The Power of Lignans: Plant Compounds with Multifaceted Health-Promoting Effects
Abstract
1. Introduction
1.1. Dietary Sources of Lignans
1.2. Biosynthesis and Bioconversion of Lignans
2. The Health-Promoting Properties of Lignans
2.1. Lignans, Oxidative Stress and Inflammation
2.2. Anti-Neurodegenerative Effect of Lignans
2.3. Lignans and Osteoporosis
2.4. Lignans and Cardiovascular Diseases
2.5. Lignans, Diabetes and Metabolic Syndrome
2.6. Lignans and Breast Cancer
Lignans | Type of Breast Cancer | Action | Mechanism | Reference |
---|---|---|---|---|
Trans-(±)-kusunokinin | triple-negative | attenuation of breast cancer cell migration | inhibition of AKR1B1 enzyme activity resulted in the protection of glucose-induced cellular oxidation | [255] |
(−)-kusunokinin | luminal A | inhibited of breast cancer cell (MCF-7) migration, proliferation, cell cycle and metastasis | decrease in cell proliferation (c-Src, PI3K, Akt, p-Erk1/2 and c-Myc), cell cycle (E2f-1, cyclin B1 and CDK1) and metastasis (E-cadherin, MMP-2 and MMP-9) proteins | [256] |
Matairesinol | triple-negative | induction of apoptosis | reduction in the viability of M2a and M2d macrophages and repolarization them to M1 phenotype | [257] |
Secoisolariciresinol diglucoside (SDG) | luminal A | reducing tumor cell proliferation | reduction in PS2, BCL2, and IGF-1R ERα, ERβ, EGFR, BCL2 mRNA expression and PMAPK protein | [258] |
inhibition of cell proliferation, induction of apoptosis | decreased mRNA expressions of Bcl2, cyclin D1, pS2, ERα, and ERβ, epidermal growth factor receptor, and insulin-like growth factor receptor; decreased phospho-specific mitogen-activated protein kinase expression | [259] | ||
triple-negative | reduction in tumor growth | inhibition of NF-κB activity | [260] | |
SDG derivatives | luminal A | induction of apoptosis; reduction in proliferation | the cleavage of PARP inhibition of ERα | [261] |
induction of apoptosis | overexpressed pro-apoptotic genes (TP53, CDKN1A, and BAX) and underexpressed anti-apoptotic genes (BCL-2) | [262] | ||
luminal A, triple-negative | cytotoxic, anti-proliferative and pro-oxidant activity | reduction in intracellular oxidative stress and DNA damage | [263] | |
Podophyllotoxin | triple-negative | inhibition of cell proliferation, migration and invasion; regulation of cell cycle and induction of apoptosis | inhibition of CDC20, PLK1 expression, and CDK1 and increase the expression of P53 | [264] |
Lariciresinol | HER2-positive | induction of apoptosis | overexpressed pro-apoptotic genes (TP53, CDKN1A, and BAX) and underexpressed anti-apoptotic genes (BCL-2) | [262] |
Sauchinone | triple-negative | attenuation of proliferation, migration, and invasion | suppresion of Akt-CREB-MMP13 signaling pathway | [265] |
HER2-positive | inhibition of progression; | regulation of miR-148a-3p/HER-2 axis; increased miR-148a-3p expression, so downregulated HER-2 expression | [23] | |
Sesamin | HER2-positive | inhibition of cell proliferation; inducing cell cycle arrest; induction of apoptosis | increasing of P53 and Chk2; activation of the Bax and caspase-3 pathways | [266] |
triple-negative | suppression of proliferation and migration | decreases the expression of PD-L1 Via the downregulation of AKT, NF-κB, and JAK/Stat signaling | [267] | |
Schisandrin B | triple-negative | induction of cell cycle arrest and apoptosis, inhibition of migration and colony formation of tumor cells | suppression of signal transducer and activator of transcription-3 (STAT3) phosphorylation and nuclear translocation | [268] |
suppression the growth, migration, and invasion | inhibits interleukin (IL)-1β production of TNBC cells, hindering its progression | [269] | ||
Schisandrin A | triple-negative | inhibition of migration and induction of apoptosis | reduction in the activation of EGFR, PIK3R1, and MMP9 and increases the expression of cleaved-caspase 3, | [270] |
induction of cell cycle arrest and apoptosis | regulation of the Wnt/ER stress signaling pathway | [271] | ||
Schisandrol A | luminal A | promotion of proliferation | activation of ERK, PI3K, Akt, and Erα | [272] |
Arctigenin | triple-negative | inhibition of the metastasis | inhibition of the activity of matrix metalloproteases MMP-2, MMP-9 and heparanase | [273] |
reduction in proliferation and induction of apoptosis | inhibition of binding of STAT3 to genomic DNA | [274] | ||
luminal A, triple-negative | exhibition of anti-metastatic activity | inhibition of MMP-9 (extracellular matrix metalloproteinase) and uPA (plasminogen ukinase activator) Via Akt, NF-κB and MAPK signaling pathways, regardless of estrogen receptor expression | [275] | |
Honokiol | luminal A, luminal B, triple-negative, HER2-positive | inhibition of growth associated with a G1-phase cell cycle arrest and induction of caspase-dependent apoptosis | attenuate the PI3K/Akt/mTOR (Phosphoinositide 3-kinases/Akt/mammalian target of rapamycin) signalling by down-regulation of Akt phosphorylation and upregulation of PTEN (Phosphatase and Tensin homolog deleted on chromosome Ten) expression | [276] |
triple-negative | inhibition of proliferation, suppression of migration and induction of apoptosis | modulating the miR-148a-5p-CYP1B1 Axis | [277] | |
luminal A | induction of apoptosis influence on the cell cycle | suppression of the expression of Bcl-2 decreases the cyclin D1 expression | [278] |
2.7. Lignans and Menopause
2.8. Antimicrobial and Antiviral Properties of Lignans
3. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herchi, W.; Arráez-Román, D.; Trabelsi, H.; Bouali, I.; Boukhchina, S.; Kallel, H.; Segura-Carretero, A.; Fernández-Gutierrez, A. Phenolic Compounds in Flaxseed: A Review of Their Properties and Analytical Methods. An Overview of the Last Decade. J. Oleo Sci. 2014, 63, 7–14. [Google Scholar] [CrossRef]
- Frank, J.; Eliasson, C.; Leroy-Nivard, D.; Budek, A.; Lundh, T.; Vessby, B.; Åman, P.; Kamal-Eldin, A. Dietary secoisolariciresinol diglucoside and its oligomers with 3-hydroxy-3-methyl glutaric acid decrease vitamin E levels in rats. Br. J. Nutr. 2004, 92, 169–176. [Google Scholar] [CrossRef]
- Sicilia, T.; Niemeyer, H.B.; Honig, D.M.; Metzler, M. Identification and Stereochemical Characterization of Lignans in Flaxseed and Pumpkin Seeds. J. Agric. Food Chem. 2003, 51, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, G.; Colazo, M.G.; Oba, M.; Dyck, M.K.; Okine, E.K.; Ambrose, D.J. Fecal and Urinary Lignans, Intrafollicular Estradiol, and Endometrial Receptors in Lactating Dairy Cows Fed Diets Supplemented with Hydrogenated Animal Fat, Flaxseed or Sunflower Seed. J. Reprod. Dev. 2008, 54, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Milder, I.E.J.; Arts, I.C.W.; Putte, B.V.D.; Venema, D.P.; Hollman, P.C.H. Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br. J. Nutr. 2005, 93, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Kezimana, P.; Dmitriev, A.A.; Kudryavtseva, A.V.; Romanova, E.V.; Melnikova, N.V. Secoisolariciresinol Diglucoside of Flaxseed and Its Metabolites: Biosynthesis and Potential for Nutraceuticals. Front. Genet. 2018, 9, 641. [Google Scholar] [CrossRef]
- Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen Content of Foods Consumed in Canada, Including Isoflavones, Lignans, and Coumestan. Nutr. Cancer 2006, 54, 184–201. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 68, 571–603. [Google Scholar] [CrossRef]
- Moral, R.; Escrich, E. Influence of Olive Oil and Its Components on Breast Cancer: Molecular Mechanisms. Molecules 2022, 27, 477. [Google Scholar] [CrossRef]
- De Torres, A.; Espínola, F.; Moya, M.; Alcalá, S.; Vidal, A.M.; Castro, E. Assessment of phenolic compounds in virgin olive oil by response surface methodology with particular focus on flavonoids and lignans. LWT 2018, 90, 22–30. [Google Scholar] [CrossRef]
- Smeds, A.I.; Eklund, P.C.; Sjöholm, R.E.; Willför, S.M.; Nishibe, S.; Deyama, T.; Holmbom, B.R. Quantification of a Broad Spectrum of Lignans in Cereals, Oilseeds, and Nuts. J. Agric. Food Chem. 2007, 55, 1337–1346. [Google Scholar] [CrossRef]
- Landete, J.M. Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health. Food Res. Int. 2012, 46, 410–424. [Google Scholar] [CrossRef]
- Berenshtein, L.; Okun, Z.; Shpigelman, A. Stability and Bioaccessibility of Lignans in Food Products. ACS Omega 2024, 9, 2022–2031. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Ohno, A.; Yomoda, S.; Inamasu, S. Arctigenin-containing burdock sprout extract prevents obesity in association with modulation of the gut microbiota in mice. Biosci. Microbiota Food Health 2023, 42, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Wink, M. Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry 2015, 117, 340–350. [Google Scholar] [CrossRef]
- Sun, Y.; Tan, Y.; Lu, Z.; Li, B.; Sun, C.; Li, T.; Zhao, L.; Liu, Z.; Zhang, G.; Yao, J.; et al. Arctigenin Inhibits Liver Cancer Tumorigenesis by Inhibiting Gankyrin Expression via C/EBPα and PPARα. Front. Pharmacol. 2018, 9, 268. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Yang, M.; Zuo, Z. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol. Sin. 2018, 39, 787–801. [Google Scholar] [CrossRef]
- Chowdhury, R.; Bhuia, M.S.; Wilairatana, P.; Afroz, M.; Hasan, R.; Ferdous, J.; Rakib, A.I.; Sheikh, S.; Mubarak, M.S.; Islam, M.T. An insight into the anticancer potentials of lignan arctiin: A comprehensive review of molecular mechanisms. Heliyon 2024, 10, e32899. [Google Scholar] [CrossRef]
- Smeds, A.I.; Jauhiainen, L.; Tuomola, E.; Peltonen-Sainio, P. Characterization of Variation in the Lignan Content and Composition of Winter Rye, Spring Wheat, and Spring Oat. J. Agric. Food Chem. 2009, 57, 5837–5842. [Google Scholar] [CrossRef]
- Qin, X.; Liu, X.; Guo, C.; Huang, L.; Xu, Q. Medioresinol from Eucommiae cortex improves myocardial infarction-induced heart failure through activation of the PI3K/AKT/mTOR pathway: A network analysis and experimental study. PLoS ONE 2024, 19, e0311143. [Google Scholar] [CrossRef]
- Wang, E.-C.; Shih, M.-H.; Liu, M.-C.; Chen, M.-T.; Lee, G.-H. Studies of Constituents of Saururus chinensis. Heterocycles 1996, 43, 969. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Shang, P.; Wang, S.; Chen, L.; Ye, C.; Yao, G. Sauchinone inhibits breast cancer cell proliferation through regulating microRNA-148a-3p/HER-2 axis. Thorac. Cancer 2023, 14, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Liu, X.; Meng, X.; Cao, L.; Li, H.; Bi, Y.; Wang, M.; Wang, M.; Jiang, Y. Sauchinone alleviates dextran sulfate sodium-induced ulcerative colitis via NAD(P)H dehydrogenase [quinone] 1/NF-kB pathway and gut microbiota. Front. Microbiol. 2023, 13, 1084257. [Google Scholar] [CrossRef]
- Moazzami, A.A.; Haese, S.L.; Kamal-Eldin, A. Lignan contents in sesame seeds and products. Eur. J. Lipid Sci. Technol. 2007, 109, 1022–1027. [Google Scholar] [CrossRef]
- Rosalina, R.; Weerapreeyakul, N. An Insight into Sesamolin: Physicochemical Properties, Pharmacological Activities, and Future Research Prospects. Molecules 2021, 26, 5849. [Google Scholar] [CrossRef]
- Ehambarampillai, D.; Wan, M.L.Y. A comprehensive review of Schisandra chinensis lignans: Pharmacokinetics, pharmacological mechanisms, and future prospects in disease prevention and treatment. Chin. Med. 2025, 20, 47. [Google Scholar] [CrossRef]
- Yu, B.; Sheng, D.; Tan, Q. Determination of Schisandrin A and Schisandrin B in Traditional Chinese Medicine Preparation Huganpian Tablet by RP-HPLC. Chem. Pharm. Bull. 2019, 67, 713–716. [Google Scholar] [CrossRef]
- Nasser, M.I.; Zhu, S.; Chen, C.; Zhao, M.; Huang, H.; Zhu, P. A Comprehensive Review on Schisandrin B and Its Biological Properties. Oxid. Med. Cell. Longev. 2020, 2020, 2172740. [Google Scholar] [CrossRef]
- Sriwiriyajan, S.; Sukpondma, Y.; Srisawat, T.; Madla, S.; Graidist, P. (−)-Kusunokinin and piperloguminine from Piper nigrum: An alternative option to treat breast cancer. Biomed. Pharmacother. 2017, 92, 732–743. [Google Scholar] [CrossRef] [PubMed]
- Poivre, M.; Duez, P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J. Zhejiang Univ.-Sci. B 2017, 18, 194–214. [Google Scholar] [CrossRef] [PubMed]
- Siudem, P.; Wasiak, A.; Zielińska, A.; Kowalska, V.; Paradowska, K. Using Lignans from Magnolia officinalis Bark in the Assessment of the Quality of Dietary Supplements—The Application of 1H NMR and HPLC-DAD. Int. J. Mol. Sci. 2025, 26, 1659. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhao, D.; Yin, D.; Duan, K.; Wang, Z. Plant Origin Source, Content Profile and Bioactivity of Podophyllotoxin as an Important Natural Anticancer Agent. Chem. Biodivers. 2025, 22, e202402375. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.; Gohar, U.F.; Jamshed, I.; Mushtaq, A.; Mukhtar, H.; Zia-UI-Haq, M.; Toma, S.I.; Manea, R.; Moga, M.; Popovici, B. Podophyllotoxin: History, Recent Advances and Future Prospects. Biomolecules 2021, 11, 603. [Google Scholar] [CrossRef]
- Abourashed, E.A.; El-Alfy, A.T. Chemical diversity and pharmacological significance of the secondary metabolites of nutmeg (Myristica fragrans Houtt.). Phytochem. Rev. 2016, 15, 1035–1056. [Google Scholar] [CrossRef]
- Paul, S.; Hwang, J.K.; Kim, H.Y.; Jeon, W.K.; Chung, C.; Han, J.-S. Multiple biological properties of macelignan and its pharmacological implications. Arch. Pharm. Res. 2013, 36, 264–272. [Google Scholar] [CrossRef]
- Yoo, H.H.; Park, J.H.; Kwon, S.W. An Anti-Estrogenic Lignan Glycoside, Tracheloside, from Seeds of Carthamus tinctorius. Biosci. Biotechnol. Biochem. 2006, 70, 2783–2785. [Google Scholar] [CrossRef]
- Wang, H.-F.; Huang, Z.-H.; Zou, W.; Lai, C.-H.; Tan, Q.-G. Tracheloside, the main constituent of the total lignan extract from Trachelospermi Caulis, inhibited rheumatoid arthritis via IL-17/MAPK signaling pathway. Fitoterapia 2025, 180, 106311. [Google Scholar] [CrossRef]
- Kenneth, D.S. Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 1998, 68, 1333S–1346S. [Google Scholar] [CrossRef] [PubMed]
- Touré, A.; Xueming, X. Flaxseed Lignans: Source, Biosynthesis, Metabolism, Antioxidant Activity, Bio-Active Components, and Health Benefits. Compr. Rev. Food Sci. Food Saf. 2010, 9, 261–269. [Google Scholar] [CrossRef]
- Adolphe, J.L.; Whiting, S.J.; Juurlink, B.H.J.; Thorpe, L.U.; Alcorn, J. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br. J. Nutr. 2010, 103, 929–938. [Google Scholar] [CrossRef]
- Murkies, A.L.; Wilcox, G.; Davis, S.R. Phytoestrogens. J. Clin. Endocrinol. Metab. 1998, 83, 297–303. [Google Scholar] [CrossRef]
- Rizzolo-Brime, L.; Caro-Garcia, E.M.; Alegre-Miranda, C.A.; Felez-Nobrega, M.; Zamora-Ros, R. Lignan exposure: A worldwide perspective. Eur. J. Nutr. 2022, 61, 1143–1165. [Google Scholar] [CrossRef]
- Raffaelli, B.; Hoikkala, A.; Leppälä, E.; Wähälä, K. Enterolignans. J. Chromatogr. B 2002, 777, 29–43. [Google Scholar] [CrossRef]
- Prasad, K.; Mantha, S.V.; Muir, A.D.; Westcott, N.D. Reduction of hypercholesterolemic atherosclerosis by CDC-flaxseed with very low alpha-linolenic acid. Atherosclerosis 1998, 136, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K. Reduction of Serum Cholesterol and Hypercholesterolemic Atherosclerosis in Rabbits by Secoisolariciresinol Diglucoside Isolated From Flaxseed. Circulation 1999, 99, 1355–1362. [Google Scholar] [CrossRef]
- Hu, C.; Yuan, Y.V.; Kitts, D.D. Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food Chem. Toxicol. 2007, 45, 2219–2227. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; Lee, S.M.; Shin, S.M.; Hwang, S.J.; Brooks, J.S.; Kang, H.E.; Lee, M.G.; Kim, S.C.; Kim, S.G. Efficacy of sauchinone as a novel AMPK-activating lignan for preventing iron-induced oxidative stress and liver injury. Free Radic. Biol. Med. 2009, 47, 1082–1092. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, T.; Wang, Y.; Li, G.; Wang, Y.; Tian, W.; Feng, L.; Zhang, S.; Xu, Y.; Gao, Y.; et al. Syringaresinol Alleviates Early Diabetic Retinopathy by Downregulating HIF-1α/VEGF via Activating Nrf2 Antioxidant Pathway. Mol. Nutr. Food Res. 2024, 68, 2200771. [Google Scholar] [CrossRef]
- Wei, A.; Liu, J.; Li, D.; Lu, Y.; Yang, L.; Zhuo, Y.; Tian, W.; Cong, H. Syringaresinol attenuates sepsis-induced cardiac dysfunction by inhibiting inflammation and pyroptosis in mice. Eur. J. Pharmacol. 2021, 913, 174644. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, D.; Deng, B.; Yan, L. Syringaresinol attenuates osteoarthritis via regulating the NF-κB pathway. Int. Immunopharmacol. 2023, 118, 109982. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Tan, L.; Li, Z.; Gao, P.; He, S.; Wang, Q.; Tang, D.; Wang, C.; Wang, F.; et al. (–)-Syringaresinol attenuates ulcerative colitis by improving intestinal epithelial barrier function and inhibiting inflammatory responses. Phytomedicine 2024, 124, 155292. [Google Scholar] [CrossRef]
- Shi, H.; Yan, Y.; Yang, H.; Pu, P.; Tang, H. Schisandrin B Diet Inhibits Oxidative Stress to Reduce Ferroptosis and Lipid Peroxidation to Prevent Pirarubicin-Induced Hepatotoxicity. BioMed Res. Int. 2022, 2022, 5623555. [Google Scholar] [CrossRef]
- Liu, H.-L.; Huang, Z.; Li, Q.-Z.; Cao, Y.-Z.; Wang, H.-Y.; Alolgab, R.N.; Deng, X.-Y.; Zhang, Z.-H. Schisandrin A alleviates renal fibrosis by inhibiting PKCβ and oxidative stress. Phytomedicine 2024, 126, 155372. [Google Scholar] [CrossRef]
- Demir, M.; Cetinavci, D.; Dogan, K.; Elbe, H.; Saruhan, E. Honokiol prevents central kainic acid-induced neurodegeneration by suppressing oxidative stress, inflammation, and TGF-β1 expression. Arch. Physiol. Biochem. 2025, 1–12. [Google Scholar] [CrossRef]
- Aqeel, T.; Gurumallu, S.C.; Bhaskar, A.; Hashimi, S.M.; Lohith, N.C.; Javaraiah, R. Protective role of flaxseed lignan secoisolariciresinol diglucoside against lead-acetate-induced oxidative-stress-mediated nephrotoxicity in rats. Phytomed. Plus 2021, 1, 100038. [Google Scholar] [CrossRef]
- He, X.; Wang, Y.; Wu, M.; Wei, J.; Sun, X.; Wang, A.; Hu, G.; Jia, J. Secoisolariciresinol Diglucoside Improves Ovarian Reserve in Aging Mouse by Inhibiting Oxidative Stress. Front. Mol. Biosci. 2022, 8, 806412. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhu, R.; Wu, T.; Zhao, W. Amelioration of oxidative kidney damage in offspring by maternal trans-fatty acid exposure in mice by secoisolariciresinol diglucoside. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2023, 48, 967–978. [Google Scholar] [CrossRef]
- Zhang, L.; Lan, Y.; Wang, Y.; Yang, Y.; Han, W.; Li, J.; Wang, Y.; Liu, X. Secoisolariciresinol diglucoside ameliorates high fat diet-induced colon inflammation and regulates gut microbiota in mice. Food Funct. 2022, 13, 3009–3022. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.; Liu, J.; Wang, T.; Liu, Y.; Liu, Y.; Guo, L.; Bai, Z.; Shen, W.; Yan, R.; et al. Dietary secoisolariciresinol diglucoside ameliorates high-fat diet-induced atherosclerosis via regulating immunological inflammation and reshaping gut microbiota in ApoE-/- mice. J. Funct. Foods 2025, 124, 106642. [Google Scholar] [CrossRef]
- Ge, J.; Hao, R.; Rong, X.; Dou, Q.P.; Tan, X.; Li, G.; Li, F.; Li, D. Secoisolariciresinol diglucoside mitigates benzo[a]pyrene-induced liver and kidney toxicity in mice via miR-101a/MKP-1-mediated p38 and ERK pathway. Food Chem. Toxicol. 2022, 159, 112733. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Liu, X.; Yang, Y.; Zhang, Y.; Li, B.; Guo, F.; Liang, J.; Hong, X.; Guo, R.; et al. Secoisolariciresinol diglucoside Ameliorates Osteoarthritis via Nuclear factor-erythroid 2-related factor-2/nuclear factor kappa B Pathway: In vitro and in vivo experiments. Biomed. Pharmacother. 2023, 164, 114964. [Google Scholar] [CrossRef]
- Li, A.-L.; Li, G.-H.; Li, Y.-R.; Wu, X.-Y.; Ren, D.-M.; Lou, H.-X.; Wang, X.-N.; Shen, T. Lignan and flavonoid support the prevention of cinnamon against oxidative stress related diseases. Phytomedicine 2019, 53, 143–153. [Google Scholar] [CrossRef]
- Trinh Tat, C.; Duc Thien, D.; Tran, N.T.H.; Anh Duc, N.; Duc Manh, H.; Quang Huy, N.; Ngo, L.H.; Nguyen, N.Q. Effects of Pinoresinol from Vietnamese Gnetum montanum Markgr Inhibits the Inflammation in Macrophages. J. Rep. Pharm. Sci. 2025, 13, e156394. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, Y.; Yao, X.; Yi, J.; Feng, G. Pinoresinol diglucoside alleviates ischemia/reperfusion-induced brain injury by modulating neuroinflammation and oxidative stress. Chem. Biol. Drug Des. 2021, 98, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Wu, S.; Wang, G.; Li, B.; Liu, B.; Lei, X. Pinoresinol diglucoside attenuates neuroinflammation, apoptosis and oxidative stress in a mice model with Alzheimer’s disease. NeuroReport 2021, 32, 259–267. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Wang, R.; Shen, J.; Wang, J.; Li, L. Lariciresinol protects rats from complete Freund’s adjuvant induced arthritis in rats via modulation of transforming growth factor-β and nuclear factor kappa B pathway: An in vivo and in silico study. Chem. Biol. Drug Des. 2023, 102, 168–176. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.; Li, Q. Matairesinol exerts anti-inflammatory and antioxidant effects in sepsis-mediated brain injury by repressing the MAPK and NF-κB pathways through up-regulating AMPK. Aging 2021, 13, 23780–23795. [Google Scholar] [CrossRef] [PubMed]
- Salama, S.A.; Mohamadin, A.M.; Abdel-Bakky, M.S. Arctigenin alleviates cadmium-induced nephrotoxicity: Targeting endoplasmic reticulum stress, Nrf2 signaling, and the associated inflammatory response. Life Sci. 2021, 287, 120121. [Google Scholar] [CrossRef] [PubMed]
- Kanawati, G.M.; Al-Khateeb, I.H.; Kandil, Y.I. Arctigenin attenuates CCl4-induced hepatotoxicity through suppressing matrix metalloproteinase-2 and oxidative stress. Egypt. Liver J. 2021, 11, 1. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Zhou, Y.; Chen, T.; Lei, J.-C.; Jiang, X.-J. AMPK/SIRT1 Pathway is Involved in Arctigenin-Mediated Protective Effects Against Myocardial Ischemia-Reperfusion Injury. Front. Pharmacol. 2021, 11, 616813. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Pu, S.; Wang, X.; Guo, L.; Zhang, L.; Wang, Z. Ameliorative Effects of Arctigenin on Pulmonary Fibrosis Induced by Bleomycin via the Antioxidant Activity. Oxid. Med. Cell. Longev. 2022, 2022, 3541731. [Google Scholar] [CrossRef] [PubMed]
- Medras, Z.J.H.; Mostafa, Y.M.; Ahmed, A.A.M.; El-Sayed, N.M. Arctigenin improves neuropathy via ameliorating apoptosis and modulating autophagy in streptozotocin-induced diabetic mice. CNS Neurosci. Ther. 2023, 29, 3068–3080. [Google Scholar] [CrossRef]
- Yuan, Q.; Wu, Y.; Wang, G.; Zhou, X.; Dong, X.; Lou, Z.; Li, S.; Wang, D. Preventive effects of arctigenin from Arctium lappa L. against LPS-induced neuroinflammation and cognitive impairments in mice. Metab. Brain Dis. 2022, 37, 2039–2052. [Google Scholar] [CrossRef]
- Ji, Z.; Guo, R.; Ma, Z.; Li, H. Arctigenin inhibits apoptosis, extracellular matrix degradation, and inflammation in human nucleus pulposus cells by up-regulating miR-483-3p. J. Clin. Lab. Anal. 2022, 36, e24508. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Dou, P.; Zhang, X.; Ran, X.; Liu, L.; Dou, D. The Ameliorative Effects of Arctiin and Arctigenin on the Oxidative Injury of Lung Induced by Silica via TLR-4/NLRP3/TGF- β Signaling Pathway. Oxid. Med. Cell. Longev. 2021, 2021, 5598980. [Google Scholar] [CrossRef] [PubMed]
- Almeaqli, M.T.; Alaidaa, Y.; Alnajjar, F.M.; Al Shararh, A.S.; Alharbi, D.S.; Almslmani, Y.I.; Alotibi, Y.A.; Alrashidi, H.S.; Alshehri, W.A.; Hassan, H.M.; et al. Therapeutic Effects of Arctiin on Alzheimer’s Disease-like Model in Rats by Reducing Oxidative Stress, Inflammasomes and Fibrosis. Curr. Alzheimer Res. 2024, 21, 276–288. [Google Scholar] [CrossRef]
- Fu, Y.; Li, X.; Zeng, Y.; Zhang, A.; Qiu, S. Arctiin attenuated NASH by inhibiting glycolysis and inflammation via FGFR2/CSF1R signaling. Eur. J. Pharmacol. 2025, 996, 177424. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Mu, Z.; Han, X. Arctiin Alleviates Atopic Dermatitis Against Inflammation and Pyroptosis Through Suppressing TLR4/MyD88/NF-κB and NLRP3/Caspase-1/GSDMD Signaling Pathways. J. Inflamm. Res. 2024, 17, 8009–8026. [Google Scholar] [CrossRef]
- Yang, J.; Chen, D.; He, Q.; Chen, B.; Pan, Z.; Zhang, G.; Li, M.; Li, S.; Xiao, J.; Wang, H.; et al. Arctiin alleviates knee osteoarthritis by suppressing chondrocyte oxidative stress induced by accumulated iron via AKT/NRF2/HO-1 signaling pathway. Sci. Rep. 2024, 14, 31935. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Xiao, F.; Wang, Z.; Liu, J. Arctiin attenuates lipid accumulation, inflammation and oxidative stress in nonalcoholic fatty liver disease through inhibiting MAPK pathway. Qual. Assur. Saf. Crops Foods 2022, 14, 105–114. [Google Scholar] [CrossRef]
- Yuan, L.; Sun, C. The protective effects of Arctiin in asthma by attenuating airway inflammation and inhibiting p38/NF-κB signaling. Aging 2024, 16, 5038–5049. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, L.; Liang, Y.; Li, J.; Pan, X. Arctiin suppresses H9N2 avian influenza virus-mediated inflammation via activation of Nrf2/HO-1 signaling. BMC Complement. Med. Ther. 2021, 21, 289. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Z.; Bai, J.; Wang, X.; Yuan, Q.; Mi, Y.; Zhang, C. Bioactive Lignan Honokiol Alleviates Ovarian Oxidative Stress in Aging Laying Chickens by Regulating SIRT3/AMPK Pathway. Antioxidants 2024, 13, 377. [Google Scholar] [CrossRef]
- Kuk, M.U.; Lee, Y.H.; Kim, D.; Lee, K.S.; Park, J.H.; Yoon, J.H.; Lee, Y.J.; So, B.; Kim, M.; Kwon, H.W.; et al. Sauchinone Ameliorates Senescence Through Reducing Mitochondrial ROS Production. Antioxidants 2025, 14, 259. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Yang, H.; Heng, X.; Xu, T.; Zhang, K.; Zhao, Y.; Liu, Y.; Han, D.; Wu, Y.; Zhang, W.; et al. Sauchinone preserves cardiac function in doxorubicin-induced cardiomyopathy by inhibiting the NLRP3 inflammasome. Phytomedicine 2025, 140, 156624. [Google Scholar] [CrossRef]
- Alshahrani, S.; Ali Thubab, H.M.; Ali Zaeri, A.M.; Anwer, T.; Ahmed, R.A.; Jali, A.M.; Qadri, M.; Nomier, Y.; Moni, S.S.; Alam, M.F. The Protective Effects of Sesamin against Cyclophosphamide-Induced Nephrotoxicity through Modulation of Oxidative Stress, Inflammatory-Cytokines and Apoptosis in Rats. Int. J. Mol. Sci. 2022, 23, 11615. [Google Scholar] [CrossRef]
- Du, H.; Tong, S.; Kuang, G.; Gong, X.; Jiang, N.; Yang, X.; Liu, H.; Li, N.; Xie, Y.; Xiang, Y.; et al. Sesamin Protects against APAP-Induced Acute Liver Injury by Inhibiting Oxidative Stress and Inflammatory Response via Deactivation of HMGB1/TLR4/NFκB Signal in Mice. J. Immunol. Res. 2023, 2023, 1116841. [Google Scholar] [CrossRef]
- Chang, C.; Cheng, H.; Chou, W.; Huang, Y.; Hsieh, P.; Chu, P.; Lee, S. Sesamin suppresses angiotensin-II-enhanced oxidative stress and hypertrophic markers in H9c2 cells. Environ. Toxicol. 2023, 38, 2165–2172. [Google Scholar] [CrossRef]
- Kitipaspallop, W.; Phuwapraisirisan, P.; Kim, W.-K.; Chanchao, C.; Pimtong, W. Sesamin lacks zebrafish embryotoxicity but exhibits evidence of anti-angiogenesis, anti-oxidant and anti-inflammatory activities. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 269, 109637. [Google Scholar] [CrossRef]
- Zheng, W.; Song, Z.; Li, S.; Hu, M.; Shaukat, H.; Qin, H. Protective Effects of Sesamol against Liver Oxidative Stress and Inflammation in High-Fat Diet-Induced Hepatic Steatosis. Nutrients 2021, 13, 4484. [Google Scholar] [CrossRef]
- Ruankham, W.; Suwanjang, W.; Wongchitrat, P.; Prachayasittikul, V.; Prachayasittikul, S.; Phopin, K. Sesamin and sesamol attenuate H2O2-induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutr. Neurosci. 2021, 24, 90–101. [Google Scholar] [CrossRef]
- Ramazani, E.; Ebrahimpour, F.; Emami, S.A.; Shakeri, A.; Javadi, B.; Sahebkar, A.; Tayarani-Najaran, Z. Neuroprotective Effects of Sesamum indicum, Sesamin and SesamolinAgainst 6-OHDA-induced Apoptosis in PC12 Cells. Recent Adv. Food Nutr. Agric. 2023, 14, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Karrar, E.; Liu, R.; Chang, M.; Wang, X. Comparative effects of sesame lignans (sesamin, sesamolin, and sesamol) on oxidative stress and lipid metabolism in steatosis HepG2 cells. J. Food Biochem. 2022, 46, e14180. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Kim, H.S.; Park, S.H.; Kim, D.; Hong, Y.D.; Kim, J.H.; Cho, J.Y. Syringaresinol derived from Panax ginseng berry attenuates oxidative stress-induced skin aging via autophagy. J. Ginseng Res. 2022, 46, 536–542. [Google Scholar] [CrossRef]
- Wisidsri, N.; Chansriniyom, C.; Limpanasitikul, W. Syringaresinol prevents human epidermal keratinocytes from oxidative stress, DNA damage, and cellular senescence induced by UVB irradiation. J. Pharm. Pharmacogn. Res. 2025, 13, 991–1002. [Google Scholar] [CrossRef]
- Zhuo, Y.; Yang, L.; Li, D.; Zhang, L.; Zhang, Q.; Zhang, S.; Li, C.; Cui, L.; Hao, J.; Li, J.; et al. Syringaresinol Resisted Sepsis-Induced Acute Lung Injury by Suppressing Pyroptosis Via the Oestrogen Receptor-β Signalling Pathway. Inflammation 2022, 45, 824–837. [Google Scholar] [CrossRef]
- Li, G.; Liu, C.; Yang, L.; Feng, L.; Zhang, S.; An, J.; Li, J.; Gao, Y.; Pan, Z.; Xu, Y.; et al. Syringaresinol protects against diabetic nephropathy by inhibiting pyroptosis via NRF2-mediated antioxidant pathway. Cell Biol. Toxicol. 2023, 39, 621–639. [Google Scholar] [CrossRef]
- Garlapati, P.K.; Raghavan, A.K.; Shivanna, N. Phytochemicals Having Neuroprotective Properties from Dietary Sources and Medicinal Herbs. Pharmacogn. J. 2014, 7, 1–17. [Google Scholar] [CrossRef]
- Shimoyoshi, S.; Takemoto, D.; Ono, Y.; Kitagawa, Y.; Shibata, H.; Tomono, S.; Unno, K.; Wakabayashi, K. Sesame Lignans Suppress Age-Related Cognitive Decline in Senescence-Accelerated Mice. Nutrients 2019, 11, 1582. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S.J.; Kim, S. An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed. Pharmacother. 2018, 97, 958–968. [Google Scholar] [CrossRef]
- Kantham, S.; Chan, S.; McColl, G.; Miles, J.A.; Veliyath, S.K.; Deora, G.S.; Dighe, S.N.; Khabbazi, S.; Parat, M.-O.; Ross, B.P. Effect of the Biphenyl Neolignan Honokiol on Aβ42-Induced Toxicity in Caenorhabditis elegans, Aβ42 Fibrillation, Cholinesterase Activity, DPPH Radicals, and Iron(II) Chelation. ACS Chem. Neurosci. 2017, 8, 1901–1912. [Google Scholar] [CrossRef]
- Wei, M.; Liu, Z.; Liu, Y.; Li, S.; Hu, M.; Yue, K.; Liu, T.; He, Y.; Pi, Z.; Liu, Z.; et al. Urinary and plasmatic metabolomics strategy to explore the holistic mechanism of lignans in S. chinensis in treating Alzheimer’s disease using UPLC-Q-TOF-MS. Food Funct. 2019, 10, 5656–5668. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Dou, D.-Q.; Jiang, H.; Zhang, B.-B.; Qin, W.-Y.; Kang, K.; Zhang, N.; Jia, D. Arctigenin Attenuates Learning and Memory Deficits through PI3k/Akt/GSK-3β Pathway Reducing Tau Hyperphosphorylation in Aβ-Induced AD Mice. Planta Med. 2016, 83, 51–56. [Google Scholar] [CrossRef]
- Yu, J.; Kwon, H.; Cho, E.; Jeon, J.; Kang, R.H.; Youn, K.; Jun, M.; Lee, Y.C.; Ryu, J.H.; Kim, D.H. The effects of pinoresinol on cholinergic dysfunction-induced memory impairments and synaptic plasticity in mice. Food Chem. Toxicol. 2019, 125, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Keowkase, R.; Shoomarom, N.; Bunargin, W.; Sitthithaworn, W.; Weerapreeyakul, N. Sesamin and sesamolin reduce amyloid-β toxicity in a transgenic Caenorhabditis elegans. Biomed. Pharmacother. 2018, 107, 656–664. [Google Scholar] [CrossRef]
- Luo, X.-H.; Zhang, Y.-Y.; Chen, X.-Y.; Sun, M.-L.; Li, S.; Wang, H.-B. Lignans from the roots of Acorus tatarinowii Schott ameliorate β amyloid-induced toxicity in transgenic Caenorhabditis elegans. Fitoterapia 2016, 108, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Y. Arctigenin exerts protective effects against myocardial infarction via regulation of iNOS, COX-2, ERK1/2 and HO-1 in rats. Mol. Med. Rep. 2018, 17, 4839–4845. [Google Scholar] [CrossRef]
- Baluchnejadmojarad, T.; Mansouri, M.; Ghalami, J.; Mokhtari, Z.; Roghani, M. Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress. Biomed. Pharmacother. 2017, 88, 754–761. [Google Scholar] [CrossRef]
- Chen, H.-H.; Chang, P.-C.; Chen, C.; Chan, M.-H. Protective and therapeutic activity of honokiol in reversing motor deficits and neuronal degeneration in the mouse model of Parkinson’s disease. Pharmacol. Rep. 2018, 70, 668–676. [Google Scholar] [CrossRef]
- Zhi, Y.; Jin, Y.; Pan, L.; Zhang, A.; Liu, F. Schisandrin A ameliorates MPTP-induced Parkinson’s disease in a mouse model via regulation of brain autophagy. Arch. Pharm. Res. 2019, 42, 1012–1020. [Google Scholar] [CrossRef]
- Giuliano, C.; Siani, F.; Mus, L.; Ghezzi, C.; Cerri, S.; Pacchetti, B.; Bigogno, C.; Blandini, F. Neuroprotective effects of lignan 7-hydroxymatairesinol (HMR/lignan) in a rodent model of Parkinson’s disease. Nutrition 2020, 69, 110494. [Google Scholar] [CrossRef]
- Li, H.; Sun, J.; Wu, Y.; Yang, Y.; Zhang, W.; Tian, Y. Honokiol relieves hippocampal neuronal damage in Alzheimer’s disease by activating the SIRT3-mediated mitochondrial autophagy. CNS Neurosci. Ther. 2024, 30, e14878. [Google Scholar] [CrossRef]
- Li, H.; Jia, J.; Wang, W.; Hou, T.; Tian, Y.; Wu, Q.; Xu, L.; Wei, Y.; Wang, X. Honokiol Alleviates Cognitive Deficits of Alzheimer’s Disease (PS1V97L) Transgenic Mice by Activating Mitochondrial SIRT3. J. Alzheimer’s Dis. 2018, 64, 291–302. [Google Scholar] [CrossRef]
- Jia, S.; Guan, H.; Zhang, S.; Li, Q. Schisandrin A Alleviates Inflammation and Oxidative Stress in Aβ25−35-Induced Alzheimer’s Disease in Vitro Model. Actas Esp. Psiquiatr. 2024, 52, 724–732. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, J.; Lan, J.; Zhang, Y.; Wang, H.; Chen, Q.; Kang, Y.; Sun, Y.; Feng, X.; Wu, L.; et al. Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis. Acta Pharm. Sin. B 2023, 13, 577–597. [Google Scholar] [CrossRef]
- Jia, M.; Ning, F.; Wen, J.; Wang, X.; Chen, J.; Hu, J.; Chen, X.; Liu, Z. Secoisolariciresinol diglucoside attenuates neuroinflammation and cognitive impairment in female Alzheimer’s disease mice via modulating gut microbiota metabolism and GPER/CREB/BDNF pathway. J. Neuroinflamm. 2024, 21, 201. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.; Ni, C.; Song, G. Honokiol Attenuates Oligomeric Amyloid β1-42-Induced Alzheimer’s Disease in Mice Through Attenuating Mitochondrial Apoptosis and Inhibiting the Nuclear Factor Kappa-B Signaling Pathway. Cell. Physiol. Biochem. 2017, 43, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Sasia, C.; Borgonetti, V.; Mancini, C.; Lori, G.; Arbiser, J.L.; Taddei, M.L.; Galeotti, N. The Neolignan Honokiol and Its Synthetic Derivative Honokiol Hexafluoro Reduce Neuroinflammation and Cellular Senescence in Microglia Cells. Cells 2024, 13, 1652. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.T.; Vu, C.M.; Ly, T.T.B.; Nguyen, N.T.; Nguyen, P.T.M.; Chu, H.H. Effect of Honokiol on culture time and survival of Alzheimer’s disease iPSC-derived neurons. Bioimpacts 2023, 14, 27652. [Google Scholar] [CrossRef]
- Singh, L.; Singh, S. Neuroprotective potential of Honokiol in ICV-STZ induced neuroinflammation, Aβ(1–42) and NF-kB expression in experimental model of rats. Neurosci. Lett. 2023, 799, 137090. [Google Scholar] [CrossRef]
- Gu, L.; Cai, N.; Li, M.; Bi, D.; Yao, L.; Fang, W.; Wu, Y.; Hu, Z.; Liu, Q.; Lin, Z.; et al. Inhibitory Effects of Macelignan on Tau Phosphorylation and Aβ Aggregation in the Cell Model of Alzheimer’s Disease. Front. Nutr. 2022, 9, 892558. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Cho, E.; Kwon, H.; Jeon, J.; Seong Sin, J.; Kwon Park, J.; Kim, J.-S.; Woong Choi, J.; Jin Park, S.; Jun, M.; et al. Akt and calcium-permeable AMPA receptor are involved in the effect of pinoresinol on amyloid β-induced synaptic plasticity and memory deficits. Biochem. Pharmacol. 2021, 184, 114366. [Google Scholar] [CrossRef]
- Han, R.; Yu, Y.; Zhao, K.; Wei, J.; Hui, Y.; Gao, J.-M. Lignans from Eucommia ulmoides Oliver leaves exhibit neuroprotective effects via activation of the PI3K/Akt/GSK-3β/Nrf2 signaling pathways in H2O2-treated PC-12 cells. Phytomedicine 2022, 101, 154124. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Dan, D.; Xu, J.; Qiu, C.; He, K.; Zhang, C.-E.; Li, S.; Yang, X.; Xu, P.; Zhu, F. Arctigenin attenuated spatial memory impairment in pR5 mice by regulating mitochondrial energy metabolism. J. Pharm. Pharmacol. 2024, 76, 154–161. [Google Scholar] [CrossRef]
- Wei, L.; Xue, Z.; Lan, B.; Yuan, S.; Li, Y.; Guo, C.; Zhang, R.; Ding, R.; Shen, H. Arctigenin Exerts Neuroprotective Effect by Ameliorating Cortical Activities in Experimental Autoimmune Encephalomyelitis In Vivo. Front. Immunol. 2021, 12, 691590. [Google Scholar] [CrossRef]
- Arabi, A.; Karimi, S.A.; Salehi, I.; Haddadi, R.; Komaki, A. Effects of sesamin on Aβ1-42-induced oxidative stress and LTP impairment in a rat model of Alzheimer’s disease. Metab. Brain Dis. 2023, 38, 1503–1511. [Google Scholar] [CrossRef]
- Udomruk, S.; Wudtiwai, B.; Hla Shwe, T.; Phitak, T.; Pothacharoen, P.; Phimphilai, M.; Kongtawelert, P. Sesamin suppresses advanced glycation end products induced microglial reactivity using BV2 microglial cell line as a model. Brain Res. Bull. 2021, 172, 190–202. [Google Scholar] [CrossRef]
- Piao, Z.; Song, L.; Yao, L.; Zhang, L.; Lu, Y. Schisandrin Restores the Amyloid β-Induced Impairments on Mitochondrial Function, Energy Metabolism, Biogenesis, and Dynamics in Rat Primary Hippocampal Neurons. Pharmacology 2021, 106, 254–264. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q.; Guan, H.; Zhou, Y.; Liu, L. Schisandrin Inhibits NLRP1 Inflammasome-Mediated Neuronal Pyroptosis in Mouse Models of Alzheimer’s Disease. Neuropsychiatr. Dis. Treat. 2021, 17, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, Y.; Zhao, T.; Mou, T.; Jing, W.; Chen, J.; Hao, W.; Gu, S.; Cui, M.; Sun, Y.; et al. Schisandrin alleviates the cognitive impairment in rats with Alzheimer’s disease by altering the gut microbiota composition to modulate the levels of endogenous metabolites in the plasma, brain, and feces. Front. Pharmacol. 2022, 13, 888726. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Song, M.; Wu, Y.; Li, Z.; Zhang, S.; Fan, X. Schisandrin B ameliorates Alzheimer’s disease by suppressing neuronal ferroptosis and ensuing microglia M1 polarization. Phytomedicine 2025, 142, 156780. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, Y.; Guo, N.; Luo, G.; Wang, L.; Wang, J.; Gao, J.; Qin, W.; Yao, L.; Li, G. Schisandrin B loaded carrier with synergistic antioxidation alleviates Alzheimer’s disease in Caenorhabditis elegans by prolonging lifespan and inhibiting Aβ aggregation. J. Ind. Eng. Chem. 2025, in press. [CrossRef]
- Meng, X.; Zhao, W.; Yang, R.; Xu, S.; Wang, S.; Li, M.; Jiang, Y.; Hao, Z.; Guan, W.; Kuang, H.; et al. Lignans from Schisandra chinensis (Turcz.) Baill ameliorates cognitive impairment in Alzheimer’s disease and alleviates ferroptosis by activating the Nrf2/FPN1 signaling pathway and regulating iron levels. J. Ethnopharmacol. 2025, 341, 119335. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Li, M.-M.; Wu, J.-T.; Sun, Y.; Pan, J.; Guan, W.; Naseem, A.; Algradi, A.M.; Kuang, H.-X.; Jiang, Y.-K.; et al. Lignans of Schisandra chinensis (Turcz.) Baill inhibits Parkinson’s disease progression through mediated neuroinflammation-TRPV1 expression in microglia. Phytomedicine 2024, 135, 156146. [Google Scholar] [CrossRef]
- Kim, N.-Y.; Ko, M.S.; Lee, C.H.; Lee, T.J.; Hwang, K.-W.; Park, S.-Y. Inhibitory Effects of Forsythia velutina and its Chemical Constituents on LPS-induced Nitric Oxide Production in BV2 Microglial Cells. Nat. Prod. Sci. 2022, 28, 153–160. [Google Scholar] [CrossRef]
- Arjmandi, B.H.; Smith, B.J. Soy isoflavones’ osteoprotective role in postmenopausal women: Mechanism of action. J. Nutr. Biochem. 2002, 13, 130–137. [Google Scholar] [CrossRef]
- Sozen, T.; Ozisik, L.; Calik Basaran, N. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef]
- Gruber, C.J.; Tschugguel, W.; Schneeberger, C.; Huber, J.C. Production and Actions of Estrogens. N. Engl. J. Med. 2002, 346, 340–352. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Harrath, A.H. Phytoestrogens and their effects. Eur. J. Pharmacol. 2014, 741, 230–236. [Google Scholar] [CrossRef]
- Wanachewin, O.; Boonmaleerat, K.; Pothacharoen, P.; Reutrakul, V.; Kongtawelert, P. Sesamin stimulates osteoblast differentiation through p38 and ERK1/2 MAPK signaling pathways. BMC Complement. Altern. Med. 2012, 12, 71. [Google Scholar] [CrossRef]
- Sacco, S.M.; Jiang, J.M.Y.; Reza-López, S.; Ma, D.W.L.; Thompson, L.U.; Ward, W.E. Flaxseed combined with low-dose estrogen therapy preserves bone tissue in ovariectomized rats. Menopause 2009, 16, 545–554. [Google Scholar] [CrossRef]
- Yin, J.; Tezuka, Y.; Subehan; Shi, L.; Nobukawa, M.; Nobukawa, T.; Kadota, S. In vivo anti-osteoporotic activity of isotaxiresinol, a lignan from wood of Taxus yunnanensis. Phytomedicine 2006, 13, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Pan, Y.-L.; Hu, S.-J.; Kong, X.-H.; Juan, W.; Mei, Q.-B. Effects of total lignans from Eucommia ulmoides barks prevent bone loss in vivo and in vitro. J. Ethnopharmacol. 2014, 155, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-W.; Park, K.-I.; Yeon, J.-T.; Ryu, B.J.; Kim, K.-J.; Kim, S.H. Anti-osteoclastogenic activity of matairesinol via suppression of p38/ERK-NFATc1 signaling axis. BMC Complement. Altern. Med. 2014, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Feng, L.; Wang, H.; Li, Y.; Lo, J.H.T.; Zhang, X.; Lu, X.; Wang, Y.; Lin, S.; Tortorella, M.D.; et al. DANCR Mediates the Rescuing Effects of Sesamin on Postmenopausal Osteoporosis Treatment via Orchestrating Osteogenesis and Osteoclastogenesis. Nutrients 2021, 13, 4455. [Google Scholar] [CrossRef]
- Li, M.; Pan, Z.; He, Q.; Xiao, J.; Chen, B.; Wang, F.; Kang, P.; Luo, H.; Li, J.; Zeng, J.; et al. Arctiin attenuates iron overload-induced osteoporosis by regulating the PI3K/Akt pathway. Int. J. Mol. Med. 2023, 52, 108. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Y.; Hong, J.; Gao, J.; Xu, Z. Secoisolariciresinol diglucoside regulates estrogen receptor expression to ameliorate OVX-induced osteoporosis. J. Orthop. Surg. Res. 2023, 18, 792. [Google Scholar] [CrossRef]
- Thomas, E.; Panjagari, N.R.; Ganguly, S.; Deepika, S.; Kapila, S.; Singh, A.K. Development and Validation of Flaxseed Lignan-Enriched Set-Type Fermented Milk to Manage Postmenopausal Osteoporosis. Fermentation 2024, 10, 72. [Google Scholar] [CrossRef]
- Yang, X.; Wu, D.; Zhuang, C.; Ma, C. Anti-osteoporosis effects of mammalian lignans and their precursors from flaxseed and safflower seed using zebrafish model. J. Food Sci. 2023, 88, 5278–5290. [Google Scholar] [CrossRef]
- Tu, X.; Wu, S.; Li, M.; Chen, Z.; Liu, C.; Ruan, Y.; Zeng, J.; Shi, W.; Liu, J.; Zhang, F. Characterization of metabolic features and potential anti-osteoporosis mechanism of pinoresinol diglucoside using metabolite profiling and network pharmacology. Rapid Commun. Mass Spectrom. 2024, 38, e9872. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, C.; Liu, F.; Hu, H.; Dong, S.; Shen, Q.; Zeng, J.; Huang, L.; Liao, X.; Cao, Z.; et al. Pinoresinol diglucoside mitigates dexamethasone-induced osteoporosis and chondrodysplasia in zebrafish. Toxicol. Appl. Pharmacol. 2024, 484, 116884. [Google Scholar] [CrossRef]
- Jin, Z.; Li, H.; Bi, F.; Cao, H. The effects of Pinoresinol diglucoside on the differentiation and bone resorption of osteoclast RAW264.7. Food Sci. Technol. 2022, 42, e89221. [Google Scholar] [CrossRef]
- Li, H.; Liao, X.; Lan, M.; He, J.; Gao, J.; Fan, Z.; Huang, J.; Wu, X.; Chen, J.; Sun, G. Arctigenin Modulates Adipogenic-Osteogenic Balance in the Bone Marrow Microenvironment of Ovariectomized Rats via the MEK1/PPARγ/Wnt/β-Catenin Pathway. Chem. Biol. Drug Des. 2024, 104, e14625. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Feng, L.; Wang, M.; Li, Y.; Bai, S.; Lu, X.; Wang, H.; Zhang, X.; Wang, Y.; Lin, S.; et al. Sesamin Promotes Osteoporotic Fracture Healing by Activating Chondrogenesis and Angiogenesis Pathways. Nutrients 2022, 14, 2106. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.-H.; Mok, D.K.-W.; Yao, X.-S.; Wong, M.-S. Lignans from Sambucus williamsii Protect Bone Via Microbiome. Curr. Osteoporos. Rep. 2024, 22, 497–501. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Li, B.; Wang, C.; Li, G.; Cao, W.; Zeng, F.; Chen, Y. Greater Consumption of Total and Individual Lignans and Dietary Fibers Were Significantly Associated with Lowered Risk of Hip Fracture—A 1:1 Matched Case–Control Study among Chinese Elderly Men and Women. Nutrients 2022, 14, 1100. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Johnstone, B.M.; Cook-Newell, M.E. Meta-Analysis of the Effects of Soy Protein Intake on Serum Lipids. N. Engl. J. Med. 1995, 333, 276–282. [Google Scholar] [CrossRef]
- van der Schouw, Y.T.; de Kleijn, M.J.; Peeters, P.H.; Grobbee, D.E. Phyto-oestrogens and cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2000, 10, 154–167. [Google Scholar]
- Prasad, K. Hypocholesterolemic and antiatherosclerotic effect of flax lignan complex isolated from flaxseed. Atherosclerosis 2005, 179, 269–275. [Google Scholar] [CrossRef]
- Fan, D.; Yang, Z.; Yuan, Y.; Wu, Q.-Q.; Xu, M.; Jin, Y.-G.; Tang, Q.-Z. Sesamin prevents apoptosis and inflammation after experimental myocardial infarction by JNK and NF-κB pathways. Food Funct. 2017, 8, 2875–2885. [Google Scholar] [CrossRef]
- Zhao, X.; Xiang, Y.; Cai, C.; Zhou, A.; Zhu, N.; Zeng, C. Schisandrin B protects against myocardial ischemia/reperfusion injury via the PI3K/Akt pathway in rats. Mol. Med. Rep. 2017, 17, 556–561. [Google Scholar] [CrossRef]
- Yang, J.; Yin, H.; Cao, Y.; Jiang, Z.; Li, Y.; Song, M.; Wang, Y.; Wang, Z.; Yang, R.; Jiang, Y.; et al. Arctigenin Attenuates Ischemia/Reperfusion Induced Ventricular Arrhythmias by Decreasing Oxidative Stress in Rats. Cell. Physiol. Biochem. 2018, 49, 728–742. [Google Scholar] [CrossRef]
- Parikh, M.; Raj, P.; Austria, J.A.; Yu, L.; Garg, B.; Netticadan, T.; Pierce, G.N. Dietary flaxseed protects against ventricular arrhythmias and left ventricular dilation after a myocardial infarction. J. Nutr. Biochem. 2019, 71, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, A.H.; Negm, A.M.; Mahmoud, E.S.; Salama, R.M.; Schaalan, M.F.; El-Sheikh, A.A.K.; Ramadan, B.K. The cardioprotective effects of secoisolariciresinol diglucoside (flaxseed lignan) against cafeteria diet-induced cardiac fibrosis and vascular injury in rats: An insight into apelin/AMPK/FOXO3a signaling pathways. Front. Pharmacol. 2023, 14, 1199294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cheng, M.; Wang, Z.; Liu, Y.; Ren, Y.; Rong, S.; Wang, X. Secoisolariciresinol Diglucoside Exerts Anti-Inflammatory and Antiapoptotic Effects through Inhibiting the Akt/IκB/NF-κB Pathway on Human Umbilical Vein Endothelial Cells. Mediat. Inflamm. 2020, 2020, 3621261. [Google Scholar] [CrossRef]
- Penumathsa, S.V.; Koneru, S.; Zhan, L.; John, S.; Menon, V.P.; Prasad, K.; Maulik, N. Secoisolariciresinol diglucoside induces neovascularization-mediated cardioprotection against ischemia–reperfusion injury in hypercholesterolemic myocardium. J. Mol. Cell. Cardiol. 2008, 44, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Penumathsa, S.V.; Koneru, S.; Thirunavukkarasu, M.; Zhan, L.; Prasad, K.; Maulik, N. Secoisolariciresinol Diglucoside: Relevance to Angiogenesis and Cardioprotection against Ischemia-Reperfusion Injury. J. Pharmacol. Exp. Ther. 2007, 320, 951–959. [Google Scholar] [CrossRef]
- Jalal, I.A.; Elkhoely, A.; Mohamed, S.K.; Ahmed, A.A.E. Linagliptin and secoisolariciresinol diglucoside attenuate hyperlipidemia and cardiac hypertrophy induced by a high-methionine diet in rats via suppression of hyperhomocysteinemia-induced endoplasmic reticulum stress. Front. Pharmacol. 2023, 14, 1275730. [Google Scholar] [CrossRef]
- Huang, G.; Huang, X.; Liu, M.; Hua, Y.; Deng, B.; Jin, W.; Yan, W.; Tan, Z.; Wu, Y.; Liu, B.; et al. Secoisolariciresinol diglucoside prevents the oxidative stress-induced apoptosis of myocardial cells through activation of the JAK2/STAT3 signaling pathway. Int. J. Mol. Med. 2018, 41, 3570–3576. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Mo, X.; Xie, S.; Liu, S.; Zhao, N.; Zhang, H.; Chen, S.; Zeng, X.; Wang, S.; et al. Matairesinol blunts adverse cardiac remodeling and heart failure induced by pressure overload by regulating Prdx1 and PI3K/AKT/FOXO1 signaling. Phytomedicine 2024, 135, 156054. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, R.; Zhang, J.; Liang, T.; Guo, J.; Sun, T.; Fu, X.; Wang, L.; Zhang, L. Pinoresinol diglucoside (PDG) attenuates cardiac hypertrophy via AKT/mTOR/NF-κB signaling in pressure overload-induced rats. J. Ethnopharmacol. 2021, 272, 113920. [Google Scholar] [CrossRef]
- Wei, Y.; Xiao, L.; Yingying, L.; Haichen, W. Pinoresinol diglucoside ameliorates H/R-induced injury of cardiomyocytes by regulating miR-142-3p and HIF1AN. J. Biochem. Mol. Toxicol. 2022, 36, e23175. [Google Scholar] [CrossRef]
- Xie, Y.; Sui, W.; Qin, S.; Yao, Q.; Fan, D.; Li, T.; Wang, F.; Fu, X.; Zhang, L. Pinoresinol diglucoside alleviates pressure overload-induced cardiac injury via the AMPK/SIRT3/RIG-1 pathway. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, X.; Liang, L.; Liu, H.; Li, L.; Shan, Q. Intramyocardial delivery of injectable hydrogel with arctigenin alleviated myocardial ischemia–reperfusion injury in rats. Biotechnol. Appl. Biochem. 2024, 71, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.-H.; Sun, S.-N.; Zhou, Z.; Li, Y.; Huang, Y.-S.; Li, H.; Wang, J.-J.; Xiao, W.; Xian, S.-X.; Yang, Z.-Q.; et al. Arctigenin alleviates myocardial infarction injury through inhibition of the NFAT5-related inflammatory phenotype of cardiac macrophages/monocytes in mice. Lab. Investig. 2020, 100, 527–541. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Yang, M.; Chen, H.; Zhao, Y.; Yang, S.; Sun, C. Arctigenin reduces blood pressure by modulation of nitric oxide synthase and NADPH oxidase expression in spontaneously hypertensive rats. Biochem. Biophys. Res. Commun. 2015, 468, 837–842. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Huang, X.; Ma, S.; Xing, Y.; Geng, X.; He, X. Sauchinone inhibits angiotensin II-induced proliferation and migration of vascular smooth muscle cells. Clin. Exp. Pharmacol. Physiol. 2020, 47, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Jeong, C.W.; Bae, H.B.; Kwak, S.H.; Son, J.-K.; Seo, C.-S.; Lee, H.-J.; Lee, J.; Yoo, K.Y. Protective Effect of Sauchinone Against Regional Myocardial Ischemia/Reperfusion Injury: Inhibition of p38 MAPK and JNK Death Signaling Pathways. J. Korean Med. Sci. 2012, 27, 572. [Google Scholar] [CrossRef]
- Zhao, M.; Tu, P.; Ren, Y.; Tao, S.; Zheng, S. Sesamin Preconditioning Attenuates Myocardial Ischemia Reperfusion Injury in Rats Through Activation of Akt/eNOS Signaling Pathway. Zhong Yao Cai J. Chin. Med. Mater. 2016, 39, 1633–1637. [Google Scholar]
- Wei, P.; Liu, Y.; Cheng, M. Mechanism of sesamin on myocardial apoptosis in rats with coronary heart disease. Northwest Pharm. J. 2023, 38, 59–64. [Google Scholar]
- Feng, L.; Sun, R.; Zhang, H.; Zhang, J.; Peng, Z.; Li, J.; Gao, Y.; Xu, Y.; Cui, J.; Liu, J.; et al. Exploring the protective mechanisms of syringaresinol against myocardial infarction by experimental validation and network pharmacology. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2025, 1871, 167728. [Google Scholar] [CrossRef]
- Gao, L.; Li, T.; Li, S.; Song, Z.; Chang, Y.; Yuan, L. Schisandrin A protects against isoproterenol-induced chronic heart failure via miR-155. Mol. Med. Rep. 2021, 25, 24. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Ning, Z. In vivo and in vitro investigations of schisandrin B against angiotensin II induced ferroptosis and atrial fibrosis by regulation of the SIRT1 pathway. Sci. Rep. 2025, 15, 6200. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Pang, S.; Yang, N.; Meng, H.; Liu, J.; Zhou, N.; Zhang, M.; Xu, Z.; Gao, W.; Chen, B.; et al. Beneficial Effects of Schisandrin B on the Cardiac Function in Mice Model of Myocardial Infarction. PLoS ONE 2013, 8, e79418. [Google Scholar] [CrossRef]
- Fan, X.; Elkin, K.; Shi, Y.; Zhang, Z.; Cheng, Y.; Gu, J.; Liang, J.; Wang, C.; Ji, X. Schisandrin B improves cerebral ischemia and reduces reperfusion injury in rats through TLR4/NF-κB signaling pathway inhibition. Neurol. Res. 2020, 42, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sun, Z.; Meng, F. Schisandrin B Ameliorates Myocardial Ischemia/Reperfusion Injury Through Attenuation of Endoplasmic Reticulum Stress-Induced Apoptosis. Inflammation 2017, 40, 1903–1911. [Google Scholar] [CrossRef]
- Ai, F.; Guo, Q.; Yu, B.; Li, W.; Guo, X.; Chen, Z. Schisandrin B attenuates pressure overload-induced cardiac remodeling in mice by inhibiting the MAPK signaling pathway. Exp. Ther. Med. 2019, 18, 4645–4652. [Google Scholar] [CrossRef]
- Han, J.; Shi, X.; Zheng, Z.; Zhang, B.; Shi, F.; Jiang, L.; Xu, J. Schisandrin B protects against angiotensin II-induced endotheliocyte deficits by targeting Keap1 and activating Nrf2 pathway. Drug Des. Devel. Ther. 2018, 12, 3985–3997. [Google Scholar] [CrossRef]
- You, S.; Qian, J.; Wu, G.; Qian, Y.; Wang, Z.; Chen, T.; Wang, J.; Huang, W.; Liang, G. Schizandrin B attenuates angiotensin II induced endothelial to mesenchymal transition in vascular endothelium by suppressing NF-κB activation. Phytomedicine 2019, 62, 152955. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, M.; Xing, Z.; Su, J.; Gu, Y.; Ning, Z. Schisandrin B regulates the SIRT1/PI3K/Akt signaling pathway to ameliorate Ang II-infused cardiac fibrosis. Iran. J. Basic Med. Sci. 2025, 28, 946–954. [Google Scholar] [CrossRef]
- Xu, S.; Hu, C.; Han, J.; Luo, W.; Huang, L.; Jiang, Y.; Samorodov, A.V.; Wang, Y.; Huang, J. Schisandrin B alleviates angiotensin II-induced cardiac inflammatory remodeling by inhibiting the recruitment of MyD88 to TLRs in mouse cardiomyocytes. Int. Immunopharmacol. 2024, 139, 112660. [Google Scholar] [CrossRef]
- Duan, H.; Li, H.; Liu, T.; Chen, Y.; Luo, M.; Shi, Y.; Zhou, J.; Rashed, M.M.A.; Zhai, K.; Li, L.; et al. Exploring the Molecular Mechanism of Schisandrin C for the Treatment of Atherosclerosis via the PI3K/AKT/mTOR Autophagy Pathway. ACS Omega 2024, 9, 32920–32930. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Yu, J.; Liu, Y.; Song, H.; Zhang, X.; Zhou, L.; Wang, S.; Niu, X.; Li, W. Schisandrin inhibits VSMCs proliferation and migration by arresting cell cycle and targeting JAK2 to regulating the JAK2/STAT3 pathway. Tissue Cell 2024, 89, 102440. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, X.-C.; Wang, L.; Cui, D.-A.; Zhang, J.-Y.; Wang, X.-R.; Feng, H.-P.; Zhang, K.; Zhang, K.; Li, J.-X.; et al. Schisandrin Protects against Norepinephrine-Induced Myocardial Hypertrophic Injury by Inhibiting the JAK2/STAT3 Signaling Pathway. Evid. Based Complement. Alternat. Med. 2021, 2021, 8129512. [Google Scholar] [CrossRef]
- Liu, J.; Tang, M.; Li, T.; Su, Z.; Zhu, Z.; Dou, C.; Liu, Y.; Pei, H.; Yang, J.; Ye, H.; et al. Honokiol Ameliorates Post-Myocardial Infarction Heart Failure Through Ucp3-Mediated Reactive Oxygen Species Inhibition. Front. Pharmacol. 2022, 13, 811682. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, H.; Song, X.; Ling, Y.; He, S.; Yan, Y.; Yan, J.; Wang, S.; Wang, X.; Chen, A. Honokiol post-treatment ameliorates myocardial ischemia/reperfusion injury by enhancing autophagic flux and reducing intracellular ROS production. Chem. Biol. Interact. 2019, 307, 82–90. [Google Scholar] [CrossRef]
- Chi, Z.; Le, T.P.H.; Lee, S.K.; Guo, E.; Kim, D.; Lee, S.; Seo, S.; Lee, S.Y.; Kim, J.H.; Lee, S.Y. Honokiol ameliorates angiotensin II-induced hypertension and endothelial dysfunction by inhibiting HDAC6-mediated cystathionine γ-lyase degradation. J. Cell. Mol. Med. 2020, 24, 10663–10676. [Google Scholar] [CrossRef] [PubMed]
- Elbarbry, F.; Moshirian, N. The Modulation of Arachidonic Acid Metabolism and Blood Pressure-Lowering Effect of Honokiol in Spontaneously Hypertensive Rats. Molecules 2022, 27, 3396. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Kong, Q.; Li, Z.; Zhang, Y.; Chen, B.; Lv, L.; Zhang, Y. Honokiol Provides Cardioprotection from Myocardial Ischemia/Reperfusion Injury (MI/RI) by Inhibiting Mitochondrial Apoptosis via the PI3K/AKT Signaling Pathway. Cardiovasc. Ther. 2022, 2022, 1001692. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, H.; Chu, Y.; Zhang, Y.; Xu, C.; Xie, H.; Ruan, Q.; Lin, J.; Huang, C.; Chai, D. Honokiol ameliorates angiotensin II-induced cardiac hypertrophy by promoting dissociation of the Nur77–LKB1 complex and activating the AMPK pathway. J. Cell. Mol. Med. 2024, 28, e18028. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, P.; Wu, A.-H. Honokiol inhibits carotid artery atherosclerotic plaque formation by suppressing inflammation and oxidative stress. Aging 2020, 12, 8016–8028. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Z.; Hu, C.; Li, Z.; Hu, J. Honokiol suppresses TNF-α-induced migration and matrix metalloproteinase expression by blocking NF-κB activation via the ERK signaling pathway in rat aortic smooth muscle cells. Acta Histochem. 2014, 116, 588–595. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Liu, Y.; Tian, H.; Flickinger, B.; Empie, M.W.; Sun, S.Z. Dietary flaxseed lignan extract lowers plasma cholesterol and glucose concentrations in hypercholesterolaemic subjects. Br. J. Nutr. 2008, 99, 1301–1309. [Google Scholar] [CrossRef]
- Fukumitsu, S.; Aida, K.; Shimizu, H.; Toyoda, K. Flaxseed lignan lowers blood cholesterol and decreases liver disease risk factors in moderately hypercholesterolemic men. Nutr. Res. 2010, 30, 441–446. [Google Scholar] [CrossRef]
- Lucas, E.A.; Wild, R.D.; Hammond, L.J.; Khalil, D.A.; Juma, S.; Daggy, B.P.; Stoecker, B.J.; Arjmandi, B.H. Flaxseed Improves Lipid Profile without Altering Biomarkers of Bone Metabolism in Postmenopausal Women. J. Clin. Endocrinol. Metab. 2002, 87, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Vanharanta, M.; Voutilainen, S.; Rissanen, T.H.; Adlercreutz, H.; Salonen, J.T. Risk of Cardiovascular Disease–Related and All-Cause Death According to Serum Concentrations of Enterolactone: Kuopio Ischaemic Heart Disease Risk Factor Study. Arch. Intern. Med. 2003, 163, 1099. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.; Jones, J.; Mansell, K.; Whiting, S.; Fowler, S.; Thorpe, L.; Billinsky, J.; Viveky, N.; Cheng, P.C.; Almousa, A.; et al. Influence of Flaxseed Lignan Supplementation to Older Adults on Biochemical and Functional Outcome Measures of Inflammation. J. Am. Coll. Nutr. 2017, 36, 646–653. [Google Scholar] [CrossRef]
- Godos, J.; Bergante, S.; Satriano, A.; Pluchinotta, F.; Marranzano, M. Dietary Phytoestrogen Intake is Inversely Associated with Hypertension in a Cohort of Adults Living in the Mediterranean Area. Molecules 2018, 23, 368. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, L.; Wang, Y.; Zhang, F.; Guo, J.; Sun, L.; Jiang, Y.; Xue, J.; Duan, J.; Liu, C. Podophyllotoxin via SIRT1/PPAR/NF-κB axis induced cardiac injury in rats based on the toxicological evidence chain (TEC) concept. Phytomedicine 2024, 130, 155655. [Google Scholar] [CrossRef]
- Liu, C.; Kong, J.; Lai, Y.; Zhang, Y.; Li, Y.; Du, J.; Sun, L.; Tian, Y. Investigating podophyllotoxin-induced cardiotoxicity in rats by Toxicological Evidence Chain (TEC): Focus on the Akt1/Srebp-1c/PUFAs axis. Chem. Biol. Interact. 2025, 419, 111634. [Google Scholar] [CrossRef]
- Ma, K.; Sun, L.; Jia, C.; Kui, H.; Xie, J.; Zang, S.; Huang, S.; Que, J.; Liu, C.; Huang, J. Potential mechanisms underlying podophyllotoxin-induced cardiotoxicity in male rats: Toxicological evidence chain (TEC) concept. Front. Pharmacol. 2024, 15, 1378758. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Samson, S.L.; Garber, A.J. Metabolic Syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 1–23. [Google Scholar] [CrossRef]
- Tian, R.; Yang, J.; Wang, X.; Liu, S.; Dong, R.; Wang, Z.; Yang, Z.; Zhang, Y.; Cai, Z.; Yang, H.; et al. Honokiol acts as an AMPK complex agonist therapeutic in non-alcoholic fatty liver disease and metabolic syndrome. Chin. Med. 2023, 18, 30. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef]
- Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of Diabetes and Diabetes-Related Complications. Phys. Ther. 2008, 88, 1254–1264. [Google Scholar] [CrossRef]
- Prasad, K. Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat. J. Lab. Clin. Med. 2001, 138, 32–39. [Google Scholar] [CrossRef]
- Prasad, K.; Dhar, A. Flaxseed and Diabetes. Curr. Pharm. Des. 2015, 22, 141–144. [Google Scholar] [CrossRef]
- Pan, A.; Sun, J.; Chen, Y.; Ye, X.; Li, H.; Yu, Z.; Wang, Y.; Gu, W.; Zhang, X.; Chen, X.; et al. Effects of a Flaxseed-Derived Lignan Supplement in Type 2 Diabetic Patients: A Randomized, Double-Blind, Cross-Over Trial. PLoS ONE 2007, 2, e1148. [Google Scholar] [CrossRef]
- Pan, A.; Demark-Wahnefried, W.; Ye, X.; Yu, Z.; Li, H.; Qi, Q.; Sun, J.; Chen, Y.; Chen, X.; Liu, Y.; et al. Effects of a flaxseed-derived lignan supplement on C-reactive protein, IL-6 and retinol-binding protein 4 in type 2 diabetic patients. Br. J. Nutr. 2008, 101, 1145–1149. [Google Scholar] [CrossRef]
- Cornish, S.M.; Chilibeck, P.D.; Paus-Jennsen, L.; Biem, H.J.; Khozani, T.; Senanayake, V.; Vatanparast, H.; Little, J.P.; Whiting, S.J.; Pahwa, P. A randomized controlled trial of the effects of flaxseed lignan complex on metabolic syndrome composite score and bone mineral in older adults. Appl. Physiol. Nutr. Metab. 2009, 34, 89–98. [Google Scholar] [CrossRef]
- Huang, S.-M.; Chuang, C.-H.; Rejano, C.J.F.; Tayo, L.L.; Hsieh, C.-Y.; Huang, S.K.-H.; Tsai, P.-W. Sesamin: A Promising Therapeutic Agent for Ameliorating Symptoms of Diabetes. Molecules 2023, 28, 7255. [Google Scholar] [CrossRef] [PubMed]
- Parsa, E.; Javadi, B.; Sahebkar, A. The protective effects of sesamin against metabolic syndrome: A mechanistic review. Phytomed. Plus 2024, 4, 100625. [Google Scholar] [CrossRef]
- Zuo, J.; Ren, J.; Yin, B.; Wang, Z.; Cui, Q.; Liu, J.; Huang, D.; Pei, H.; Wen, R.; Zhang, Y.; et al. Effects of Sesamin in Animal Models of Obesity-Associated Diseases: A Systematic Review and Meta-Analysis. Nutr. Rev. 2025, 83, e838–e851. [Google Scholar] [CrossRef]
- Hadipour, E.; Emami, S.A.; Tayarani-Najaran, N.; Tayarani-Najaran, Z. Effects of sesame (Sesamum indicum L.) and bioactive compounds (sesamin and sesamolin) on inflammation and atherosclerosis: A review. Food Sci. Nutr. 2023, 11, 3729–3757. [Google Scholar] [CrossRef]
- Prasad, K. Suppression of phosphoenolpyruvate carboxykinase gene expression by secoisolariciresinol diglucoside (SDG), a new antidiabetic agent. Int. J. Angiol. 2011, 11, 107–109. [Google Scholar] [CrossRef]
- Moree, S.S.; Kavishankar, G.B.; Rajesha, J. Antidiabetic effect of secoisolariciresinol diglucoside in streptozotocin-induced diabetic rats. Phytomedicine 2013, 20, 237–245. [Google Scholar] [CrossRef]
- Yang, L.; Wang, C. Lignan matairesinol illustrates anti-diabetic effect via inhibition of DPP-4 and hepato-protective effect via inhibition of apoptosis in diabetic rats. Acta Pol. Pharm.—Drug Res. 2022, 79, 393–400. [Google Scholar] [CrossRef]
- Alam, M.B.; Ra, J.; Lim, J.; Song, B.; Javed, A.; Lee, S. Lariciresinol Displays Anti-Diabetic Activity through Inhibition of α-Glucosidase and Activation and Enhancement of Insulin Signaling. Mol. Nutr. Food Res. 2022, 66, 2100751. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, L.; Xiang, R.; Bu, X.; Qin, G.; Dai, J.; Zhao, Z.; Fang, X.; Yang, S.; Han, J.; et al. Arctigenin mitigates insulin resistance by modulating the IRS2/GLUT4 pathway via TLR4 in type 2 diabetes mellitus mice. Int. Immunopharmacol. 2023, 114, 109529. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Yan, J.; He, J.C.; Li, Y.; Zhong, Y. Additive renal protective effects between arctigenin and puerarin in diabetic kidney disease. Biomed. Pharmacother. 2024, 171, 116107. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yang, L.; Feng, L.; Yang, J.; Li, Y.; An, J.; Li, D.; Xu, Y.; Gao, Y.; Li, J.; et al. Syringaresinol Protects against Type 1 Diabetic Cardiomyopathy by Alleviating Inflammation Responses, Cardiac Fibrosis, and Oxidative Stress. Mol. Nutr. Food Res. 2020, 64, 2000231. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Wang, X. Syringaresinol-di-O-β-D-glucoside, a phenolic compound from Polygonatum sibiricum, exhibits an antidiabetic and antioxidative effect on a streptozotocin-induced mouse model of diabetes. Mol. Med. Rep. 2018, 18, 5511–5519. [Google Scholar] [CrossRef]
- Shang, J.; Yan, W.; Cui, X.; Ma, W.; Wang, Z.; Liu, N.; Yi, X.; Guo, T.; Wei, X.; Sun, Y.; et al. Schisandrin B, a potential GLP-1R agonist, exerts anti-diabetic effects by stimulating insulin secretion. Mol. Cell. Endocrinol. 2023, 577, 112029. [Google Scholar] [CrossRef]
- Luo, W.; Lin, K.; Hua, J.; Han, J.; Zhang, Q.; Chen, L.; Khan, Z.A.; Wu, G.; Wang, Y.; Liang, G. Schisandrin B Attenuates Diabetic Cardiomyopathy by Targeting MyD88 and Inhibiting MyD88-Dependent Inflammation. Adv. Sci. 2022, 9, 2202590. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, M.; Zhang, W.; Liu, W.; Li, H.; Ren, S.; Jiang, S.; Song, M.; Wang, Z.; Li, W. Schisandrin ameliorates diabetic nephropathy via regulating of PI3K/Akt/NF-κB-mediated inflammation and TGF-β1-induced fibrosis in HFD/STZ-induced C57BL/6J mice. J. Funct. Foods 2023, 100, 105376. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, R.; Liang, J.; Chen, Y. Antidiabetic and Anti-oxidative Effects of Honokiol on Diabetic Rats Induced by High-fat Diet and Streptozotocin. Chin. Herb. Med. 2014, 6, 42–46. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Jung, U.J. Honokiol Improves Insulin Resistance, Hepatic Steatosis, and Inflammation in Type 2 Diabetic db/db Mice. Int. J. Mol. Sci. 2019, 20, 2303. [Google Scholar] [CrossRef]
- He, A.; Yu, H.; Hu, Y.; Chen, H.; Li, X.; Shen, J.; Zhuang, R.; Chen, Y.; Sasmita, B.R.; Luo, M.; et al. Honokiol improves endothelial function in type 2 diabetic rats via alleviating oxidative stress and insulin resistance. Biochem. Biophys. Res. Commun. 2022, 600, 109–116. [Google Scholar] [CrossRef]
- Hu, X.; Sun, J.; Fu, X.; Liu, Y.; Wang, Y.; Huo, B.; Guo, Y.; Gao, X.; Li, W. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des. Devel. Ther. 2015, 2015, 96327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhai, M.; Li, B.; Liu, Z.; Li, K.; Jiang, L.; Zhang, M.; Yi, W.; Yang, J.; Yi, D.; et al. Honokiol Ameliorates Myocardial Ischemia/Reperfusion Injury in Type 1 Diabetic Rats by Reducing Oxidative Stress and Apoptosis through Activating the SIRT1-Nrf2 Signaling Pathway. Oxid. Med. Cell. Longev. 2018, 2018, 3159801. [Google Scholar] [CrossRef]
- Petrelli, N.J.; Winer, E.P.; Brahmer, J.; Dubey, S.; Smith, S.; Thomas, C.; Vahdat, L.T.; Obel, J.; Vogelzang, N.; Markman, M.; et al. Clinical Cancer Advances 2009: Major Research Advances in Cancer Treatment, Prevention, and Screening—A Report From the American Society of Clinical Oncology. J. Clin. Oncol. 2009, 27, 6052–6069. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, E.; Canberk, S.; Schmitt, F.; Vale, N. Molecular Subtypes and Mechanisms of Breast Cancer: Precision Medicine Approaches for Targeted Therapies. Cancers 2025, 17, 1102. [Google Scholar] [CrossRef]
- Jang, W.Y.; Kim, M.-Y.; Cho, J.Y. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int. J. Mol. Sci. 2022, 23, 15482. [Google Scholar] [CrossRef]
- Mense, S.M.; Hei, T.K.; Ganju, R.K.; Bhat, H.K. Phytoestrogens and Breast Cancer Prevention: Possible Mechanisms of Action. Environ. Health Perspect. 2008, 116, 426–433. [Google Scholar] [CrossRef]
- Micek, A.; Godos, J.; Brzostek, T.; Gniadek, A.; Favari, C.; Mena, P.; Libra, M.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary phytoestrogens and biomarkers of their intake in relation to cancer survival and recurrence: A comprehensive systematic review with meta-analysis. Nutr. Rev. 2021, 79, 42–65. [Google Scholar] [CrossRef]
- McCann, S.E.; Thompson, L.U.; Nie, J.; Dorn, J.; Trevisan, M.; Shields, P.G.; Ambrosone, C.B.; Edge, S.B.; Li, H.-F.; Kasprzak, C.; et al. Dietary lignan intakes in relation to survival among women with breast cancer: The Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Res. Treat. 2010, 122, 229–235. [Google Scholar] [CrossRef]
- Linseisen, J.; Piller, R.; Hermann, S.; Chang-Claude, J. Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case-control study. Int. J. Cancer 2004, 110, 284–290. [Google Scholar] [CrossRef]
- Cotterchio, M.; Boucher, B.A.; Kreiger, N.; Mills, C.A.; Thompson, L.U. Dietary phytoestrogen intake—Lignans and isoflavones—And breast cancer risk (Canada). Cancer Causes Control 2008, 19, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Tou, J.C.L.; Thompson, L.U. Exposure to flaxseed or its lignan component during different developmental stages influences rat mammary gland structures. Carcinogenesis 1999, 20, 1831–1835. [Google Scholar] [CrossRef]
- Chen, J.; Tan, K.P.; Ward, W.E.; Thompson, L.U. Exposure to Flaxseed or Its Purified Lignan during Suckling Inhibits Chemically Induced Rat Mammary Tumorigenesis. Exp. Biol. Med. 2003, 228, 951–958. [Google Scholar] [CrossRef]
- Tan, K.P.; Chen, J.; Ward, W.E.; Thompson, L.U. Mammary Gland Morphogenesis is Enhanced by Exposure to Flaxseed or Its Major Lignan During Suckling in Rats. Exp. Biol. Med. 2004, 229, 147–157. [Google Scholar] [CrossRef]
- Rickard, S.E.; Yuan, Y.V.; Chen, J.; Thompson, L.U. Dose Effects of Flaxseed and Its Lignan on N-Methyl-N-Nitrosourea-Induced Mammary Tumorigenesis in Rats. Nutr. Cancer 1999, 35, 50–57. [Google Scholar] [CrossRef]
- Tanawattanasuntorn, T.; Rattanaburee, T.; Thongpanchang, T.; Graidist, P. Trans-(±)-Kusunokinin Binding to AKR1B1 Inhibits Oxidative Stress and Proteins Involved in Migration in Aggressive Breast Cancer. Antioxidants 2022, 11, 2347. [Google Scholar] [CrossRef]
- Tedasen, A.; Dokduang, S.; Sukpondma, Y.; Lailerd, N.; Madla, S.; Sriwiriyajan, S.; Rattanaburee, T.; Tipmanee, V.; Graidist, P. (−)-Kusunokinin inhibits breast cancer in N-nitrosomethylurea-induced mammary tumor rats. Eur. J. Pharmacol. 2020, 882, 173311. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Patil, P.; Raina, P.; Kaul-Ghanekar, R. Matairesinol repolarizes M2 macrophages to M1 phenotype to induce apoptosis in triple-negative breast cancer cells. Immunopharmacol. Immunotoxicol. 2025, 47, 8–22. [Google Scholar] [CrossRef]
- Saggar, J.K.; Chen, J.; Corey, P.; Thompson, L.U. The Effect of Secoisolariciresinol Diglucoside and Flaxseed Oil, Alone and in Combination, on MCF-7 Tumor Growth and Signaling Pathways. Nutr. Cancer 2010, 62, 533–542. [Google Scholar] [CrossRef]
- Chen, J.; Saggar, J.K.; Corey, P.; Thompson, L.U. Flaxseed and Pure Secoisolariciresinol Diglucoside, but Not Flaxseed Hull, Reduce Human Breast Tumor Growth (MCF-7) in Athymic Mice. J. Nutr. 2009, 139, 2061–2066. [Google Scholar] [CrossRef] [PubMed]
- Bowers, L.W.; Lineberger, C.G.; Ford, N.A.; Rossi, E.L.; Punjala, A.; Camp, K.K.; Kimler, B.K.; Fabian, C.J.; Hursting, S.D. The flaxseed lignan secoisolariciresinol diglucoside decreases local inflammation, suppresses NFκB signaling, and inhibits mammary tumor growth. Breast Cancer Res. Treat. 2019, 173, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Scherbakov, A.M.; Stasevich, O.V.; Salnikova, D.I.; Andreeva, O.E.; Mikhaevich, E.I. Antiestrogenic and antiproliferative potency of secoisolariciresinol diglucoside derivatives on MCF-7 breast cancer cells. Nat. Prod. Res. 2021, 35, 6099–6105. [Google Scholar] [CrossRef]
- Soltani, M.; Fotovat, R.; Sharifi, M.; Ahmadian Chashmi, N.; Behmanesh, M. In Vitro Comparative Study on Antineoplastic Effects of Pinoresinol and Lariciresinol on Healthy Cells and Breast Cancer-Derived Human Cells. Iran. J. Med. Sci. 2024, 49, 30–39. [Google Scholar] [CrossRef] [PubMed]
- López-Biedma, A.; Sánchez-Quesada, C.; Beltrán, G.; Delgado-Rodríguez, M.; Gaforio, J.J. Phytoestrogen (+)-pinoresinol exerts antitumor activity in breast cancer cells with different oestrogen receptor statuses. BMC Complement. Altern. Med. 2016, 16, 350. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Li, J.; Liu, R.; Zhuang, J.; Feng, F.; Yao, Y.; Sun, C. Target Analysis and Mechanism of Podophyllotoxin in the Treatment of Triple-Negative Breast Cancer. Front. Pharmacol. 2020, 11, 1211. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Sung, N.J.; Shin, S.; Ryu, D.-S.; Youn, H.-S.; Park, S.-A. Sauchinone inhibits the proliferation, migration and invasion of breast cancer cells by suppressing Akt-CREB-MMP13 signaling pathway. Biosci. Rep. 2021, 41, BSR20211067. [Google Scholar] [CrossRef] [PubMed]
- Siao, A.-C.; Hou, C.-W.; Kao, Y.-H.; Jeng, K.-C. Effect of Sesamin on Apoptosis and Cell Cycle Arrest in Human Breast Cancer MCF-7 Cells. Asian Pac. J. Cancer Prev. 2015, 16, 3779–3783. [Google Scholar] [CrossRef]
- Kongtawelert, P.; Wudtiwai, B.; Shwe, T.H.; Pothacharoen, P.; Phitak, T. Inhibition of programmed death ligand 1 (PD-L1) expression in breast cancer cells by sesamin. Int. Immunopharmacol. 2020, 86, 106759. [Google Scholar] [CrossRef]
- Dai, X.; Yin, C.; Guo, G.; Zhang, Y.; Zhao, C.; Qian, J.; Wang, O.; Zhang, X.; Liang, G. Schisandrin B exhibits potent anticancer activity in triple negative breast cancer by inhibiting STAT3. Toxicol. Appl. Pharmacol. 2018, 358, 110–119. [Google Scholar] [CrossRef]
- Chang, C.-M.; Liang, T.-R.; Lam, H.Y.P. The Use of Schisandrin B to Combat Triple-Negative Breast Cancers by Inhibiting NLRP3-Induced Interleukin-1β Production. Biomolecules 2024, 14, 74. [Google Scholar] [CrossRef]
- Chen, L.; Ren, L.-Q.; Liu, Z.; Liu, X.; Tu, H.; Huang, X.-Y. Bio-informatics and in Vitro Experiments Reveal the Mechanism of Schisandrin A Against MDA-MB-231 cells. Bioengineered 2021, 12, 7678–7693. [Google Scholar] [CrossRef]
- Xu, X.; Rajamanicham, V.; Xu, S.; Liu, Z.; Yan, T.; Liang, G.; Guo, G.; Zhou, H.; Wang, Y. Schisandrin A inhibits triple negative breast cancer cells by regulating Wnt/ER stress signaling pathway. Biomed. Pharmacother. 2019, 115, 108922. [Google Scholar] [CrossRef]
- Lee, D.; Kim, Y.-M.; Chin, Y.-W.; Kang, K.S. Schisandrol A Exhibits Estrogenic Activity via Estrogen Receptor α-Dependent Signaling Pathway in Estrogen Receptor-Positive Breast Cancer Cells. Pharmaceutics 2021, 13, 1082. [Google Scholar] [CrossRef]
- Lou, C.; Zhu, Z.; Zhao, Y.; Zhu, R.; Zhao, H. Arctigenin, a lignan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/−9 and heparanase in MDA-MB-231 cells. Oncol. Rep. 2017, 37, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Cao, W.; Shen, W.; Zhang, L.; Gu, X.; Guo, Y.; Tsai, H.; Liu, X.; Li, J.; Zhang, J.; et al. Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget 2017, 8, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, T.; Chun, S.-Y.; Lee, K.-S.; Kim, S.; Nam, K.-S. The anti-metastatic effects of the phytoestrogen arctigenin on human breast cancer cell lines regardless of the status of ER expression. Int. J. Oncol. 2017, 50, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zang, C.; Emde, A.; Planas-Silva, M.D.; Rosche, M.; Kühnl, A.; Schulz, C.-O.; Elstner, E.; Possinger, K.; Eucker, J. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur. J. Pharmacol. 2008, 591, 43–51. [Google Scholar] [CrossRef]
- Han, X.; Cheng, Y.; Jiang, Z.; Alu, A.; Ma, X. Honokiol Exhibits Anti-Tumor Effects in Breast Cancer by Modulating the miR-148a-5p-CYP1B1 Axis. Am. J. Chin. Med. 2024, 52, 1843–1861. [Google Scholar] [CrossRef]
- Mikhaevich, E.I.; Sorokin, D.V.; Scherbakov, A.M. Honokiol inhibits the growth of hormone-resistant breast cancer cells: Its promising effect in combination with metformin. Res. Pharm. Sci. 2023, 18, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lin, C.; Liu, C. Efficacy of phytoestrogens for menopausal symptoms: A meta-analysis and systematic review. Climacteric 2015, 18, 260–269. [Google Scholar] [CrossRef]
- Takahashi, T.A.; Johnson, K.M. Menopause. Med. Clin. N. Am. 2015, 99, 521–534. [Google Scholar] [CrossRef]
- Sammartino, A.; Tommaselli, G.A.; Gargano, V.; Di Carlo, C.; Attianese, W.; Nappi, C. Short-term effects of a combination of isoflavones, lignans and Cimicifuga racemosa on climacteric-related symptoms in postmenopausal women: A double-blind, randomized, placebo-controlled trial. Gynecol. Endocrinol. 2006, 22, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Pokushalov, E.; Ponomarenko, A.; Garcia, C.; Kasimova, L.; Pak, I.; Shrainer, E.; Romanova, A.; Kudlay, D.; Johnson, M.; Miller, R. Assessing the combined effects of Black Cohosh, Soy Isoflavones, and SDG Lignans on menopausal symptoms: A randomized, double-blind, placebo-controlled clinical trial. Eur. J. Nutr. 2025, 64, 138. [Google Scholar] [CrossRef] [PubMed]
- Velentzis, L.S.; Cantwell, M.M.; Cardwell, C.; Keshtgar, M.R.; Leathem, A.J.; Woodside, J.V. Lignans and breast cancer risk in pre- and post-menopausal women: Meta-analyses of observational studies. Br. J. Cancer 2009, 100, 1492–1498. [Google Scholar] [CrossRef]
- Mosca, L.; Barrett-Connor, E.; Kass Wenger, N. Sex/Gender Differences in Cardiovascular Disease Prevention: What a Difference a Decade Makes. Circulation 2011, 124, 2145–2154. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Sampson, L.; Wang, M.; Manson, J.E.; Rimm, E.; Sun, Q. Lignan Intake and Risk of Coronary Heart Disease. J. Am. Coll. Cardiol. 2021, 78, 666–678. [Google Scholar] [CrossRef]
- Chambliss, K.L.; Yuhanna, I.S.; Mineo, C.; Liu, P.; German, Z.; Sherman, T.S.; Mendelsohn, M.E.; Anderson, R.G.W.; Shaul, P.W. Estrogen Receptor α and Endothelial Nitric Oxide Synthase Are Organized Into a Functional Signaling Module in Caveolae. Circ. Res. 2000, 87, e44–e52. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, S.; Naderi Nabi, F.; Sugiyama, M.G.; Lee, W.L. Estrogen Inhibits LDL (Low-Density Lipoprotein) Transcytosis by Human Coronary Artery Endothelial Cells via GPER (G-Protein–Coupled Estrogen Receptor) and SR-BI (Scavenger Receptor Class B Type 1). Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2283–2294. [Google Scholar] [CrossRef]
- Miklowitz, D.J.; Portnoff, L.C.; Armstrong, C.C.; Keenan-Miller, D.; Breen, E.C.; Muscatell, K.A.; Eisenberger, N.I.; Irwin, M.R. Inflammatory cytokines and nuclear factor-kappa B activation in adolescents with bipolar and major depressive disorders. Psychiatry Res. 2016, 241, 315–322. [Google Scholar] [CrossRef]
- Monaco, C. Nuclear factor κB: A potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc. Res. 2004, 61, 671–682. [Google Scholar] [CrossRef]
- Abu-Amer, Y. NF-κB signaling and bone resorption. Osteoporos. Int. 2013, 24, 2377–2386. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Ko, P.-Y.; Kwan, T.-H.; Liu, M.-Y.; Jou, I.-M.; Lin, C.-W.; Wu, P.-T. Daily supplement of sesame oil prevents postmenopausal osteoporosis via maintaining serum estrogen and aromatase levels in rats. Sci. Rep. 2024, 14, 321. [Google Scholar] [CrossRef]
- Tachibana, R.; Matsushita, H.; Minami, A.; Morita, N.; Shimizu, S.; Kanazawa, H.; Suzuki, T.; Watanabe, K.; Wakatsuki, A. Dietary sesame diminishes bone mass and bone formation indices in ovariectomized rats. Clin. Exp. Obstet. Gynecol. 2020, 47, 546. [Google Scholar] [CrossRef]
- Wang, C.; Lin, Y.; Lin, Y.; Chung, W. Modified Primers for the Identification of Nonpathogenic Fusarium oxysporum Isolates That Have Biological Control Potential against Fusarium Wilt of Cucumber in Taiwan. PLoS ONE 2013, 8, e65093. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Jia, M.; Fu, S.; Pan, J.; Chu, C.; Liu, X.; Liu, X.; Liu, Z. (+)-Sesamin attenuates chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits via suppression of neuroinflammation. J. Nutr. Biochem. 2019, 64, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, H.; Yan, P.; Guo, L.; Li, J.; Han, J.; Qiu, J.; Yang, K. Efficacy and safety of phytoestrogens in the treatment of perimenopausal and postmenopausal depressive disorders: A systematic review and meta-analysis. Int. J. Clin. Pract. 2021, 75, e14360. [Google Scholar] [CrossRef]
- Yan, T.; He, B.; Wan, S.; Xu, M.; Yang, H.; Xiao, F.; Bi, K.; Jia, Y. Antidepressant-like effects and cognitive enhancement of Schisandra chinensis in chronic unpredictable mild stress mice and its related mechanism. Sci. Rep. 2017, 7, 6903. [Google Scholar] [CrossRef] [PubMed]
- Kreydin, E.I.; Kim, M.M.; Barrisford, G.W.; Rodriguez, D.; Sanchez, A.; Santiago-Lastra, Y.; Ko, D.S.C. Urinary Lignans Are Associated With Decreased Incontinence in Postmenopausal Women. Urology 2015, 86, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Boncler, M.; Luzak, B.; Watała, C. Role of C-reactive protein in atherogenesis. Postep. Hig Med Dosw 2006, 60, 538–546. [Google Scholar]
- Hallund, J.; Tetens, I.; Bügel, S.; Tholstrup, T.; Bruun, J.M. The effect of a lignan complex isolated from flaxseed on inflammation markers in healthy postmenopausal women. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 497–502. [Google Scholar] [CrossRef]
- Lenártová, P.; Gažarová, M.; Kopčeková, J.; Mrázová, J. Effect of Crushed Flaxseed Consumption on Cardiovascular Risk Indicators in Menopausal Women. Life 2024, 14, 849. [Google Scholar] [CrossRef]
- Lee, H.; Ji, Y.R.; Ryoo, Z.Y.; Choi, M.-S.; Woo, E.-R.; Lee, D.G. Antibacterial Mechanism of (−)-Nortrachelogenin in Escherichia coli O157. Curr. Microbiol. 2016, 72, 48–54. [Google Scholar] [CrossRef]
- De Souza Pereira, J.J.; Pereira, A.D.P.C.; Jandú, J.J.B.; Da Paz, J.A.; Crovella, S.; Dos Santos Correia, M.T.; De Azevêdo Silva, J. Commiphora leptophloeos Phytochemical and Antimicrobial Characterization. Front. Microbiol. 2017, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Oikawa, D.; Yamashita, S.; Takahashi, S.; Waki, T.; Kikuchi, K.; Abe, T.; Katayama, T.; Nakayama, T. (+)-Sesamin, a sesame lignan, is a potent inhibitor of gut bacterial tryptophan indole-lyase that is a key enzyme in chronic kidney disease pathogenesis. Biochem. Biophys. Res. Commun. 2022, 590, 158–162. [Google Scholar] [CrossRef]
- Czemplik, M.; Żuk, M.; Kulma, A.; Kuc, S.; Szopa, J. GM flax as a source of effective antimicrobial compounds. Sci. Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 76, 39–47. [Google Scholar]
- Kyselka, J.; Rabiej, D.; Dragoun, M.; Kreps, F.; Burčová, Z.; Němečková, I.; Smolová, J.; Bjelková, M.; Szydłowska-Czerniak, A.; Schmidt, Š.; et al. Antioxidant and antimicrobial activity of linseed lignans and phenolic acids. Eur. Food Res. Technol. 2017, 243, 1633–1644. [Google Scholar] [CrossRef]
- Al-Ani, W.M.K.; Aziz, F.M. Antimicrobial Activity of HMR lignans. Iraqi J. Pharm. Sci. 2013, 22, 30–34. [Google Scholar] [CrossRef]
- Nie, H.; Guan, X.-L.; Li, J.; Zhang, Y.-J.; He, R.-J.; Huang, Y.; Liu, B.-M.; Zhou, D.-X.; Deng, S.-P.; Chen, H.-C.; et al. Antimicrobial lignans derived from the roots of Streblus asper. Phytochem. Lett. 2016, 18, 226–231. [Google Scholar] [CrossRef]
- Davidova, S.; Galabov, A.S.; Satchanska, G. Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols. Microorganisms 2024, 12, 2502. [Google Scholar] [CrossRef]
- García Hernández, L.C.; Higuera-Piedrahita, R.I.; Rivero-Perez, N.; Morales-Ubaldo, A.L.; Valladares-Carranza, B.; De La Cruz-Cruz, H.A.; Cuéllar-Ordaz, J.A.; González-Ruiz, C.; Nicolás-Vázquez, M.I.; Zaragoza-Bastida, A. Antibacterial Activity and Molecular Docking of Lignans Isolated from Artemisia cina Against Multidrug-Resistant Bacteria. Pharmaceuticals 2025, 18, 781. [Google Scholar] [CrossRef] [PubMed]
- Elbakush, A.M.; Fulano, A.M.; Gomelsky, M. Lignan-containing maple products inhibit Listeria monocytogenes biofilms on fresh produce. Front. Microbiol. 2023, 14, 1258394. [Google Scholar] [CrossRef] [PubMed]
- Thongphichai, W.; Tuchinda, P.; Pohmakotr, M.; Reutrakul, V.; Akkarawongsapat, R.; Napaswad, C.; Limthongkul, J.; Jenjittikul, T.; Saithong, S. Anti-HIV-1 activities of constituents from the rhizomes of Boesenbergia thorelii. Fitoterapia 2019, 139, 104388. [Google Scholar] [CrossRef]
- Qian, X.-J.; Jin, Y.-S.; Chen, H.-S.; Xu, Q.-Q.; Ren, H.; Zhu, S.-Y.; Tang, H.-L.; Wang, Y.; Zhao, P.; Qi, Z.-T.; et al. Trachelogenin, a novel inhibitor of hepatitis C virus entry through CD81. J. Gen. Virol. 2016, 97, 1134–1144. [Google Scholar] [CrossRef]
- Barbary, O.M.; El-Sohaimy, S.A.; El-Saadani, M.A.; Zeitoun, A. Antioxidant, Antimicrobial and Anti-HCV Activities of Lignan Extracted from Flaxseed. Res. J. Agric. Biol. Sci. 2010, 6, 247–256. [Google Scholar]
- Zhou, C.; Lu, M.; Cheng, J.; Rohani, E.R.; Hamezah, H.S.; Han, R.; Tong, X. Review on the Pharmacological Properties of Phillyrin. Molecules 2022, 27, 3670. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-Y.; Wang, D.-Y.; Li, Y.-P.; Deyrup, S.T.; Zhang, H.-J. Plant-derived lignans as potential antiviral agents: A systematic review. Phytochem. Rev. 2022, 21, 239–289. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Guo, N.; Zhang, J.; Ding, Y.; Tang, X.; Liang, J.; Li, L.; Deng, X.; Yu, L. The synergy of honokiol and fluconazole against clinical isolates of azole-resistant Candida albicans: Synergy of HNK and FLC on Candida. Lett. Appl. Microbiol. 2010, 51, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ye, X.; Ding, D.; Liao, K. Opposite effects of vitamin C and vitamin E on the antifungal activity of honokiol. J. Microbiol. Biotechnol. 2019, 29, 538–547. [Google Scholar] [CrossRef]
- Vargas-Arispuro, I.; Reyes-Báez, R.; Rivera-Castañeda, G.; Martínez-Téllez, M.A.; Rivero-Espejel, I. Antifungal lignans from the creosotebush (Larrea tridentata). Ind. Crops Prod. 2005, 22, 101–107. [Google Scholar] [CrossRef]
- Sun, L.; Liao, K.; Hang, C.; Wang, D. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS ONE 2017, 12, e0172228. [Google Scholar] [CrossRef]
- Behbehani, J.; Shreaz, S.; Irshad, M.; Karched, M. The natural compound magnolol affects growth, biofilm formation, and ultrastructure of oral Candida isolates. Microb. Pathog. 2017, 113, 209–217. [Google Scholar] [CrossRef]
- Xiao, S.-J.; Guo, D.-L.; Xia, B.; Allen, S.; Gu, Y.-C.; Chen, F.; Ding, L.-S.; Zhou, Y. Polycyclic Spiro Lignans and Biphenyl Tetrahydrofuranone Lignans from Gymnotheca involucrata. Planta Med. 2016, 82, 723–728. [Google Scholar] [CrossRef]
- Sriphana, U.; Thongsri, Y.; Ardwichai, P.; Poopasit, K.; Prariyachatigul, C.; Simasathiansophon, S.; Yenjai, C. New lignan esters from Alyxia schlechteri and antifungal activity against Pythium insidiosum. Fitoterapia 2013, 91, 39–43. [Google Scholar] [CrossRef]
- Zafar, S.; -Ur-Rehman, F.; Shah, Z.A.; Rauf, A.; Khan, A.; Humayun Khan, M.; Ur Rahman, K.; Khan, S.; Ullah, A.; Shaheen, F. Potent leishmanicidal and antibacterial metabolites from Olea ferruginea. J. Asian Nat. Prod. Res. 2019, 21, 679–687. [Google Scholar] [CrossRef]
- Guo, Y.; Hou, E.; Wen, T.; Yan, X.; Han, M.; Bai, L.-P.; Fu, X.; Liu, J.; Qin, S. Development of Membrane-Active Honokiol/Magnolol Amphiphiles as Potent Antibacterial Agents against Methicillin-Resistant Staphylococcus aureus (MRSA). J. Med. Chem. 2021, 64, 12903–12916. [Google Scholar] [CrossRef]
- Ekalu, A.; Ayo, R.G.-O.; Habila, J.D.; Hamisu, I. In vitro antimicrobial activity of lignan from the stem bark of Strombosia grandifolia Hook.f. ex Benth. Bull. Natl. Res. Cent. 2019, 43, 115. [Google Scholar] [CrossRef]
- Asano, J.; Chiba, K.; Tada, M.; Yoshii, T. Antiviral activity of lignans and their glycosides from Justicia procumbens. Phytochemistry 1996, 42, 713–717. [Google Scholar] [CrossRef] [PubMed]
- MacRae, W.; Hudson, J.; Towers, G. The Antiviral Action of Lignans. Planta Med. 1989, 55, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.D.C.; Pitorro, T.E.A.; Santiago, M.B.; Franco, R.R.; Silva, T.D.C.; Prado, D.G.; Cunha, L.C.S.; Espindola, F.S.; Tavares, D.C.; Nicolella, H.D.; et al. In vitro evaluation of the antibacterial and cytotoxic activities of the Euclea natalensis crude extract and fractions against oral infection agents. Arch. Oral Biol. 2022, 143, 105546. [Google Scholar] [CrossRef]
- Huh, J.; Song, J.H.; Kim, S.R.; Cho, H.M.; Ko, H.-J.; Yang, H.; Sung, S.H. Lignan Dimers from Forsythia viridissima Roots and Their Antiviral Effects. J. Nat. Prod. 2019, 82, 232–238. [Google Scholar] [CrossRef]
- Xu, L.; Tan, J.-B.; Zheng, Y.-T.; Sang, Z.-H.; Qin, S.-Y.; Huang, Y.-T.; Li, M.-F.; Zou, Z.-X. New lignans from Phyllanthodendron dunnianum. Nat. Prod. Res. 2024, 1–9. [Google Scholar] [CrossRef]
- Liu, C.-H.; Jassey, A.; Hsu, H.-Y.; Lin, L.-T. Antiviral Activities of Silymarin and Derivatives. Molecules 2019, 24, 1552. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Woo, E.-R.; Lee, D.G. Anti-Candida property of a lignan glycoside derived from Styrax japonica S. et Z. via membrane-active mechanisms. Mol. Cells 2010, 29, 581–584. [Google Scholar] [CrossRef] [PubMed]
Lignans | The Most Important Dietary Sources | Molecular Formula | Structure | References |
---|---|---|---|---|
Secoisolariciresinol | flaxseed, pumpkin seeds, sunflowers seeds, kiwi | C20H26O6 | [1,2,3,4,5,6] | |
Secoisolariciresinol diglucoside (SDG) | flaxseed, sesame seeds | C32H46O16 | [7,8] | |
Matairesinol | flaxseed, sesame seeds, wine, oat, rye | C20H22O6 | [8,9] | |
Lariciresinol | flaxseed, sesame seeds, sunflower seed, cashew, pumpkin seeds, buckwheat, barley, oat, rye, wheat, pineapple, apricot, strawberry, pear eggplant, curly kale, white cabbage, brussels sprout, garlic, French bean, sweet pepper, raisins, tomato paste | C20H24O6 | [3,5,8,9] | |
Pinoresinol | flaxseed, sesame seeds, buckwheat, oat, rye, curly kale, broccoli, white cabbage, brussels sprout, sauerkraut, garlic, apricot, strawberry, peach, nectarine, olive oil | C20H22O6 | [5,9,10,11,12,13] | |
Pinoresinol diglucoside (PDG) | sesame seeds | C32H42O16 | [14] | |
Arctigenin | burdock (Arctium lappa)—root, sprouts, seed infusion | C21H24O6 | [15,16,17,18] | |
Arctiin | burdock (Arctium lappa)—seeds, leaves, fruits and roots | C27H34O11 | [8,19] | |
Hydroxymatairesinol | sesame seed, wheat, rye | C20H22O7 | [8,20] | |
Medioresinol | flaxseed, sesame seed, rye, wheat, oat, lemons | C21H24O7 | [8,9,12,21] | |
Sauchinone | roots of Asian lizard’s tail (Saururus chinensis) | C20H20O6 | [22,23,24] | |
Sesamin | sesame seed and oil, wheat, rye | C20H18O6 | [2,9,25] | |
Sesamolin | sesame seed and oil | C20H18O7 | [7,8,25,26] | |
Syringaresinol | buckwheat, oat, rye, wheat, oranges, pineapple, sesame seed | C22H26O8 | [8,9] | |
Schisandrin A | five-flavor fruit (Schisandra chinensis) | C24H32O6 | [27,28] | |
Schisandrin B | five-flavor fruit (Schisandra chinensis) | C23H28O6 | [28,29] | |
Kusunokinin | black pepper | C21H22O6 | [30] | |
Honokiol | Magnolia officinalis whole plant (mostly bark) | C18H18O2 | [31,32] | |
Podophyllotoxin | Podophyllum peltatum (Amierican mayapple), Sinopodophyllum hexandrum (Himalayan mayapple) | C22H22O8 | [33,34] | |
Macelignan | nutmeg mace of Myristica fragrans | C20H24O4 | [35,36] | |
Tracheloside | Safflower (Carthamus tinctorius)—seeds; Trachelospermi caulis | C27H34O12 | [37,38] |
Lignan | Biological Activity | Mechanism of Action | Target Tissue/Protected Model | References |
---|---|---|---|---|
SDG | antioxidant | reduced oxidative damage by lowering Pb accumulation, restoring renal function, and enhancing enzymatic activity | rat model treated with lead acetate | [56] |
reduced ROS generation; increased FSHR expression, follicle count, mitochondrial DNA copy number, and slowed telomere shortening; improved nutrient metabolism in ovaries | ovaries in reproductive aging mice model | [57] | ||
reduced ROS and MDA; upregulated Nrf2/HO-1, SODs, and GPx-1; restored kidney morphology and antioxidant enzyme levels | kidneys of offspring from TFA-exposed mice | [58] | ||
anti-inflammatory | suppressed mRNA expression of inflammatory cytokines, improved intestal barrier integrity, ameliorated morphologic damage of the colon, modulated gut microbiota and short-chain fatty acids levels; effects depend partly on microbiota modulation | colonic inflammation caused by a common poor diet, high-fat diet | [59] | |
reduced inflammatory cytokines levels in aortic tissue and plasma (IL-1β, IL-17A, TNF-α, MCP-1), inhibited inflammatory Mψs in atherosclerosis | aorta and vascular system of HFD-induced atherosclerosis mice | [60] | ||
antioxidant, anti-inflammatory | reduced oxidative stress, inflammation, and apoptosis via miR-101a/MKP-1-mediated inhibition of p38 and ERK signaling pathways | liver and kidney in BaP-treated mice | [61] | |
inhibited IL-1β-induced inflammatory markers and ECM degradation via activation of Nrf2/HO-1 and inhibition of NF-κB pathway | cartilage degeneration (in vitro and in vivo) | [62] | ||
Pinoresinol | antioxidant | activated Nrf2-mediated antioxidant response; reduced oxidative stress in human lung epithelial cells exposed to sodium arsenite-induced oxidative insults | human lung epithelial cells | [63] |
anti-inflammatory, antioxidant | decreased TNF-α, IL-6, IL-1β; suppressed LPS-induced ERK1/2 and p38 phosphorylation; reduced ROS generation in macrophages via MAPK pathway | LPS-stimulated Raw 264.7 macrophages | [64] | |
Pinoresinol diglucoside (PDG) | anti-inflammatory, antioxidant | decreased TNF-α, IL-1β, IL-6, NO, ROS, and MDA; increased SOD, GSH, GSH-Px; modulated NF-κB and activated Nrf2/HO-1 pathways | neuronal tissue in MCAO-induced brain ischemia/reperfusion injury in C57BL/6 mice | [65] |
inhibited TNF-α, IL-1β, ROS, and MDA; increased SOD and catalase; modulated TLR4/NF-κB and activated Nrf2/HO-1 | neurons in Aβ1-42-induced Alzheimer’s disease model | [66] | ||
Lariciresinol | anti-inflammatory, antioxidant | reduced inflammatory cytokines (TNF-α, IL-17), oxidative stress markers; inhibited NF-κB and TGF-β expression | CFA-induced rheumatoid arthritis in rats | [67] |
Matairesinol | anti-inflammatory, antioxidant | inhibited microglial activation and pro-inflammatory cytokines; boosted SOD and GSH-Px; modulated MAPK, NF-κB, AMPK, Nrf2/HO-1 pathways | CLP-induced sepsis-mediated brain injury in rats | [68] |
Arctigenin | anti-inflammatory, antioxidant | activated Nrf2/HO-1/NQO1; reduced NF-κB and ER stress markers (BiP, PERK, IRE1α, CHOP, caspase-12); lowered TNF-α, IL-1β, oxidative stress | cadmium-induced nephrotoxicity in rats | [69] |
reduced liver enzymes, suppressed MMP-2, restored glutathione, SOD, and glutathione reductase | CCl4-induced liver injury in rats | [70] | ||
reduced ROS and MDA levels, increased SOD activity, inhibited activation of NF-κB signaling, and activated the AMPK/SIRT1 antioxidant pathway | cardiomyocytes subjected to oxygen-glucose deprivation; myocardial tissue after acute myocardial ischemia/reperfusion | [71] | ||
attenuated bleomycin-induced pulmonary fibrosis by reducing ROS levels, increased SOD and GSH, and decreased MDA in lung tissue; inhibited collagen and α-SMA expression and modulated the TGF-β/p-Akt pathway | lung tissue in bleomycin-induced pulmonary fibrosis in mice | [72] | ||
antioxidant | reduced oxidative stress by decreasing lipid peroxidation and enhancing antioxidant enzymes (SOD, catalase, GSH) | streptozotocin-induced diabetic neuropathy in mice | [73] | |
anti-inflammatory | suppressed TLR4-mediated NF-κB signaling by reducing interaction of AdipoR1 with TLR4 and CD14; inhibited production of proinflammatory cytokines; decreased APP, BACE1, and Aβ generation; prevented neuronal/synaptic injury and glial activation | neuroinflammation, neuronal injury, cognitive impairments in LPS-treated mice | [74] | |
suppressed inflammation and NF-κB pathway activation in IL-1β-induced human nucleus pulposus cells by upregulating miR-483-3p; also inhibited apoptosis | cell model of intervertebral disc degeneration | [75] | ||
Arctiin, Arctigenin | anti-inflammatory, antioxidant | inhibited TLR-4/Myd88/NF-κB and NLRP3 inflammasome; reduced ROS, TNF-α, IL-1β, TGF-β, α-SMA; regulated metabolic pathways and biomarkers | silica-induced pulmonary fibrosis (silicosis) | [76] |
Arctiin | anti-inflammatory | reduced expression of TLR4 and NLRP3, inhibiting the inflammasome pathway; also downregulated STAT3 and TGF-β involved in tissue fibrosis and reduced cyclin D1 and CDK2 | hippocampus in Alzheimer’s model rats | [77] |
inhibited glycolysis and inflammation via FGFR2/CSF1R signaling; reduced inflammatory cytokines and oxidative stress | liver tissue in high fat diet (HFD)-induced Non-alcoholic steatohepatitis (NASH) | [78] | ||
inhibited inflammation and pyroptosis via suppression of the TLR4/MyD88/NF-κB and NLRP3/Caspase-1/GSDMD pathways; reduced IgE, cytokines | skin integrity in DNCB-induced dermatitis | [79] | ||
antioxidant | activated AKT/NRF2/HO-1 signaling; reduced intracellular iron, reactive oxygen species, and lipid-ROS; restored mitochondria | chondrocytes in iron overload-induced knee osteoarthritis (KOA) advancement | [80] | |
anti-inflammatory, antioxidant | inhibited MAPK pathway; reduced inflammatory cytokines (IL-1β, IL-6, TNF-α); improved oxidative stress markers (↑SOD, catalase, GPx; ↓ROS, MDA) | liver in high-fat diet-induced nonalcoholic fatty liver disease | [81] | |
inhibited p38 and NF-κB activation; reduced inflammatory cell infiltration; corrected Th1/Th2 imbalance; increased superoxide dismutase (SOD) activity; reduced oxidative stress | lung tissue in ovalbumin-induced asthma | [82] | ||
activated Nrf2/HO-1 signaling; inhibited RIG-I/JNK MAPK pathway; reduced H9N2-induced proinflammatory cytokines (IL-6, TNF-α), COX-2, and PGE2; increased SOD2 and HO-1 expression | cells infected with H9N2 avian influenza virus | [83] | ||
Honokiol | antioxidant | activated SIRT3/AMPK pathway; restored proliferation/apoptosis balance; improved antioxidant capacity in H2O2-induced ovarian follicles | ovarian tissue and small white follicles in aging chickens | [84] |
reduced oxidative stress (↓MDA, ↑GSH, ↑SOD), modulated IL-1β and TGF-β1 expression in kainic acid-induced neurodegeneration | hippocampus and cerebral cortex in rats | [55] | ||
Medioresinol | anti-inflammatory, antioxidant | activated PI3K/AKT/mTOR signaling pathway; reduced oxidative stress and inflammation in myocardial ischemia-hypoxia model cells | H9c2 cardiomyocytes under oxygen-glucose deprivation | [21] |
Sauchinone | antioxidant | restored mitochondrial function, reduced ROS production by improving electron transport in the electron transport chain; downregulated VAMP8 | mitochondria in senescent cells | [85] |
anti-inflammatory, antioxidant | activated NRF2 signaling to reduce oxidative stress; inhibited NLRP3 inflammasome activation, reduced inflammation and apoptosis | heart tissue from Dox-induced injury | [86] | |
anti-inflammatory | reduced inflammatory cytokines (TNF-α, IL-1β, IL-6); decreased inflammatory cell infiltration; restored colon tissue morphology | colon tissue integrity in DSS-induced ulcerative colitis (UC) model | [24] | |
Sesamin | anti-inflammatory, antioxidant | increased antioxidant enzymes (GSH, CAT, SOD); reduced MDA, IL-1β, TNF-α, and caspase-3; improved kidney function markers | kidney in rats (protection from cyclophosphamide-induced nephrotoxicity) | [87] |
reduced ROS, TNF-α, IL-1β, and inflammatory cell recruitment; inhibited HMGB1/TLR4/NF-κB signaling pathway | liver in mice (protection from acetaminophen-induced acute liver injury) | [88] | ||
inhibited Ang-II-induced oxidative stress, apoptosis, and inflammation in H9c2 cells; reduced ROS, NADPH oxidase activity, and hypertrophic markers (ANP, BNP, β-MHC) | cardiomyocytes (H9c2 cells), heart function | [89] | ||
decreased ROS and NO levels; modulated oxidative and inflammatory gene expression; showed no embryotoxicity or cardiotoxicity | zebrafish embryos (oxidative and inflammatory stress) | [90] | ||
Sesamol | anti-inflammatory, antioxidant | inhibited CYP2E1 and NOX2 activity; suppressed NF-κB activation and TNF-α expression; enhanced Nrf2 transcription and upregulated HO-1 and NQO1, reducing oxidative stress and inflammation | liver in HFD-induced hepatic steatosis | [91] |
Sesamin, Sesamol | antioxidant | reduced H2O2-induced ROS and apoptosis in SH-SY5Y cells by activating SIRT1–SIRT3–FOXO3a signaling, decreasing BAX, and increasing BCL-2 expression | human neuroblastoma (SH-SY5Y) cells | [92] |
Sesamin, Sesamolin | antioxidant | decreased ROS production; reduced oxidative stress-induced apoptosis; normalized ERK1/2 activation | neural cells (PC12 cells) in Parkinson’s disease model | [93] |
Sesamin, Sesamolin, Sesamol | antioxidant | reduced TG/TC levels and oxidative stress in steatosis HepG2 cells; activated AMPK and PPAR pathways to promote fatty acid oxidation and reduce lipogenesis | hepatic lipid metabolism, liver cells | [94] |
Syringaresinol | antioxidant | exhibited strong radical scavenging activity (DPPH and ABTS assays); reduced expression of MMP-2 and MMP-9 via upregulating autophagy (LC3B); antioxidant effect decreased ROS-induced ECM degradation | human keratinocytes (HaCaT cells) under H2O2-induced oxidative stress (skin aging model) | [95] |
decreased intracellular ROS; enhanced Nrf2 antioxidant pathway and related enzymes; reduced DNA damage (lower CPD photoproducts); lowered senescence markers (MMPs, p21); inhibited MAPKs phosphorylation and NF-κB | human epidermal keratinocytes (HEKs) under UVB irradiation (photoaging model) | [96] | ||
anti-inflammatory | activates ER/SIRT1; inhibits NLRP3 inflammasome and pyroptosis in cardiomyocytes | cardiac function and myocardial tissue in sepsis-induced cardiac dysfunction (mice and cardiomyocytes) | [50] | |
inhibits NF-κB pathway; reduces IL-6, TNF-α, MMP-13, NO, PGE2; protects ECM | cartilage and joint tissue in osteoarthritis (mouse model and chondrocytes) | [51] | ||
enhances intestinal barrier; reduces TNF-α, IL-6, IFN-γ, COX-2; regulates PI3K-Akt/MAPK/Wnt pathways | intestinal epithelial barrier and colon tissue (in UC mice and Caco-2 cells) | [52] | ||
inhibited NLRP3 inflammasome activation and pyroptosis via estrogen receptor-β pathway; reduced cytokines, MPO, M1 macrophages | lung tissue in CLP-induced acute lung injury mice and RAW264.7 cells | [97] | ||
anti-inflammatory, antioxidant | activates Nrf2 antioxidant pathway; downregulates HIF-1α/VEGF pathway; reduces oxidative stress and inflammation | retinal tissue in diabetic mice and endothelial cells under high glucose | [49] | |
upregulates NRF2; inhibits NLRP3/Caspase-1/GSDMD pyroptosis pathway | renal structure and function in diabetic nephropathy (STZ-induced diabetic mice) | [98] | ||
Schisandrin A | antioxidant | reduced oxidative stress and inhibited PKCβ expression, leading to downregulation of fibrosis markers | kidney tissue in Unilateral Ureteral Obstruction mice model and cell lines | [54] |
Schisandrin B | antioxidant | inhibited oxidative stress and ferroptosis via upregulating GPX4 and reducing ROS in THP-treated rats | liver in pirarubicin (THP)-induced hepatotoxicity | [53] |
Lignan | Disease | Mechanism of Action | Model/System | References |
---|---|---|---|---|
SDG | Alzheimer’s disease | improved spatial, recognition, and working memory. Enhanced CREB/BDNF and PSD-95 expression, reduced β-amyloid deposition and levels of TNF-α, IL-6, and IL-10. Altered gut microbiota composition, increased serum levels of END and ENL. Correlation analysis linked END and ENL to cognitive performance and neuroinflammation. GPER was identified as a mediator of anti-inflammatory responses | female AD mice model | [117] |
7-hydroxymatairesinol | Parkinson’s disease | improved motor function and slowed dopaminergic terminal loss | 6-OHDA PD rat model | [112] |
Honokiol | Alzheimer’s disease | increased SIRT3 expression and activity, improved ATP production, and reduced mitochondrial ROS. Restored AβO-induced mitochondrial dysfunction and rescued memory deficits in early AD stages | PS1^V97L AD mice model | [114] |
improved memory performance in the Morris Water Maze. Reduced hippocampal apoptosis, ROS production, and mitochondrial dysfunction. Inhibited NF-κB activation, APP, and β-secretase expression | AD mice model | [118] | ||
improved cognition, reduced Aβ1–42 deposition, promoted neuron survival via SIRT3-mediated mitochondrial autophagy; effects blocked by 3-TYP/CsA | AD mice & hippocampal neuronal cell model | [113] | ||
Alzheimer’s disease | reduced microglial senescence and inflammation. Decreased ROS, NF-κB, p21, γ-H2AX, and SASP markers. Increased IL-10. Inhibited Notch signaling Via Jagged1 downregulation | BV2 microglia cells in vitro | [119] | |
enhanced survival and growth of iPSC-derived neurons | human AD iPSC-derived neurons | [120] | ||
improved spatial memory and retention, restored acetylcholine, GABA, and glutamate levels, reduced NF-κB and Aβ(1–42) expression, and protected against neuronal damage, indicating antioxidant, anti-inflammatory, and neuroprotective effects | ICV-STZ-induced AD rats | [121] | ||
Amyotrophic lateral sclerosis | improved motor neuron viability, enhanced GSH synthesis and NRF2-ARE signaling, restored mitochondrial dynamics, extended lifespan and motor function in ALS mice | SOD1-G93A ALS cell model & transgenic mice | [116] | |
Macelignan | Alzheimer’s disease | reduced phosphorylation of Tau at Thr231, Ser396, and Ser404 in overexpressing cell lines, and at Ser404 in mouse primary neural cells. Increased autophagy and enhanced PP2A activity to regulate Tau phosphorylation. Activated the PERK/eIF2α signaling pathway, leading to reduced BACE1 translation, inhibited APP cleavage, and suppressed Aβ deposition | Tau-overexpressing cell lines, N2a/SweAPP cells | [122] |
Pinoresinol diglucoside (PDG) | Alzheimer’s disease | reduced proinflammatory cytokines, oxidative stress, and neuronal apoptosis. Modulated TLR4/NF-κB and Nrf2/HO-1 pathways | AD mice model | [66] |
Pinoresinol | Alzheimer’s disease | improved memory and restored long-term potentiation Via calcium-permeable AMPA receptors and Akt signaling. Reduced neuroinflammation and synaptic deficits | AD mice model | [123] |
(–)-7-epi-Pinoresinol, (+)-Medioresinol, (+)-Diapinoresinol | Parkinson’s disease | increased cell viability and antioxidant enzyme activity (SOD, GPx), reduced ROS and LDH levels, and activated the PI3K/Akt/GSK-3β/Nrf2 pathway | PC-12 cells induced by H2O2 (PD model) | [124] |
Arctiin | Alzheimer’s disease | improved hippocampal structure and behavioral performance. Reduced expression of TLR4 and NLRP3, thereby inhibiting the inflammasome pathway. Also regulated STAT3 and TGF-β, contributing to reduced tissue fibrosis, and inhibited cell cycle proteins cyclin D1 and CDK2 | AD rat model | [77] |
Arctigenin | Alzheimer’s disease | improved memory and reduced tau phosphorylation in the hippocampus and neuroinflammation in the cortex. modulated mitochondrial function Via tricarboxylic acid cycle and electron transport proteins | AD mice model | [125] |
neurodegeneration-related diseases | improved memory and reduced Aβ, APP, and BACE1 levels. Inhibited TLR4/NF-κB signaling, glial activation, and proinflammatory cytokines Via AdipoR1–TLR4 interaction | LPS-treated mice & BV2 cells | [74] | |
multiple sclerosis | reduced calcium influx, neuronal hyperactivity, and excitotoxicity in cortex at preclinical stage; restored neural communication during remission stage | EAE mouse model (MS) | [126] | |
Sesamin | Alzheimer’s disease | prevented impairment of long-term potentiation at perforant path–dentate gyrus synapses; increased excitatory postsynaptic potential slope and population spike amplitude; reduced oxidative stress | AD rat model | [127] |
reduced advanced glycation end product-induced microglial inflammation by suppressing NF-κB, p38, JNK pathways and downregulating RAGE expression | BV2 microglial cells in vitro | [128] | ||
Sesamin, Sesamolin | Parkinson’s disease | reduced reactive oxygen species and apoptosis, increased survivin, and normalized ERK1/2 signaling | 6-OHDA-induced PC12 cells (PD model) | [93] |
Schisandrin | Alzheimer’s disease | improved mitochondrial membrane potential, ATP production, cytochrome c oxidase activity, biogenesis, and fusion–fission balance in Aβ1–42-treated cells | rat hippocampal neurons + Aβ1–42 | [129] |
improved cognition in AD mice by reducing Aβ levels, inhibited neuronal apoptosis and NLRP1 inflammasome-mediated pyroptosis in hippocampal neurons | AD mice model | [130] | ||
improved cognitive impairment and hippocampal cell loss; modulated gut microbiota composition and corrected metabolic imbalances in feces, plasma, and brain, particularly involving bile acid biosynthesis and lipid-related pathways | AD rat model | [131] | ||
Schisandrin A | Alzheimer’s disease | improved cell viability, reduced apoptosis, oxidative stress, and inflammation; effects were linked to ERK/MAPK pathway activation | SH-SY5Y and SK-N-SH cells (Aβ(25–35) model) | [115] |
Parkinson’s disease | improved motor behavior and dopaminergic neuron survival; reduced IL-6, IL-1β, TNF-α; increased SOD and autophagy-related proteins (LC3-II, beclin1, parkin, PINK1); mTOR upregulation | MPTP-induced PD mouse model | [111] | |
Schisandrin B | Alzheimer’s disease | Inhibited neuronal ferroptosis Via GSK3β/Nrf2/GPX4 and FSP1 pathways, reduced TNF-α release, and prevented M1 microglia activation, improved cognition and pathology | 3 × Tg AD mice; SH-SY5Y/APP695swe cells | [132] |
Schisandrin B (as M@Sch B micelles) | Alzheimer’s disease | inhibited Aβ aggregation, reduced ROS, enhanced antioxidant enzyme activity, and regulated aging-related genes, improved lifespan, mobility, and delayed AD-like symptoms in C. elegans | C. elegans (CL4176) | [133] |
Schisandra chinensis lignans | Alzheimer’s disease | improved cognition and reduced p-Tau and neuronal loss. Inhibited oxidative stress and ferroptosis Via Nrf2/FPN1 signaling. Increased FPN1, SLC7A11, GPX4; decreased TFR, DMT1, FACL4 | AD mice model, Erastin-treated HT22 cells | [134] |
Parkinson’s disease | reduced motor deficits and dopaminergic neuron loss Via suppression of TRPV1-AMPK-NLRP3 signaling, autophagy induction, and neuroinflammation control | MPTP-induced PD mice; LPS-activated BV2 cells | [135] | |
Matairesinol, SECO, Arctigenin, Arctiin | Alzheimer’s disease | inhibited NO production dose-dependently. Matairesinol and SDG reduced NO by 60% and downregulated iNOS and COX-2 expression. Potential for treating neuroinflammation | LPS-stimulated microglia | [136] |
Lignan | Key Findings | Model/System | References |
---|---|---|---|
SDG | SDG improved bone microarchitecture, reduced inflammation, and increased bone formation markers Via estrogen receptor (ERα/ERβ) modulation | Ovariectomized (OVX) rat model | [148] |
SDG from flaxseed (administered Via fermented milk) | Significant improvements in bone mineral density (~12–16% BMD increase after 8 weeks) and trabecular thickness; decreased trabecular separation | OVX rat model | [149] |
SDG, tracheloside (TCL) | SDG and TCL showed strong, dose-dependent anti-osteoporotic effects, significantly upregulating osteogenic genes (Runx2, SP7, OPG, etc.) | alloxan-induced zebrafish model | [150] |
Pinoresinol diglucoside (PDG) | PDG potentially acts Via PI3K-Akt and estrogen signaling pathways, targeting genes like BCL2, IL6, MARK3, suggesting multi-target mechanisms in osteoporosis prevention | Rat model (in vivo metabolism study + network pharmacology) | [151] |
PDG improved bone mineralization, corrected spinal and cartilage defects, and enhanced motor function. PDG upregulated the Wnt signaling pathway | Dexamethasone-induced zebrafish model | [152] | |
PDG inhibited osteoclast differentiation and bone resorption by suppressing NF-κB and AKT pathways Via PTEN stabilization. It reduced formation of F-actin rings, downregulated NFATc1, c-Fos, CTSK, TRAP, and blocked RANKL/RANK signaling, especially in early-stage osteoclast development | RANKL-induced osteoclastogenesis in RAW264.7 cells | [153] | |
Arctiin (ARC) | ARC restored osteoblast viability, reduced apoptosis, and promoted mineralization. It acted through the PI3K/Akt pathway to enhance osteogenesis and cell survival, while also reducing oxidative stress. In vivo, ARC improved bone microarchitecture and biochemical markers, supporting its use in iron overload–induced osteoporosis | In vitro (MC3T3-E1 osteoblast cell line) + in vivo (iron-overload mice) | [147] |
Arctigenin | Arctigenin suppressed adipogenesis and enhanced osteogenesis in BMSCs by reducing lipid droplet formation and downregulating lipogenic proteins. In OVX rats, it reduced bone loss, improved lipid metabolism, and promoted bone formation. Mechanistically, it acted Via the MEK1/PPARγ/β-catenin pathway, blocking PPARγ–β-catenin interaction and promoting nuclear β-catenin accumulation | In vitro (bone marrow mesenchymal stem cells (BMSCs) from OVX rats); In vivo (OVX rat model) | [154] |
Sesamin | Sesamin activated BMP2 signaling and enhanced angiogenesis and chondrogenesis in vitro. This stimulatory effect was eliminated when an ERα inhibitor was applied. In OVX mice, it improved callus formation, enlarged cartilaginous and callus area, and accelerated fracture healing | In vitro (BMSCs, HUVECs); In vivo (OVX fracture mice) | [155] |
Sesamin promoted osteogenesis Via Wnt/β-catenin and inhibited osteoclastogenesis via NF-κB suppression. It regulated bone remodeling in a DANCR-dependent manner, reversing OVX-induced bone loss and reducing elevated serum DANCR levels. Suggests therapeutic potential for osteoporosis patients with high DANCR expression. | In vitro (BMSCs); In vivo (OVX fracture mice) | [146] | |
Lignan-rich fraction from Sambucus williamsii | Bone protection was mediated through gut microbiota modulation and serotonin suppression, leading to enhanced bone formation | OVX rat model | [156] |
Matairesinol, secoisolariciresinol, pinoresinol, lariciresinol (dietary intake) | Highest quartile of total lignan intake was associated with a 76% lower risk of hip fracture, individual lignans with up to 62% reduction | Epidemiological study (elderly Chinese adults, hip fracture cases) | [157] |
Lignans | Disease | Action | Mechanism | References |
---|---|---|---|---|
Secoisolariciresinol diglucoside (SDG) | atherosclerosis | control of cholesterolemic status and improvement of dyslipidemia and redox state | regulation of the apelin/APJ signaling pathway | [165] |
inhibition of inflammation and modulation of gut homeostasis | regulation of macrophages, Treg cells, and γδT cells | [60] | ||
inhibition of inflammation and apoptosis | inhibition of the Akt/IκB/NF-κB pathway | [166] | ||
myocardial ischemia/reperfusion injury | an increase in capillary and arteriolar density along with enhanced left ventricular function | upregulation of HO-1, VEGF, and p-eNOS expression | [167] | |
reduction in infarct size and cardiomyocyte apoptosis; increased capillary density and improved myocardial function | upregulation of VEGF, Ang-1, and p-eNOS protein expression | [168] | ||
cardiac hypertrophy | marked reduction in cardiac oxidative stress, inflammation, and apoptosis | suppression of upregulated ER stress markers GRP78, PERK, ATF-4, CHOP, NF-κB, and SREBP1c expression | [169] | |
ischemic heart disease | inhibition of apoptosis | activation of the JAK2/STAT3 signaling pathway | [170] | |
Matairesinol | cardiac hypertrophy | alleviation of cardiac hypertrophy and fibrosis, preservation of cardiac function, and marked reduction in cardiomyocyte apoptosis and oxidative damage | upregulation of Prdx1 expression and inhibition of the PI3K/Akt/FoxO1 pathway | [171] |
Pinoresinol | cardiac hypertrophy | prevention of cardiac histomorphological damage, reduction in hypertrophic biomarker upregulation, and attenuation of fibrosis and inflammation | inhibition of the AKT/mTOR/NF-κB signaling pathway activation | [172] |
Pinoresinol diglucoside | myocardial ischemia | amelioration of H/R-induced cardiomyocyte injury | regulation of miR-142-3p and HIF1AN | [173] |
heart failure | inhibition of myocyte fibrosis, apoptosis, oxidative stress, and inflammation in pressure overload-induced cardiac injury | regulation of AMPK/SIRT3/RIG-1 signaling pathway | [174] | |
Arctigenin | myocardial ischemia/reperfusion injury | reduction in apoptosis, inflammation, and oxidative stress | enhancement of the AMPK/SIRT1 pathway and repression of NF-κB pathway activation. | [71,175] |
myocardial infarction | exhibition of antioxidative and anti-inflammatory effects | regulation of iNOS, COX-2, ERK1/2 and HO-1 | [108] | |
improvement of cardiac injury after MI through reduction in infarct size, enhancement of heart function, and inhibition of cardiac cell death | modulation of macrophage polarization Via the NFAT5-induced signaling pathway | [176] | ||
hypertension | reduction in systolic blood pressure and amelioration of endothelial dysfunction | enhancement of eNOS phosphorylation and reduction in NADPH oxidase-mediated superoxide anion generation | [177] | |
Medioresinol | myocardial infarction | reduction in oxidative stress and inflammatory responses | activation of the PI3K/AKT/mTOR pathway | [21] |
Sauchinone | doxorubicin (dox)-induced cardiomyopathy (dic) | alleviates Dox-induced chronic cardiac injury but also significantly delays the progression of acute DIC | inactivation of the NLRP3 inflammasome and NRF2-mediated antioxidant pathways | [86] |
hypertension | inhibition of angiotensin II-induced proliferation and migration of vascular smooth muscle cells | inhibition of Ang II-induced over-activation of the TGF-β1/Smad3 signaling pathway | [178] | |
myocardial ischemia/reperfusion injury | reduction of the infarct size | inhibition of phosphorylation of p38 and JNK death signaling pathways | [179] | |
enhancement of antioxidant capacity and suppression of cardiac myocyte apoptosis | activation of Akt/eNOS Signaling Pathway | [180] | ||
Sesamin | myocardial infarction | marked reduction in myocardial apoptosis in the border zone; reduction of myocardial apoptosis and inflammatory response. | downregulation of cytokine expression, inactivation of NF-κB signaling, and reduction in p-JNK protein levels. | [161] |
coronary heart disease | improvement of lipid metabolism and vascular endothelial function, inhibition of myocardial cell apoptosis | reduction in Caspase-12 and ICAM-1 protein expression, associated with activation of the PI3K-Akt-eNOS signaling pathway. | [181] | |
myocardial hypertrophy | inhibition of oxidative stress, apoptosis, and inflammation | reduction in Ang II–induced increases in ANP, BNP, and β-MHC expression, elevation of NADPH oxidase activity and ROS production, and suppression of superoxide dismutase (SOD) activity | [89] | |
Syringaresinol | myocardial infarction | amelioration of MI-induced cardiac dysfunction, reduction in infarct size, and attenuation of myocardial hypertrophy, fibrosis, inflammation, and apoptosis | partial reversal of AKT1, EGFR, CASP3, SRC, NFKB1, HSP90AA1, HIF1A, MMP9, and ESR1 expression | [182] |
Schisandrin A | chronic heart failure | ameliorated myocardial hypertrophy | inhibition of the expression levels of atrial natriuretic peptide, B-type natriuretic peptide, B-myosin heavy chain and blocked AKT/CREB activation Via miR-155 | [183] |
Schisandrin B | atrial fibrillation | protects against Ang II-induced ferroptosis, atrial fibrosis, and atrial fibrillation | activation of the SIRT1 pathway | [184] |
myocardial infarction | reducetion of inflammation, inhibition of apoptosis, and improvement of cardiac function after ischemic injury | down-regulation of some inflammatory cytokines, activation of eNOS pathway | [185] | |
myocardial ischemia/reperfusion injury | reduction in the apoptotic index and serum markers of myocardial infarction | the PI3K/Akt signaling pathway (Upregulation of phosphorylated Akt expression, along with a reduction in the Bcl-2-like protein 4/Bcl-2 ratio and cleaved caspase-3 expression) | [162] | |
reductions in infarct volume, neurological score, apoptotic neuron count, and levels of inflammatory signaling molecules | inhibition of TLR4/NF-κB signaling pathway | [186] | ||
reduction in myocardial infarct size, enhancement of antioxidant capacity, and attenuation of ER stress-induced apoptosis | decreasing oxidative reaction, suppressing ATF6 and PERK pathway, and attenuating ER stress-induced apoptosis | [187] | ||
heart failure | improve pathological myocardial remodeling and cardiac function induced by pressure overload | inhibition of the MAPK signaling pathway | [188] | |
vascular endothelial dysfunction | amelioration of oxidative stress, mitochondrial membrane-potential depolarization and apoptosis in angiotensin II-challenged rat aortic endothelial cells | inhibition of Keap1 and activation of Nrf2 pathway, promotion the expression of downstream antioxidant genes Ho1 and Nqo1 | [189] | |
vascular remodeling | inhibition of inflammation and oxidative stress | suppressing NF-κB activation | [190] | |
myocardial fibrosis | prevent Ang II-infused cardiac fibrosis | regulates the SIRT1/PI3K/Akt pathway | [191] | |
myocardial inflammation | protect against myocardial inflammatory injury and tissue remodeling | inhibition of MyD88 signaling, increases in the production of inflammatory cytokines and expression of remodeling genes | [192] | |
Schisandrin C | atherosclerosis | ox-LDL degradation | regulation the autophagy pathway mediated by PI3K/AKT/mTOR | [193] |
inhibited proliferation and migration, attenuated lipid accumulation, reduced foam cell formation, suppressed inflammation in VSMCs | arresting cell cycle and targeting JAK2 to regulating the JAK2/STAT3 pathway | [194] | ||
Schisandrin | heart failure | reduction in cardiomyocyte apoptosis rate, increase in the cell surface area-to-protein/DNA ratio, and elevation of mitochondrial membrane potential | reduction in JAK2 and STAT3 expression and significant reduction in the BAX/Bcl-2 ratio | [195] |
Honokiol | post-myocardial infarction heart failure | reduced the abnormality of mitochondrial membrane potential (MMP) and apoptosis of cardiomyocytes | Ucp3-Mediated Reactive Oxygen Species Inhibition | [196] |
enhancing autophagic flux and reducing intracellular ROS production | enhanced autophagic flux is associated with the Akt signaling pathway | [197] | ||
hypertension | meliorates hypertension and endothelial dysfunction | inhibiting HDAC6-mediated cystathionine γ-lyase degradation | [198] | |
significantly reduced blood pressure | inhibiting renal CYP4A and soluble epoxide hydrolase (sEH), reducing vasoconstrictive 20-HETE) | [199] | ||
myocardial ischemia/reperfusion injury (mi/ri) | suppressing mitochondrial apoptosis | reduce the MI/RI-induced cTnT and CK-MB levels, apoptosis index, and mitochondrial swelling in cardiomyocytes Via activating the PI3K/AKT signaling pathway | [200] | |
cardiac hypertrophy | protected against myocardial hypertrophy, fibrosis and dysfunction | promoting dissociation of the Nur77–LKB1 complex and activating the AMPK pathway | [201] | |
atherosclerosis | inhibits carotid artery atherosclerotic plaque formation | Inhibition of the inflammatory response, oxidative stress, excessive production of NO, and the activation of NF-κB signaling pathway | [202] | |
suppresses migration and matrix metalloproteinase (MMP) expression | blocking NF-κB activation Via the ERK signaling pathway | [203] |
Lignans | Disease | Mechanism | References |
---|---|---|---|
SDG | type 2 diabetes mellitus | suppression of the expression of phosphoenolpyruvate carboxykinase (PEPCK) gene | [227] |
diabetes mellitus | inhibition of ROS level mediated increased level of enzymatic and non-enzymatic antioxidants | [228] | |
Matairesinol | type 2 diabetes mellitus | reduction in blood glucose and plasma insulin and improvement in the level of hepatic enzymes Via decreasing hepatocyte apoptosis via inhibition of DPP-4 | [229] |
Lariciresinol | type 2 diabetes mellitus | inhibition of α-glucosidase activity; stimulation of glucose uptake by enhancing the translocation of GLUT4 and glycogen content Via activating the insulin signaling pathway (e.g., IRS-1 and Akt signaling) | [230] |
Arctigenin | type 2 diabetes mellitus | protected from insulin resistance; inhibition of toll-like receptor 4 inflammatory signaling to reactivate IRS-2/GLUT4 | [231] |
diabetic nephropathy | reduction in NF-κB p65 phosphorylation likely through activation of PP2A | [232] | |
exerted antioxidant and antiapoptotic effect with concomitant activation of autophagy and downregulation of AKT/mTOR pathway | [73] | ||
Syringaresinol | diabetic nephropathy | inhibition of the NLRP3/Caspase-1/GSDMD pyroptosis pathway by upregulating NRF2 signaling | [98] |
downregulating HIF-1α/VEGF Via Activating Nrf2 Antioxidant Pathway | [52] | ||
Syringaresinol | diabetic cardiomyopathy | suppression of antioxidant kelch-like ECH-associated protein 1 (Keap1)/nuclear factor-E2-related factor 2 (Nrf2) system and abnormal activation of transforming growth factor-β (TGF-β)/mothers against decapentaplegic homolog (Smad) signaling pathway | [233] |
Syringaresinol-di-O-β-D-glucoside (SOG) | type 2 diabetes mellitus, diabetic nephropathy | decreasing the levels of oxidative stress through downregulation of the expression of NT and TGF-β1 in kidneys | [234] |
Schisandrin B | type 2 diabetes mellitus | stimulation of insulin secretion through GLP-1R/cAMP/PKA signaling pathway | [235] |
diabetic cardiomyopathy | affection of MyD88 and inhibition of MyD88-dependent inflammation | [236] | |
Schisandrin | diabetic nephropathy | inhibit inflammation through PI3K/Akt and NF-κB signaling pathways; inhibit TGF-β1-induced renal fibrosis | [237] |
Honokiol | type 2 diabetes mellitus | inhibition of hepatic CYP2E1 activity | [238] |
amelioration of hepatic steatosis by inhibiting hepatic lipogenic enzymes activity; improvement of hepatic inflammation, as shown by the decrease in TNF-α and IL-6 expression; anti-diabetic and anti-adiposity effects related to the inhibition of gluconeogenic enzymes and their mRNA expression | [239] | ||
reduction in oxidative stress and insulin resistance by activating SIRT3 | [240] | ||
improvement in the insulin sensitivity by targeting PTP1B | [241] | ||
type 1 diabetes mellitus | reduction in oxidative stress and apoptosis through activating the SIRT1-Nrf2 signaling pathway | [242] |
Lignan/Plant | Pathogen | Reference |
---|---|---|
Alyterinates/Alyxia schlechteri | Pythium insidiosum | [322] |
Cinaguaiacin, Demethoxyisoguaiacin/Artemisia cina | Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Klebsiella pneumoniae, Pasteurella multocida, Salmonella enterica | [309] |
Cycloolivil, Ferruginan/Olea ferruginea | E. coli, K. pneumoniae, Seratiam marcescens, Citrobacter freundii, Vibrio vulnificus, Enterobacter aerogenes. | [323] |
Hinokinin/Commiphora leptophloeos | S. aureus, S. aureus (MRSA) | [302] |
Honokiol, Magnolol | S. aureus (MRSA), Candida albicans | [317,320,324] |
7-hydroxymatairesinol | Staphylococcus epidermidis, C. albicans, Proteus spp., and Klebsiella spp. | [306] |
8-hydroxypinoresinol/Strombosia grandifolia | S. aureus, Streptococcus pneumoniae, E. coli, Salmonella typhi, C. albicans | [325] |
Justicidin B | vesicular stomatitis virus, Sindbis virus | [326,327] |
Lignanas from Euclea natalensis | bacteria that cause periodontal disease and caries | [328] |
Lignans from Forsythia viridissima | coxsackievirus B3, human rhinovirus 1B | [329] |
Methylnordihydroguaiaretic acid, Nordihydroguaiaretic acid | Aspergillus. flavus and Aspergillus parasiticus. | [318] |
Nortrachelogenin | E. coli, L. monocytogenes. | [301,310] |
Phyllanins/Phyllanthodendron dunnianum | S. aureus MRSA, Enterococcus faecalis, P. aeruginosa and E. coli. | [330] |
Phillyrin/Forsythia suspensa (Thunb.) Vahl | P. aeruginosa, K. pneumonia, E.coli, influenza A virus, coronavirus | [314] |
Schisandrins, deoxyschizandrin and other lignan/Schisandra chinensis | S.s aureus, L. monocytogenes, B. subtilis, B. cereus, Salmonella enterica subsp. enterica serovar Typhimurium, P. aeruginosa, human immunodeficiency virus 1 Enterobacter aerogenes and E. coli, hepatitis B virus, dengue virus | [27] |
SDG and other flax lignans/Linum usitatissimum | S. aureus, E. coli, P. aeruginosa, B. subtilis, C. albicans, Hepatitis C Virus, A. flavus, Aspergillus niger | [304,305,313] |
Sesamin | E. coli | [303] |
Silymarin and derivatives | hepatitis Cand B virus, dengue virus, Chikungunya virus, Mayaro virus, influenza virus, human immunodeficiency virus | [331] |
Styraksjaponozyd C/Styrax japonica | C. albicans | [332] |
Trachelogenin | hepatitis C virus | [312] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgberger, M.; Mierziak, J.; Augustyniak, B.; Wojtasik, W.; Kulma, A. The Power of Lignans: Plant Compounds with Multifaceted Health-Promoting Effects. Metabolites 2025, 15, 589. https://doi.org/10.3390/metabo15090589
Burgberger M, Mierziak J, Augustyniak B, Wojtasik W, Kulma A. The Power of Lignans: Plant Compounds with Multifaceted Health-Promoting Effects. Metabolites. 2025; 15(9):589. https://doi.org/10.3390/metabo15090589
Chicago/Turabian StyleBurgberger, Marta, Justyna Mierziak, Beata Augustyniak, Wioleta Wojtasik, and Anna Kulma. 2025. "The Power of Lignans: Plant Compounds with Multifaceted Health-Promoting Effects" Metabolites 15, no. 9: 589. https://doi.org/10.3390/metabo15090589
APA StyleBurgberger, M., Mierziak, J., Augustyniak, B., Wojtasik, W., & Kulma, A. (2025). The Power of Lignans: Plant Compounds with Multifaceted Health-Promoting Effects. Metabolites, 15(9), 589. https://doi.org/10.3390/metabo15090589