.; Richart, C. LC/MS-Based Untargeted Metabolomics Analysis in Women with Morbid Obesity and Associated Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2023, 24, 7761. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhu, Y.; Sang, S. A novel LC-MS based targeted metabolomic approach to study the biomarkers of food intake. Mol. Nutr. Food Res. 2020, 64, 2000615. [Google Scholar] [CrossRef]
- Zhu, Y.; Shurlknight, K.L.; Chen, X.; Sang, S. Identification and pharmacokinetics of novel alkylresorcinol metabolites in human urine, new candidate biomarkers for whole-grain wheat and rye intake. J. Nutr. 2014, 144, 114–122. [Google Scholar] [CrossRef]
- Pigsborg, K.; Magkos, F. Metabotyping for precision nutrition and weight management: Hype or hope? Curr. Nutr. Rep. 2022, 11, 117–123. [Google Scholar] [CrossRef]
- Garcia-Perez, I.; Posma, J.M.; Gibson, R.; Chambers, E.S.; Hansen, T.H.; Vestergaard, H.; Hansen, T.; Beckmann, M.; Pedersen, O.; Elliott, P.; et al. Objective assessment of dietary patterns by use of metabolic phenotyping: A randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 2017, 5, 184–195. [Google Scholar] [CrossRef]
- Beckmann, M.; Lloyd, A.J.; Haldar, S.; Favé, G.; Seal, C.J.; Brandt, K.; Mathers, J.C.; Draper, J. Dietary exposure biomarker-lead discovery based on metabolomics analysis of urine samples. Proc. Nutr. Soc. 2013, 72, 352–361. [Google Scholar] [CrossRef]
- Brennan, L.; de Roos, B. Role of metabolomics in the delivery of precision nutrition. Redox Biol. 2023, 65, 102808. [Google Scholar] [CrossRef]
- Voruganti, V.S. Precision Nutrition: Recent Advances in Obesity. Physiology 2023, 38, 42–50. [Google Scholar] [CrossRef]
- LeVatte, M.; Keshteli, A.H.; Zarei, P.; Wishart, D.S. Applications of metabolomics to precision nutrition. Lifestyle Genom. 2022, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- van Ommen, B.; van den Broek, T.; de Hoogh, I.; van Erk, M.; van Someren, E.; Rouhani-Rankouhi, T.; Anthony, J.C.; Hogenelst, K.; Pasman, W.; Boorsma, A.; et al. Systems biology of personalized nutrition. Nutr. Rev. 2017, 75, 579–599. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidi, M.; Koutelidakis, A.E. Functional foods and bioactive compounds: A review of its possible role on weight management and obesity’s metabolic consequences. Medicines 2019, 6, 94. [Google Scholar] [CrossRef]
- Doyon, M.; Labrecque, J. Functional foods: A conceptual definition. Br. Food J. 2008, 110, 1133–1149. [Google Scholar] [CrossRef]
- Sharma, M.; Vidhya, C.S.; Ojha, K.; Yashwanth, B.S.; Singh, B.; Gupta, S.; Pandey, S. The role of functional foods and nutraceuticals in disease prevention and health promotion. Eur. J. Nutr. Food Saf. 2024, 16, 61–83. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Global view on functional foods: European perspectives. Br. J. Nutr. 2002, 88 (Suppl. S2), S133–S138. [Google Scholar] [CrossRef] [PubMed]
- Hasler, C.M. Functional foods: Benefits, concerns and challenges—A position paper from the American Council on Science and Health. J. Nutr. 2002, 132, 3772–3781. [Google Scholar] [CrossRef]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food: Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Scientific Concepts of Functional Foods in Europe. Consensus document. Br. J. Nutr. 1999, 81 (Suppl. S1), S1–S27. [Google Scholar] [CrossRef]
- Lapik, I.A.; Galchenko, A.V.; Gapparova, K.M. Micronutrient status in obese patients: A narrative review. Obes. Med. 2020, 18, 100224. [Google Scholar] [CrossRef]
- Rudzka, A.; Kapusniak, K.; Zielińska, D.; Kołożyn-Krajewska, D.; Kapusniak, J.; Barczyńska-Felusiak, R. The importance of micronutrient adequacy in obesity and the potential of microbiota interventions to support it. Appl. Sci. 2024, 14, 4489. [Google Scholar] [CrossRef]
- Dibaba, D.T.; Xun, P.; Fly, A.D.; Yokota, K.; He, K. Dietary magnesium intake and risk of metabolic syndrome: A meta-analysis. Diabet. Med. 2014, 31, 1301–1309. [Google Scholar] [CrossRef]
- Qi, K.J.; Zhao, Z.T.; Zhang, W.; Yang, F. The impacts of vitamin D supplementation in adults with metabolic syndrome: A systematic review and meta-analysis. Front. Pharmacol. 2022, 13, 1033026. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.M.; Dall, R.D.; Shewokis, P.A.; Altasan, A.; Volpe, S.L.; Amori, R.; Singh, H.; Sukumar, D. The effect of combined magnesium and vitamin D supplementation on vitamin D status, systemic inflammation, and blood pressure: A randomized double-blinded controlled trial. Nutrition 2022, 99–100, 111674. [Google Scholar] [CrossRef]
- Sinha, S.; Haque, M.; Lugova, H.; Kumar, S. The effect of omega-3 fatty acids on insulin resistance. Life 2023, 13, 1322. [Google Scholar] [CrossRef]
- Kar, A.; Ghosh, P.; Patra, P.; Chini, D.S.; Nath, A.K.; Saha, J.K.; Patra, B.C. Omega-3 fatty acids mediated cellular signaling and its regulation in human health. Clin. Nutr. Open Sci. 2023, 52, 72–86. [Google Scholar] [CrossRef]
- Mah, E.; Chen, O.; Liska, D.J.; Blumberg, J.B. Dietary supplements for weight management: A narrative review of safety and metabolic health benefits. Nutrients 2022, 14, 1787. [Google Scholar] [CrossRef]
- European Commission. Food Supplements: Legislation. 2020. Available online: https://food.ec.europa.eu/food-safety/labelling-and-nutrition/food-supplements_en (accessed on 3 June 2025).
- Bailey, R.L.; Gahche, J.J.; Miller, P.E.; Thomas, P.R.; Dwyer, J.T. Why US adults use dietary supplements. JAMA Intern. Med. 2013, 173, 355–361. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Guidance on the Safety Assessment of Botanicals and Botanical Preparations Intended for Use as Ingredients in Food Supplements. 2009. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/1249 (accessed on 3 June 2025).
- U.S. Food and Drug Administration. Food/Dietary Supplement Guidance and Regulatory Information. 2025. Available online: https://www.fda.gov/food/guidance-regulation-food-and-dietary-supplements/guidance-documents-regulatory-information-topic-food-and-dietary-supplements (accessed on 3 June 2025).
- Tucker, J.; Fischer, T.; Upjohn, L.; Mazzera, D.; Kumar, M. Unapproved Pharmaceutical Ingredients Included in Dietary Supplements Associated with US Food and Drug Administration Warnings. JAMA Netw. Open 2018, 1, e183337. [Google Scholar] [CrossRef] [PubMed]
- Harvard, T.H.; Chan School of Public Health. Dietary Supplements Regulation Fact Sheet. 2020. Available online: https://hsph.harvard.edu/wp-content/uploads/2024/11/Dietary-Supplements-Regulation-Fact-Sheet.pdf (accessed on 3 June 2025).
- Lordan, R.; Rando, H.; Greene, C.; Capone, S. Dietary supplements and nutraceuticals under investigation for COVID-19 prevention and treatment. mSystems 2021, 6, e00122-21. [Google Scholar] [CrossRef]
- Maughan, R.J. Contamination of dietary supplements and positive drug tests in sport. J. Sports Sci. 2005, 23, 883–889. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Transcript for Public Meeting: Responsible Innovation in Dietary Supplements. 2019. Available online: https://www.fda.gov/files/food/published/Transcript-for-Public-Meeting-Dietary-Supplements.pdf (accessed on 3 June 2025).
- Oliveira, I.N.N.; Macedo-Silva, A.; Coutinho-Cruz, L.; Sanchez-Almeida, J.; Tavares, M.P.S.; Majerowicz, D. Effects of vitamin D supplementation on metabolic syndrome parameters in patients with obesity or diabetes: A systematic review and meta-analysis. J. Steroid Biochem. Mol. Biol. 2024, 243, 106582. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Manson, J.E.; Cook, N.R.; Bekele, B.B.; Chen, L.; Kane, K.J.; Huang, Y.; Li, W.; Christen, W.; Lee, I.M.; et al. Vitamin D3 and marine ω-3 fatty acids supplementation and leukocyte telomere length: 4-year findings from the VITamin D and OmegA-3 TriaL (VITAL) randomized controlled trial. Am. J. Clin. Nutr. 2025, 122, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Banaszak, M.; Dobrzyńska, M.; Kawka, A.; Górna, I.; Woźniak, D.; Przysławski, J.; Drzymała-Czyż, S. Role of omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases—Reports from the last 10 years. Clin. Nutr. ESPEN 2024, 63, 240–258. [Google Scholar] [CrossRef]
- Chapela, S.P.; Martinuzzi, A.L.N.; Llobera, N.D.; Ceriani, F.; Gonzalez, V.; Montalvan, M.; Verde, L.; Frias-Toral, E. Obesity and micronutrients deficit, when and how to supplement. Food Agric. Immunol. 2024, 35, 2381725. [Google Scholar] [CrossRef]
- Piuri, G.; Zocchi, M.; Della Porta, M.; Ficara, V.; Manoni, M.; Zuccotti, G.V.; Pinotti, L.; Maier, J.A.; Cazzola, R. Magnesium in Obesity, Metabolic Syndrome, and Type 2 Diabetes. Nutrients 2021, 13, 320. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Prebiotics and probiotics: Are they functional foods? Am. J. Clin. Nutr. 2000, 71 (Suppl. S6), 1682S–1690S. [Google Scholar] [CrossRef]
- Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010, 2, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Venkatakrishnan, K.; Chiu, H.F.; Wang, C.K. Extensive review of popular functional foods and nutraceuticals against obesity and its related complications with a special focus on randomized clinical trials. Food Funct. 2019, 10, 2313–2329. [Google Scholar] [CrossRef]
| Author (Year) | Type of Intervention/Diet | Type of Study | Sample Size (n) | Duration | Mean Age (Years) | Baseline BMI (kg/m2) | Anthropometric Outcomes | Glycemic & Metabolic Outcomes | Blood Pressure/Lipid Profile/Inflammation |
|---|---|---|---|---|---|---|---|---|---|
| Di Daniele N et al., (2013) [80] | Mediterranean Diet in Men vs. Mediterranean Diet in women | Interventional study | n = 25 n = 34 | 6 month | 48.7 ± 13.0 51.4 ± 11.5 | 35.8 ± 4.3 40.6 ± 7.8 | ↓BMI p < 0.001–3.47; ↓body mass p < 0.001; −10.2 ↓fat mass p < 0.001; ↓WC p < 0.001; −19.81 | ↓FBG p < 0.001; −12.95 | ↓SBP p < 0.001; −11.48 ↓DBP p < 0.001; −9.69 ↓TCh p < 0.001; −25.52 ↓LDL-C p < 0.001; −9.98 ↓TG p < 0.001; −38.79 |
| Asoudeh F et al., (2023) [84] | Mediterranean Diet vs. Control group | Interventional study | n = 35 n = 35 | 12 week | 14 ± 1.0 14 ± 1.0 | 27 ± 3.9 28 ± .8 | ↓BMI p < 0.001; −1.1 ↓body mass p < 0.001; −2.8 ↓WC p < 0.001; −2.9 | ↓FBG p < 0.001; −6.7 ↓HOMA-IR p < 0.001; −1.1 | ↓SBP p < 0.001; −9.0 ↓LDL-C p < 0.001; −15.1 ↑HDL-C p < 0.001; +3.7 ↓TG p < 0.001; −29.7 ↓hs-CRP p = 0.02; −1.4 ↓IL-6 p = 0.02; −31.7 |
| Yurtdaş G et al., (2022) [87] | Mediterranean Diet vs. Control group | Interventional study | n = 22 n = 22 | 12 week | 13.0 ± 2.0 13.9 ± 2.3 | 30.9 ± 5.2 33.7 ± 5.5 | ↓BMI p < 0.001; −2.1 ↓body mass p < 0.001; −5.1 ↓fat mass (%) p < 0.001; −3.9 ↓WC p < 0.001; −8.1 ↓HC p < 0.001; −5.5 | ↓insulin p = 0.01; −1.4 ↓HOMA-IR p = 0.02; −0.5 ↓AST p < 0.001; −10.0 ↓ALT p < 0.001; −18 ↓GGT p < 0.001; −6.0 | ↓CRP p = 0.008; −0.2 |
| Rodríguez-López CP et al., (2021) [96] | DASH diet in normal BMI participants vs. DASH diet in overweight vs. DASH diet in obese participants | Interventional study | n = 29 n = 14 n = 16 | 8 week | 25.9 ± 6.5 for the whole group | Normal 21.3 ± 2.1 Overweight 26.8 Obese 31.9 | ↓body mass p < 0.001; −2.0 ↓fat mass p < 0.001; −1.1 ↓VAT p < 0.02; −4.0 ↓WC p < 0.001; −5.4 | - | - |
| Kahleova H et al., (2020) [115] | Vegan diet vs. Control group | Interventional study | n = 122 n = 122 | 16 week | 53.0 ± 10.0 57.0 ± 13.0 | 33.3 33.6 | ↓BMI p < 0.001; −1.9 ↓body mass p < 0.001; −6.4 ↓fat mass p < 0.001; −4.1 | ↓FBG p = 0.001; −0.6 ↓FBI p = 0.006; −46.2 ↓HOMA-IR p < 0.001; −1.3 ↑PREDIM p < 0.001; +0.9 | ↓TC p < 0.001; −0.6 ↓LDL-C p < 0.001; −0.4 |
| Kahleova H et al., (2019) [116] | Vegan diet vs. Control group | Interventional study | n = 38 n = 37 | 16 week | 53.2 ± 12.6 for the whole group | 28 to 40 kg/m for the whole group | ↓BMI < 0.001; −2.0 ↓body mass p < 0.001; −6.5 ↓fat mass p < 0.001; −4.3 | ↓HOMA-IR p = 0.004; −1.0 | - |
| Kahleova H et al., (2018) [117] | Vegan diet vs. Control group | Interventional study | n = 38 n = 37 | 16 week | 52.6 ± 14.7 54.3 ± 9.9 | 33.1 33.6 | ↓BMI < 0.001; −2.0 ↓body mass p < 0.001; −6.5 ↓fat mass < 0.001; −4.3 ↓VAT < 0.001; −224 | ↓FBG p < 0.001; −0.4 ↓FBI < p = 0.05; −85.4 ↓HOMA-IR p = 0.004; −1.0 | ↓TCh p = 0.02; −1.1 ↓LDL-C p = 0.03; −0.9 |
| Sun J et al., (2023) [107] | Low-carbohydrate diet vs. Calorie-restricted diet vs. Low-carbohydrate and calorie-restricted diet vs. Control group | Interventional study | n = 76 n = 72 n = 76 n = 74 | 12 week | 34.2 ± 7.8 33.6 ± 6.4 33.2 ± 7.0 35.1 ± 8.2 | 30.2 ± 3.8 30.3 ± 3.4 31.0 ± 4.7 29.9 ± 3.9 | ↓BMI p < 0.001; −2.3 ↓body mass p < 0.001; −5.9 ↓fat mass (%) p < 0.001; −2.5 ↓WC p < 0.001; −5.5 | - | - |
| Velázquez-López L et al., (2014) [85] | Mediterranean diet vs. Control group | Interventional study | n = 24 n = 25 | 16 week | 11.2 ± 2.7 11.4 ± 2.9 | 27.3 ± 3.9 26.7 ± 4.7 | ↓BMI p = 0.001; −1.1 ↓fat mass p < 0.001; −2.6 ↓lean mass p < 0.001; 2.1 | ↓glucose p < 0.001; −10.5 | ↓TCh p < 0.001; −31.0 ↓LDL-C p < 0.001; −22.0 ↑ HDL-C p < 0.001; +9.0 ↓TG p < 0.001; −90.0 |
| Michalczyk MM et al., (2020) [111] | Ketogenic diet vs. Control group | Interventional study | n = 46 n = 45 | 12 week | 42 ± 7.0 41 ± 6.0 | 32.5 ± 4.5 33.2± 4.6 | ↓body mass p = 0.001; −13.72 ↓WC p = 0.001; −13.7 ↓HC p = 0.001; 11.61 ↓TC p = 0.001; −7.66 | ↓FBG p = 0.001;−2.2 ↓insulin p = 0.001; −10.51 ↓HbA1c p = 0.002; −0.5 ↓HOMA-IR p = 0.001; −2.35 | ↑HDL-C p = 0.001; + 16.28 ↓TG p = 0.001; −84.2 |
| Asemi Z et al., (2015) [98] | DASH diet vs. Control group | Interventional study | n = 24 n = 24 | 8 week | 30.7 ± 6.7 29.4 ± 6.2 | 29.1 ± 3.2 31.5 ± 5.7 | ↓WC p = 0.003; −5.2 ↓HC p < 0.0001; −5.9 | ↓insulin p = 0.03; −1.88 ↓HOMA-IR p = 0.01; −0.45 | ↓hs-CRP p = 0.009; −763.29 |
| Kucharska A et al., (2018) [90] | DASH diet vs. Control group | Interventional study | n = 64 n = 62 | 12 week | 61.3 ± 7.9 58.1± 8.5 | 32.6± 4.5 33.1± 4.3 | ↓BMI p = 0.005; −1.5 ↓body mass p = 0.000;−4.09 ↓fat mass p = 0.000; −3.1 | ↓FBG p = 0.000; −0.28 ↓insulin p = 0.008; −1.84 ↓leptin p = 0.000; −3.63 | ↓SBP p = 0.000; −4.63 ↓DBP p = 0.002; −2.64 |
| Razavi Zade M et al., (2016) [91] | DASH diet vs. Control group | Interventional study | n = 30 n = 30 | 8 week | 39.7 ± 7.3 42.8 ± 10.6 | 28.5 ± 3.2 28.3 ± 3.3 | ↓BMI p = 0.01; −1.3 ↓body mass p = 0.006; −3.8 | ↓insulin p = 0.01; −3.3 ↓HOMA-IR p = 0.01; −0.8 ↑QUICKI p = 0.004; +0.02 ↓ALT p = 0.02; −8.4 ↓ALP p = 0.001; −26.3 | ↓TG p = 0.006; −31.3 ↓hs-CR p = 0.03; −1224.7 |
| Mousavi SM et al., (2023) [106] | Moderately restricted carbohydrate diet vs. Control group | Interventional study | n = 35 n = 35 | 12 month | 40.5 ± 6.4 40.1 ± 8.2 | 32.3 ± 3.8 32.4 ± 3.5 | ↓BMI p = 0.01; −1.88 ↓body mass p = 0.01; −4.82 ↓WC p = 0.01; −5.34 ↓HC p = 0.01; −2.58 | - | ↑HDL-C p = 0.01; +1.89 ↓TG p = 0.01; −26.8 |
| Foroozanfard F et al., (2017) [97] | DASH diet vs. Control group | Interventional study | n = 30 n = 30 | 12 week | 27.1 ± 4.7 25.6 ± 3.7 | 32.3 ± 4.6 32.2 ± 3.9 | ↓BMI p = 0.02; −1.6 | ↓insulin p = 0.02; −25.2 ↓HOMA-IR p = 0.02; −0.9 ↑QUICKI p = 0.02; 0.01 | - |
| Nilghaz M et al., (2025) [92] | DASH diet vs. Control group | Interventional study | n = 21 n = 21 | 12 week | 45.4 ± 11.5 46.1 ± 11.7 | 30.7 ± 5.6 31.9 ± 3.7 | ↓BMI p = 0.03; −2.92 ↓AC p = 0.005; −6.39 | ↓ALT p = 0.039; −15.2 ↓AST p = 0.047; −7.52 | ↓TG p = 0.049; −32.52 |
| Monserrat-Mesquida M et al., (2022) [79] | Mediterranean Diet vs. Control group | Interventional study | n = 49 n = 48 | 24 month | 64.5 ± 0.5 64.9 ± 0.4 | 33.2 ± 0.33 32.7 ± 0.3 | ↓WHR p = 0.033; −0.22 | - | ↓SBP p = 0.039; −5.1 ↓DBP p < 0.001; −6.6 |
| Ebbeling CB et al., (2022) [108] | Low-carbohydrate diet vs. moderate-carbohydrate diet vs. high-carbohydrate diet | Interventional study | n = 53 n = 48 n = 46 | 20 week | 35.7 for the whole group | 32.2 ± 4.8 for the whole group | - | ↓LPIR p = 0.009; −5.3 ↑adiponectin; | ↑HDL-C p = 0.04; +0.09 ↓TG p = 0.006; −9.2 ↓TRL-P p = 0.001; +0.15 ↓Lp(a) p = 0.0005; −14.7 |
| Sharifi M et al., (2024) [112] | Ketogenic diet vs. portfolio Moderate-carbohydrate diet | Interventional study | n = 19 n = 21 | 8 week | 30.3 ± 5.4 30.1 ± 7.3 | 29.2 ± 3.4 29.5 ± 4.3 | ↓BMI p < 0.05; −2.9 ↓body mass p < 0.05; −5.64 ↓fat mass p < 0.05; −5.18 ↓lean mass p < 0.05; −3.19 ↓WC p < 0.05; −5.44 ↓HC p < 0.05; −7.31 | ↓FBG p < 0.05;−8.84 ↓insulin p < 0.05; −13.44 ↓HOMA-IR p < 0.05; −3.53 | ↓TC p = 0.03; −38.15 ↓LDL-C p < 0.05; −21.52 ↓TG p < 0.05; −61.42 |
| Author (Year) | Type of Intervention/Diet | Type of Study | Sample Size (n) | Duration | Mean Age (Years) | Baseline BMI (kg/m2) | Anthropometric Outcomes | Glycemic & Metabolic Outcomes | Blood Pressure/Lipid Profile/Inflammation |
|---|---|---|---|---|---|---|---|---|---|
| Cicero AF et al., (2015) [105] | Very low-carbohydrate ketogenic diet in men vs. Very low-carbohydrate ketogenic diet in women | Observational study | n = 80 n = 297 | 12 month | 48.3 ± 10.9 45.6 ± 9.9 | 32.1 ± 2.8 31.2 ± 3.1 | ↓BMI p < 0.001; −5.0 ↓fat mass p < 0.001; −8.1 ↓body mass p < 0.001; −14.0 ↓ICO p < 0.001; −0.8 ↓WC p < 0.001; −13.0 | ↓FBG p < 0.001; −8.7 ↓HbA1c p < 0.001; −0.3 ↓AST p < 0.001; −2.2 ↓ALT p < 0.001; −3.1 ↓GGT p < 0.001; −4.1 | ↓SBP p < 0.001; −10.5 ↓DBP p < 0.001; −2.2 ↓LDL-C p < 0.001; −19.5 ↑HDL-C p < 0.001; +3.5 ↓TG p < 0.001; −23.4 |
| Farhadnejad H et al., (2019) [93] | DASH diet with tertile 1 vs. DASH diet with tertile 2 vs. DASH diet with tertile 3 | Observational study | n = 1220 n = 1070 n = 928 | No data | 37.3 ± 9.0 39.6 ± 8.8 41.2 ± 8.9 | 29.5 ± 3.7 29.5 ± 3.9 29.7 ± 3.7 | - | - | ↑HDL-C p < 0.001; +0.9/+1.3 |
| Bioactive Compound | Insulin Signaling Improvement | Lipid Profile Improvement | Anti-Inflammatory Effect | Antioxidant Effect | Gut Microbiome Modulation |
|---|---|---|---|---|---|
| Polyphenols | ↑SCFAs production ↑GLP-1 secretion ↑insulin sensitivity ↓insulin resistance ↑satiety ↑fatty acid oxidation [122,123] | ↓hepatocellular AMPK ↓adipogenesis ↓lipogenesis [124] | ↑SCFAs production ↑anti-inflammatory mediators ↓pro-inflammatory cytokines [128] | ↑SCFAs production ↑anti-inflammatory mediators ↓pro-inflammatory cytokines [129] | ↑SCFAs production ↓pathogenic microbes count ↑beneficial bacteria count ↑gut microbiota barrier function [130,131] |
| Omega-3 fatty acids | ↑SCFAs production ↑GLP-1 secretion ↑insulin sensitivity ↓insulin resistance ↑satiety ↑mitochondrial β-oxidation of fatty acids [133,135] | ↓lipogenesis de novo ↓hepatic secretion of lipoproteins ↑apoB degradation [136,137] | ↑SCFAs production ↑modifications to cell membrane lipid composition ↑anti-inflammatory mediators ↓pro-inflammatory cytokines ↓leukocyte activation and recruitment [138] | ↓ROS generation ↓oxidant enzymes ↑scavenging superoxide [139,140] | ↑SCFAs production ↓pathogenic microbes count ↑beneficial bacteria count ↑gut microbiota barrier function [141,142,143] |
| Dietary fiber/prebiotics | ↑SCFAs production ↑GLP-1 secretion ↑insulin sensitivity ↓insulin resistance ↑satiety ↓gastric emptying [146,147,148] | ↑SCFAs production ↓nutrient absorption [146,147,148] | ↑SCFAs production ↓pro-inflammatory cytokines [146,147,148] | ↓oxidant enzymes ↑antioxidant molecules [149,150,183] | ↑SCFAs production ↓pathogenic microbes count ↑beneficial bacteria count ↑gut microbiota barrier function [151,152,182] |
| Probiotics/postbiotics | ↑SCFAs production ↑GLP-1 secretion ↑insulin sensitivity ↓insulin resistance ↑satiety [157,158] | ↑SCFAs production ↓pro-inflammatory cytokines [158] | ↓pro-inflammatory cytokines [159] | ↑antioxidant molecules ↑scavenging superoxide [159,160] | ↑SCFAs production ↓pathogenic microbes count ↑beneficial bacteria count ↑gut microbiota barrier function [161,162] |
| Vitamin D | ↑insulin sensitivity ↓insulin resistance ↑fatty acid metabolism [167,168] | ↑fatty acid metabolism ↑adipose tissue metabolism [168] | ↑anti-inflammatory cytokines ↓pro-inflammatory cytokines [169] | ↓ROS generation ↓lipid peroxidation ↑antioxidant molecules ↑mitochondrial protection [170,171] | ↑SCFAs production ↓pathogenic microbes count ↑beneficial bacteria count ↑gut microbiota barrier function [172,173] |
| Magnesium | ↑SCFAs production ↑GLP-1 secretion ↑insulin sensitivity ↓insulin resistance ↑satiety [176,177] | ↓lipogenesis [176] | ↑SCFAs production ↓pro-inflammatory cytokines [176,177] | ↓ROS generation ↑mitochondrial protection [176,177] | ↑SCFAs production ↑gut microbiota barrier function [176,177] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leziak, A.; Lipina, J.; Reclik, M.; Kocelak, P. Dietary Modulation of Metabolic Health: From Bioactive Compounds to Personalized Nutrition. Metabolites 2025, 15, 624. https://doi.org/10.3390/metabo15090624
Leziak A, Lipina J, Reclik M, Kocelak P. Dietary Modulation of Metabolic Health: From Bioactive Compounds to Personalized Nutrition. Metabolites. 2025; 15(9):624. https://doi.org/10.3390/metabo15090624
Chicago/Turabian StyleLeziak, Aleksandra, Julia Lipina, Magdalena Reclik, and Piotr Kocelak. 2025. "Dietary Modulation of Metabolic Health: From Bioactive Compounds to Personalized Nutrition" Metabolites 15, no. 9: 624. https://doi.org/10.3390/metabo15090624
APA StyleLeziak, A., Lipina, J., Reclik, M., & Kocelak, P. (2025). Dietary Modulation of Metabolic Health: From Bioactive Compounds to Personalized Nutrition. Metabolites, 15(9), 624. https://doi.org/10.3390/metabo15090624

