Application of Organic Nanofibers to Boost Specialized Metabolite Production and Antioxidant Potential in Stevia rebaudiana In Vitro Cultures
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Chemical Nanofibers Synthesis
2.3. Plant Material
2.4. Biometrics
2.5. Determination of Soluble Sugars
2.6. Determination of the Content of Stevioside and Rebaudioside A
2.7. Determination of the Content of Mono- and Dicaffeoylquinic Acids and Quercitrin
2.8. Antioxidant Activity
2.9. Stress Markers Estimation
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Silva, T.F.O.; Ferrarezi, A.A.; da Silva Santos, É.; Ribeiro, S.T.C.; de Oliveira, A.J.B.; Gonçalves, R.A.C. Bioactivities and biotechnological tools for obtaining bioactive metabolites from Stevia rebaudiana. Food Sci. Biotechnol. 2025, 34, 1679–1697. [Google Scholar] [CrossRef] [PubMed]
- Khalil, S.A.; Zamir, R.; Ahmad, N. Selection of suitable propagation method for consistent plantlets production in Stevia rebaudiana (Bertoni). Saudi J. Biol. Sci. 2014, 21, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.K.; Abdullah, S.N.A.; Md Hatta, M.A.; Megat Wahab, P.E. In vitro regeneration of stevia (Stevia rebaudiana Bertoni) and evaluation of the impacts of growth media nutrients on the biosynthesis of steviol glycosides (SGs). Agronomy 2022, 12, 1957. [Google Scholar] [CrossRef]
- Yücesan, B.; Mohammed, A.; Büyükgöçmen, R.; Altuğ, C.; Kavas, Ö.; Gürel, S.; Gürel, E. In vitro and ex vitro propagation of Stevia rebaudiana Bertoni with high Rebaudioside-A content—A commercial scale application. Sci. Hortic. 2016, 203, 20–28. [Google Scholar] [CrossRef]
- Abdullateef, R.A.; Osman, M. Effects of stem cutting types, position and hormonal factors on rooting in Stevia rebaudiana Bertoni. J. Agric. Sci. 2012, 4, 49. [Google Scholar] [CrossRef]
- Rodriguéz-Páez, L.A.; Pineda-Rodriguez, Y.Y.; Pompelli, M.F.; Jimenez-Ramirez, A.M.; Genes-Avilez, O.J.; Jaraba-Navas, J.d.D.; Jarma-Orozco, A.; Combatt-Caballero, E.; Oviedo Zumaqué, L.E.; Suarez-Padron, I.E.; et al. Micropropagation Protocols for Three Elite Genotypes of Stevia rebaudiana Bertoni. Horticulturae 2024, 10, 404. [Google Scholar] [CrossRef]
- Taha, R.A.; Hendawy, S.; Hussien, M.S.; Mehareb, E. Steviol Glycosides Induced in Vitro from Three Stevia Genotypes Successfully Planted in Egypt. Egypt J. Chem. 2025, 68, 73–85. [Google Scholar] [CrossRef]
- Hendawey, M.H.; Abo El Fadl, R.E. Biochemical studies on the production of active constituents in Stevia rebaudiana L. callus. Glob. J. Biochem. Biotechnol. 2014, 9, 76–93. [Google Scholar]
- Alizadeh, S.; Dumanoğlu, H. The effects of zinc oxide nanoparticles loaded with IAA and IBA on in vitro rooting of apple microcuttings. Turk. J. Agric. For. 2022, 46, 306–317. [Google Scholar] [CrossRef]
- Gerdakaneh, M.; Mozafari, A.-A.; Sioseh-Mardah, A.; Sarabi, B. Effects of different amino acids on somatic embryogenesis of strawberry (Fragaria × ananassa Duch.). Acta Physiol. Plant. 2011, 33, 1847–1852. [Google Scholar] [CrossRef]
- Blomstrand, E.; Eliasson, J.; Karlsson, H.K.; Kohnke, R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 2006, 136, 269S–273S. [Google Scholar] [CrossRef] [PubMed]
- Upmeier, B.; Thomzik, J.E.; Barz, W. Nicotinic acid-N-glucoside in heterotrophic parsley cell suspension cultures. Phytochemistry 1988, 27, 3489–3493. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Nagai, C.; Ashihara, H. Pyridine nucleotide cycle and trigonelline (N-methylnicotinic acid) synthesis in developing leaves and fruits of Coffea arabica. Physiol. Plant. 2004, 122, 404–411. [Google Scholar] [CrossRef]
- Noctor, G.; Queval, G.; Gakière, B. NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J. Exp. Bot. 2006, 57, 1603–1620. [Google Scholar] [CrossRef]
- Waller, G.R.; Yang, K.S.; Gholson, R.K.; Hadwiger, L.A.; Chaykin, S. The pyridine nucleotide cycle and its role in the biosynthesis of ricinine by Ricinus communis L. J. Biol. Chem. 1966, 241, 4411–4418. [Google Scholar] [CrossRef]
- Frost, G.M.; Yang, K.S.; Waller, G.R. Nicotinamide adenine dinucleotide as a precursor of nicotine in Nicotiana rustica L. J. Biol. Chem. 1967, 242, 887–888. [Google Scholar] [CrossRef]
- Gholson, H.R. The pyridine nucleotide cycle. Nature 1966, 212, 933–935. [Google Scholar] [CrossRef]
- Wagner, R.; Feth, F.; Wagner, K.G. Regulation in tobacco callus of enzyme activities of the nicotine pathway. II. The pyridine-nucleotide cycle. Planta 1986, 168, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.; Feth, F.; Wagner, K.G. The pyridine-nucleotide cycle in tobacco: Enzyme activities for the recycling of NAD. Planta 1986, 167, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Datta, C.; Basu, P.S. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 2000, 155, 123–127. [Google Scholar] [CrossRef]
- Röck-Okuyucu, B.; Bayraktar, M.; Akgun, I.H.; Gurel, A. Plant growth regulator effects on in vitro propagation and stevioside production in Stevia rebaudiana Bertoni. Hortic. Sci. 2016, 51, 1573–1580. [Google Scholar] [CrossRef]
- Sivaram, L.; Mukundan, U. In vitro culture studies on Stevia rebaudiana. Vitr. Cell. Dev. Biol.-Plant 2003, 39, 520–523. [Google Scholar] [CrossRef]
- Zayova, E.; Stancheva, I.; Geneva, M.; Petrova, M.; Dimitrova, L. Antioxidant activity of in vitro propagated Stevia rebaudiana Bertoni plants of different origins. Turk. J. Biol. 2013, 37, 106–113. [Google Scholar] [CrossRef]
- Soliman, H.I.A.; Metwali, E.M.R.; Almaghrabi, O.A.-H. Micropropagation of Stevia rebaudiana Betroni and assessment of genetic stability of in vitro regenerated plants using inter simple sequence repeat (ISSR) marker. Plant Biotechnol. 2014, 31, 249–256. [Google Scholar] [CrossRef]
- Rokosa, M.T.; Kulpa, D. Micropropagation of Stevia rebaudiana plants. Cienc. Rural. 2019, 50, e20181029. [Google Scholar] [CrossRef]
- Tiwari, K.; Tripathi, S.; Mahra, S.; Mathew, S.; Rana, S.; Tripathi, D.K.; Sharma, S. Carrier-based delivery system of phytohormones in plants: Stepping outside of the ordinary. Physiol. Plant. 2024, 176, e14387. [Google Scholar] [CrossRef] [PubMed]
- Krishnraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. Optimization for rapid synthesis of silver nanoparticle and its effect on phytopathogenic fungi. Spectrochim. Acta 2012, 93, 95–99. [Google Scholar] [CrossRef]
- Karakecili, A.; Korpayev, S.; Dumanoglu, H.; Alizadeh, S. Synthesis of indole-3-acetic acid and indole-3-butyric acid loaded zinc oxide nanoparticles: Effects on rhizogenesis. J. Biotechnol. 2019, 303, 8–15. [Google Scholar] [CrossRef]
- Thangavelu, R.M.; Gunasekaran, D.; Jesse, M.I.; Su, M.R.; Sundarajan, D.; Krishnan, K. Nanobiotechnology approach using plant rooting hormone synthesized silver nanoparticle as “nanobulets” for the dynamic applications in horticulture—An in vitro and ex vitro study. Arab. J. Chem. 2018, 11, 48–61. [Google Scholar] [CrossRef]
- Sichanova, M.; Geneva, M.; Petrova, M.; Miladinova-Georgieva, K.; Kirova, E.; Nedev, T.; Tsekova, D.; Iwanov, I.; Dochev, K.; Ivanova, V.; et al. Improvement of Stevia rebaudiana Bertoni in vitro propagation and steviol glycoside content using aminoacid silver nanofibers. Plants 2022, 11, 2468. [Google Scholar] [CrossRef]
- Tsekova, D.S.; Stoyanova, V.B. Microstructure of new metal-organic gels obtained by low-molecular gelators. Bulg. Chem. Commun. 2009, 41, 149–152. [Google Scholar]
- Ashwell, G. New colorimetric methods of sugar analysis. In Methods in Enzymology; Neufeld, E.F., Ginsburg, V., Eds.; Academic Press: New York, NY, USA, 1966; Volume 8, p. 85. [Google Scholar]
- Bergs, D.; Burghoff, B.; Joehnck, M.; Martin, G.; Schembecker, G. Fast and isocratic HPLC-method for steviol glycosides analysis from Stevia rebaudiana leaves. J. Verbrauch. Lebensm. 2012, 7, 147–154. [Google Scholar] [CrossRef]
- Sichanova, M.; Geneva, M.; Petrova, M.; Miladinova-Georgieva, K.; Kirova, E.; Nedev, T.; Tsekova, D.; Ivanova, V.; Trendafilova, A. Influence of the abiotic elicitors Ag salts of aspartic acid derivatives, self-organized in nanofibers with monomeric and dimeric molecular structures, on the antioxidant activity and stevioside content in micropropagated Stevia rebaudiana Bert. Plants 2023, 12, 3574. [Google Scholar] [CrossRef]
- Hristozkova, M.; Geneva, M.; Stancheva, I.; Iliev, I.; Azcón-Aguilar, C. Symbiotic association between golden berry (Physalis peruviana) and arbuscular mycorrhizal fungi in heavy metal-contaminated soil. J. Plant Prot. Res. 2017, 57, 173–184. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Reis, S.K. Superoxide dismutase: I. Occurrence in higher plants. Plant Physiol. 1997, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, A.; Sankhla, D.; Davis, T.; Sankhla, N.; Smith, B. Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J. Plant Physiol. 1985, 121, 453–461. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Purification of ascorbate peroxidase in spinach chloroplasts: Its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 1987, 28, 131–140. [Google Scholar] [CrossRef]
- Lagrimini, M.; Gingas, V.; Finger, F.; Rothstein, S.; Liu, T.-T.Y. Characterization of antisense transformed plants deficient in the tobacco anionic peroxidase. Plant Physiol. 1997, 114, 1187–1196. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the estimation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001, 24, 13371344. [Google Scholar] [CrossRef]
- Kramer, G.F.; Norman, H.; Krizek, D.; Mirecki, R. Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochemistry 1991, 30, 2101–2108. [Google Scholar] [CrossRef]
- Bates, L.; Waldren, R.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Ellman, G.l. Tissue sulphydryl groups. Arch. Biochem. Biophys. 1959, 82, 7077. [Google Scholar] [CrossRef] [PubMed]
- Ludwig-Müller, J. Molecular basis for the role of auxins in adventitious rooting. In Adventitious Root Formation of Forest Trees and Horticultural Plants—From Genes to Applications; Niemi, K., Scagel, C., Eds.; Research Signpost: Kerala, India, 2009; pp. 1–29. [Google Scholar]
- Muslihatin, W.; Febriawan, Z.; Nasution, A.M.T.; Patrialoka, S.N.; Pratama, I.P.E.W.; Aisyah, P.Y.; Jadid, N.; Fatmawati, S.; Antika, T.R.; Shovitri, M. Morphological and physiological characteristic of Stevia rebaudiana Bertoni stem cuttings under 3-indoleacetic acid (IAA) treatment. Agriculture (Poľnohospodárstvo) 2023, 69, 186–193. [Google Scholar] [CrossRef]
- Li, S.W.; Xue, L.; Feng, H. IBA induced changes in antioxidant enzymes during adventitious rooting in mung bean seedlings. Environ. Exp. Bot. 2009, 66, 442–450. [Google Scholar] [CrossRef]
- Javed, R.; Yucesan, B.; Zia, M.; Gurel, E. Differential effects of plant growth regulators on physiology, steviol glycosides content, and antioxidant capacity in micropropagated tissues of Stevia rebaudiana. Biologia 2017, 72, 1156–1165. [Google Scholar] [CrossRef]
- Libik-Konieczny, M.; Capecka, E.; Tuleja, M.; Konieczny, R. Synthesis and production of steviol glycosides: Recent research trends and perspectives. Appl. Microbiol. Biotechnol. 2021, 105, 3883–3900. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shan, X.; Wen, B.; Owens, G.; Fang, J.; Zhang, S. Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ. Exp. Bot. 2007, 61, 246–253. [Google Scholar] [CrossRef]
- Gong, Q.; Li, Z.; Wang, L.; Dai, T.; Kang, Q.; Niu, D. Exogenous of indole-3-acetic acid application alleviates copper toxicity in spinach seedlings by enhancing antioxidant systems and nitrogen metabolism. Toxics 2019, 8, 1. [Google Scholar] [CrossRef]
- Ma, C.; Yuan, S.; Xie, B.; Li, Q.; Wang, Q.; Shao, M. IAA plays an important role in alkaline stress tolerance by modulating root development and ROS detoxifying systems in rice plants. Int. J. Mol. Sci. 2022, 23, 14817. [Google Scholar] [CrossRef]
- Radić, S.; Vujčić, V.; Glogoški, M.; Radić-Stojković, M. Influence of pH and plant growth regulators on secondary metabolite production and antioxidant activity of Stevia rebaudiana (Bert). Period. Biol. 2016, 118, 9–19. [Google Scholar] [CrossRef]
- Barroso, M.; Barros, L.; Rodrigues, M.A.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C.F.R. Stevia rebaudiana Bertoni cultivated in Portugal: A prospective study of its antioxidant potential in different conservation conditions. Ind. Crops Prod. 2016, 90, 49–55. [Google Scholar] [CrossRef]
- Barroso, M.R. Stevia rebaudiana Bertoni Cultivated in the Field and Obtained by In Vitro Micropropagation: A Prospective Study of the Antioxidant Potential in Different Culture and Storage Conditions. Ph.D. Thesis, Facultad de Farmacia, Departamento de Química Analítica, Nutrición, Bromatología, Universidad de Sevilla, Sevilla, Spain, 2019. [Google Scholar]
- Moat, A.G.; Foster, J.W. Biosynthesis and salvage pathways of pyridine nucleotides. In Pyridine Nucleotide Coenzymes. Chemical, Biochemical, and Medical Aspects, Part B; Dolphin, D., Avramovic, O., Poulson, R., Eds.; Wiley: New York, NY, USA, 1987; pp. 1–24. [Google Scholar]
- Ashihara, H.; Stasolla, C.; Yin, Y.; Loukanina, N.; Thorpe, T.A. De novo and salvage biosynthetic pathways of pyridine nucleotides and nicotinic acid conjugates in cultured plant cells. Plant Sci. 2005, 169, 107–114. [Google Scholar] [CrossRef]
- Ahmad, Z.; Bashir, K.; Matsui, A.; Tanaka, M.; Sasaki, R.; Oikawa, A.; Hirai, M.Y.; Chaomurilege; Zu, Y.; Kawai-Yamada, M.; et al. Overexpression of nicotinamidase 3 (NIC3) gene and the exogenous application of nicotinic acid (NA) enhance drought tolerance and increase biomass in Arabidopsis. Plant Mol. Biol. 2021, 107, 63–84. [Google Scholar] [CrossRef]
- Khurshid, N.; Bukhari, M.A.; Ahmad, T.; Ahmad, Z.; Jatoi, W.N.; Abbas, S.M.; Latif, A.; Raza, A.; Aurangzaib, M.; Hashem, A.; et al. Exogenously applied nicotinic acid alleviates drought stress by enhancing morpho-physiological traits and antioxidant defense mechanisms in wheat. Ecotoxicol. Environ. Saf. 2023, 263, 115350. [Google Scholar] [CrossRef]
- Dalvand, S.; Mumivand, H.; Zahedi, B.; Nia, A.E. The effect of foliar application of glutamic acid, aspartic acid, and nicotinic acid on the growth, yield, and morpho-physiological and biochemical characteristics of fenugreek (Trigonella foenum-graecum L.). Plant Prod. 2024. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, Y.; Zhu, L.; Zhang, L.; Liu, L.; Zhang, D.; Li, D.; Wu, C.; Huang, J.; Yang, G.; et al. The Brassicaceae-specific secreted peptides, STMPs, function in plant growth and pathogen defense. J. Integ. Plant Biol. 2020, 62, 403–420. [Google Scholar] [CrossRef] [PubMed]
- Ahkami, A.H.; Melzer, M.; Ghaffari, M.R.; Pollmann, S.; Ghorbani, J.M.; Shahinnia, F.; Hajirezaei, M.R.; Druege, U. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta 2013, 238, 499–517. [Google Scholar] [CrossRef]
- Wu, K.; Liang, X.; Zhang, X.; Yang, G.; Wang, H.; Xia, Y.; Ishfaq, S.; Ji, H.; Qi, Y.; Guo, W. Metabolomics analysis reveals enhanced salt tolerance in maize through exogenous valine-threonine-isoleucine-aspartic acid application. Front. Plant Sci. 2024, 15, 1374142. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K. Biosynthesis of valine, leucine, and isoleucine. In Plant Amino Acids; Singh, B.K., Ed.; CRC Press: Boca Raton, FL, USA, 1998; p. 22. [Google Scholar]
- Scheel, D.; Casida, J.E. Sulfonylurea herbicides: Growth inhibition in soybean cell suspension cultures and in bacteria correlated with block in biosynthesis of valine, leucine, or isoleucine. Pestic. Biochem. Physiol. 1985, 23, 398–412. [Google Scholar] [CrossRef]
- Ahmad, A.; Hashmi, S.S.; Palma, J.M.; Corpas, F.J. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. Chemosphere 2022, 290, 133329. [Google Scholar] [CrossRef] [PubMed]
Shoot FW, g | Shoot Height, cm | Shoot Numbers Explant−1 | Node Numbers Explant−1 | MR | Rooting % | |
---|---|---|---|---|---|---|
C | 0.12 ± 0.01 a | 4.53 ± 0.223 a | 1.02 ± 0.05 a | 2.31 ± 0.12 a | 2.35 ± 0.12 a | 0.03 |
M6 | ||||||
1 mg L−1 | 0.23 ± 0.01 c | 7.62 ± 0.38 c | 1.75 ± 0.09 c | 4.26 ± 0.21 b | 7.46 ± 0.37 cd | 65 |
10 mg L−1 | 0.25 ± 0.01 d | 9.54 ± 0.48 d | 1.95 ± 0.10 d | 4.76 ± 0.24 b | 9.28 ± 0.46 e | 85 |
50 mg L−1 | 0.21 ± 0.01 c | 7.19 ± 0.36 c | 1.65 ± 0.08 bc | 4.80 ± 0.24 b | 7.92 ± 0.40 d | 75 |
M6+IAA | ||||||
1 mg L−1 | 0.19 ± 0.01 b | 5.41 ± 0.27 b | 1.70 ± 0.09 c | 3.88 ± 0.19 b | 6.59 ± 0.33 b | 100 |
10 mg L−1 | 0.19 ± 0.01 b | 5.71 ± 0.29 b | 1.75 ± 0.09 c | 4.13 ± 0.21 b | 7.22 ± 0.36 c | 100 |
50 mg L−1 | 0.18 ± 0.01 b | 4.71 ± 0.24 a | 1.55 ± 0.08 b | 4.06 ± 0.20 b | 6.29 ± 0.32 b | 85 |
LSD | 0.02 | 0.58 | 0.14 | 1.02 | 0.61 |
Sugars [mg g−1 FW] | |
---|---|
C | 10.25 ± 0.51 c |
M6 | |
1 mg L−1 | 14.22 ± 0.71 e |
10 mg L−1 | 13.78 ± 0.69 e |
50 mg L−1 | 13.48 ± 0.67 e |
M6+IAA | |
1 mg L−1 | 12.28 ± 0.61 d |
10 mg L−1 | 8.14 ± 0.41 b |
50 mg L−1 | 3.27 ± 0.16 a |
LSD | 1.00 |
3-CQA | 5-CQA | 4-CQA | 3,5-DCQA | 4,5-DCQA | Quercitrin | CQAs | DCQAs | |
---|---|---|---|---|---|---|---|---|
C | 0.071 ± 0.004 a | 1.086 ± 0.042 a | 0.152 ± 0.016 a | 1.459 ± 0.027 a | 0.453 ± 0.013 a | 0.086 ± 0.004 a | 1.309 ± 0.063 a | 1.912 ± 0.039 a |
M6 | ||||||||
1 mg L−1 | 0.062 ± 0.003 b | 1.092 ± 0.014 a | 0.063 ± 0.003 b | 2.562 ± 0.050 b | 0.476 ± 0.005 b | 0.094 ± 0.001 b | 1.217 ± 0.009 a | 3.038 ± 0.054 b |
10 mg L−1 | 0.054 ± 0.001 c | 0.424 ± 0.008 b | 0.079 ± 0.002 c | 1.090 ± 0.010 c | 0.317 ± 0.007 c | 0.072 ± 0.002 c | 0.494 ± 0.011 b | 1.339 ± 0.017 c |
50 mg L−1 | 0.030 ± 0.001 d | 0.289 ± 0.007 c | 0.043 ± 0.003 d | 0.970 ± 0.008 d | 0.223 ± 0.006 d | 0.048 ± 0.001 d | 0.362 ± 0.010 c | 1.193 ± 0.014 d |
M6+IAA | ||||||||
1 mg L−1 | 0.042 ± 0.004 e | 2.557 ± 0.045 d | 0.144 ± 0.009 a | 4.467 ± 0.024 e | 0.944 ± 0.036 e | 0.145 ± 0.003 e | 2.743 ± 0.058 d | 5.412 ± 0.060 e |
10 mg L−1 | 0.035 ± 0.002 e | 3.066 ± 0.007 e | 0.114 ± 0.005 e | 5.735 ± 0.033 f | 0.843 ± 0.023 f | 0.102 ± 0.011 a,b | 3.215 ± 0.013 e | 6.578 ± 0.056 f |
50 mg L−1 | nd | 2.345 ± 0.006 f | 0.027 ± 0.002 f | 3.921 ± 0.013 g | 0.482 ± 0.002 b | 0.032 ± 0.002 f | 2.373 ± 0.008 f | 4.403 ± 0.011 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geneva, M.; Trendafilova, A.; Miladinova-Georgieva, K.; Sichanova, M.; Tsekova, D.; Ivanova, V.; Kirova, E.; Petrova, M. Application of Organic Nanofibers to Boost Specialized Metabolite Production and Antioxidant Potential in Stevia rebaudiana In Vitro Cultures. Metabolites 2025, 15, 579. https://doi.org/10.3390/metabo15090579
Geneva M, Trendafilova A, Miladinova-Georgieva K, Sichanova M, Tsekova D, Ivanova V, Kirova E, Petrova M. Application of Organic Nanofibers to Boost Specialized Metabolite Production and Antioxidant Potential in Stevia rebaudiana In Vitro Cultures. Metabolites. 2025; 15(9):579. https://doi.org/10.3390/metabo15090579
Chicago/Turabian StyleGeneva, Maria, Antoaneta Trendafilova, Kamelia Miladinova-Georgieva, Mariana Sichanova, Daniela Tsekova, Viktoria Ivanova, Elisaveta Kirova, and Maria Petrova. 2025. "Application of Organic Nanofibers to Boost Specialized Metabolite Production and Antioxidant Potential in Stevia rebaudiana In Vitro Cultures" Metabolites 15, no. 9: 579. https://doi.org/10.3390/metabo15090579
APA StyleGeneva, M., Trendafilova, A., Miladinova-Georgieva, K., Sichanova, M., Tsekova, D., Ivanova, V., Kirova, E., & Petrova, M. (2025). Application of Organic Nanofibers to Boost Specialized Metabolite Production and Antioxidant Potential in Stevia rebaudiana In Vitro Cultures. Metabolites, 15(9), 579. https://doi.org/10.3390/metabo15090579