The Long-Term Impact of Preterm Birth on Metabolic Bone Profile and Bone Mineral Density in Childhood
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Perinatal and Neonatal Data
2.3. Clinical Assessment
2.4. Metabolic Bone Profile
2.5. Dual-Energy X-Ray Absorptiometry
2.6. Statistical Analysis
3. Results
3.1. Perinatal and Neonatal Characteristics
3.2. Anthropometrics and Metabolic Bone Profile
3.3. Body Composition and Bone Densitometric Findings
3.4. Correlations of Metabolic Bone Profile and Bone-Densitometric Findings with Perinatal and Neonatal Characteristics
3.5. Characteristics of Preterm-Born Children with Low BMD
3.6. Comparisons of Anthropometrics, Metabolic Bone Profile Parameters, Body Composition, and Bone Densitometric Findings Between Children Born Moderate-to-Late Preterm and Controls
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [PubMed]
- Ohuma, E.O.; Moller, A.B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [PubMed]
- Markopoulou, P.; Papanikolaou, E.; Analytis, A.; Zoumakis, E.; Siahanidou, T. Preterm Birth as a Risk Factor for Metabolic Syndrome and Cardiovascular Disease in Adult Life: A Systematic Review and Meta-Analysis. J. Pediatr. 2019, 210, 69–80.e5. [Google Scholar]
- Grover, M.; Ashraf, A.P.; Bowden, S.A.; Calabria, A.; Diaz-Thomas, A.; Krishnan, S.; Miller, J.L.; Robinson, M.E.; DiMeglio, L.A. Invited Mini Review Metabolic Bone Disease of Prematurity: Overview and Practice Recommendations. Horm. Res. Paediatr. 2025, 98, 40–50. [Google Scholar]
- Cerar, S.; Vurzer, L.; Šalamon, A.S.; Kornhauser Cerar, L.; Trdan, M.; Robek, D.; Perme, T.; Biček, A.; Oblak, A.; Marc, J.; et al. Diagnostics of Metabolic Bone Disease in Extremely Preterm Infants-Clinical Applicability of Bone Turnover Biochemical Markers and Quantitative Ultrasound. Children 2024, 11, 784. [Google Scholar]
- Rustico, S.E.; Calabria, A.C.; Garber, S.J. Metabolic bone disease of prematurity. J. Clin. Transl. Endocrinol. 2014, 1, 85–91. [Google Scholar] [PubMed]
- Schulz, E.V.; Wagner, C.L. History, epidemiology and prevalence of neonatal bone mineral metabolic disorders. Semin. Fetal Neonatal Med. 2020, 25, 101069. [Google Scholar]
- Sharp, M. Bone disease of prematurity. Early Hum. Dev. 2007, 83, 653–658. [Google Scholar]
- Done, S.L. Fetal and neonatal bone health: Update on bone growth and manifestations in health and disease. Pediatr. Radiol. 2012, 42 (Suppl. S1), S158–S176. [Google Scholar]
- Faienza, M.F.; D’Amato, E.; Natale, M.P.; Grano, M.; Chiarito, M.; Brunetti, G.; D’Amato, G. Metabolic Bone Disease of Prematurity: Diagnosis and Management. Front. Pediatr. 2019, 7, 143. [Google Scholar]
- Miller, M.E.; Hangartner, T.N. Temporary brittle bone disease: Association with decreased fetal movement and osteopenia. Calcif. Tissue Int. 1999, 64, 137–143. [Google Scholar] [PubMed]
- Miettola, S.; Hovi, P.; Andersson, S.; Strang-Karlsson, S.; Pouta, A.; Laivuori, H.; Järvenpää, A.L.; Eriksson, J.G.; Mäkitie, O.; Kajantie, E. Maternal preeclampsia and bone mineral density of the adult offspring. Am. J. Obstet. Gynecol. 2013, 209, 443. [Google Scholar]
- Gaio, P.; Verlato, G.; Daverio, M.; Cavicchiolo, M.E.; Nardo, D.; Pasinato, A.; de Terlizzi, F.; Baraldi, E. Incidence of metabolic bone disease in preterm infants of birth weight <1250 g and in those suffering from bronchopulmonary dysplasia. Clin. Nutr. Espen. 2018, 23, 234–239. [Google Scholar]
- Baş, E.K.; Bülbül, A.; Şirzai, H.; Arslan, S.; Uslu, S.; Baş, V.; Zubarioglu, U.; Celik, M.; Dursun, M.; Güran, Ö. The long-term impacts of preterm birth and associated morbidities on bone health in preschool children: A prospective cross-sectional study from Turkey. J. Matern. Fetal Neonatal Med. 2022, 35, 677–684. [Google Scholar]
- Balasuriya, C.N.D.; Evensen, K.A.I.; Mosti, M.P.; Brubakk, A.M.; Jacobsen, G.W.; Indredavik, M.S.; Schei, B.; Stunes, A.K.; Syversen, U. Peak Bone Mass and Bone Microarchitecture in Adults Born With Low Birth Weight Preterm or at Term: A Cohort Study. J. Clin. Endocrinol. Metab. 2017, 102, 2491–2500. [Google Scholar]
- Hovi, P.; Andersson, S.; Jarvenpaa, A.L.; Eriksson, J.G.; Strang-Karlsson, S.; Kajantie, E.; Mäkitie, O. Decreased bone mineral density in adults born with very low birth weight: A cohort study. PLoS Med. 2009, 6, e1000135. [Google Scholar]
- Smith, C.M.; Wright, N.P.; Wales, J.K.; Mackenzie, C.; Primhak, R.A.; Eastell, R.; Walsh, J.S. Very low birth weight survivors have reduced peak bone mass and reduced insulin sensitivity. Clin. Endocrinol. 2011, 75, 443–449. [Google Scholar]
- Xie, L.F.; Alos, N.; Cloutier, A.; Béland, C.; Dubois, J.; Nuyt, A.M.; Luu, T.M. The long-term impact of very preterm birth on adult bone mineral density. Bone Rep. 2018, 10, 100189. [Google Scholar] [PubMed]
- Sandboge, S.; Kuula, J.; Björkqvist, J.; Hovi, P.; Mäkitie, O.; Kajantie, E. Bone mineral density in very low birthweight adults-A sibling study. Paediatr. Perinat. Epidemiol. 2022, 36, 665–672. [Google Scholar]
- Haikerwal, A.; Doyle, L.W.; Patton, G.; Garland, S.M.; Cheung, M.M.; Wark, J.D.; Cheong, J.L.Y. Bone health in young adult survivors born extremely preterm or extremely low birthweight in the post surfactant era. Bone 2021, 143, 115648. [Google Scholar]
- Paldánius, P.M.; Ivaska, K.K.; Hovi, P.; Andersson, S.; Eriksson, J.G.; Väänänen, K.; Kajantie, E.; Mäkitie, O. Total and carboxylated osteocalcin associate with insulin levels in young adults born with normal or very low birth weight. PLoS ONE 2013, 8, e63036. [Google Scholar]
- Abou Samra, H.; Stevens, D.; Binkley, T.; Specker, B. Determinants of bone mass and size in 7-year-old former term, late-preterm, and preterm boys. Osteoporos. Int. 2009, 20, 1903–1910. [Google Scholar] [PubMed]
- Chan, G.M.; Armstrong, C.; Moyer-Mileur, L.; Hoff, C. Growth and bone mineralization in children born prematurely. J. Perinatol. 2008, 28, 619–623. [Google Scholar] [PubMed]
- Engan, M.; Vollsæter, M.; Øymar, K.; Markestad, T.; Eide, G.E.; Halvorsen, T.; Juliusson, P.; Clemm, H. Comparison of physical activity and body composition in a cohort of children born extremely preterm or with extremely low birth weight to matched term-born controls: A follow-up study. BMJ Paediatr. Open 2019, 3, e000481. [Google Scholar]
- Backström, M.C.; Kuusela, A.L.; Koivisto, A.M.; Sievänen, H. Bone structure and volumetric density in young adults born prematurely: A peripheral quantitative computed tomography study. Bone 2005, 36, 688–693. [Google Scholar]
- Dao, T.; Robinson, D.L.; Doyle, L.W.; Lee, P.V.; Olsen, J.; Kale, A.; Cheong, J.L.; Wark, J.D. Quantifying Bone Strength Deficits in Young Adults Born Extremely Preterm or Extremely Low Birth Weight. J. Bone Miner. Res. 2023, 38, 1800–1808. [Google Scholar]
- Tong, L.; Pooranawattanakul, S.; Gopal-Kothandapani, J.S.; Offiah, A.C. Comparison of prevalence and characteristics of fractures in term and preterm infants in the first 3 years of life. Pediatr. Radiol. 2021, 51, 86–93. [Google Scholar]
- Bergner, E.M.; Shypailo, R.; Visuthranukul, C.; Hagan, J.; O’Donnell, A.R.; Hawthorne, K.M.; Abrams, S.A.; Hair, A.B. Growth, Body Composition, and Neurodevelopmental Outcomes at 2 Years Among Preterm Infants Fed an Exclusive Human Milk Diet in the Neonatal Intensive Care Unit: A Pilot Study. Breastfeed Med. 2020, 15, 304–311. [Google Scholar]
- Erlandson, M.C.; Sherar, L.B.; Baxter-Jones, A.D.; Jackowski, S.A.; Ludwig-Auser, H.; Arnold, C.; Sankaran, K. Preterm birth and adolescent bone mineral content. Am. J. Perinatol. 2011, 28, 157–163. [Google Scholar]
- Hori, C.; Tsukahara, H.; Fujii, Y.; Kawamitsu, T.; Konishi, Y.; Yamamoto, K.; Ishii, Y.; Sudo, M. Bone mineral status in preterm-born children: Assessment by dual-energy X-ray absorptiometry. Biol. Neonate 1995, 68, 254–258. [Google Scholar]
- Ichiba, H.; Shintaku, H.; Fujimaru, M.; Hirai, C.; Okano, Y.; Funato, M. Bone mineral density of the lumbar spine in very-low-birth-weight infants: A longitudinal study. Eur. J. Pediatr. 2000, 159, 215–218. [Google Scholar] [PubMed]
- Kuitunen, I.; Sund, R.; Sankilampi, U. Association of Preterm Birth and Low Birthweight with Bone Fractures during Childhood. J. Bone Miner. Res. 2023, 38, 1116–1124. [Google Scholar] [PubMed]
- Stigson, L.; Kistner, A.; Sigurdsson, J.; Engström, E.; Magnusson, P.; Hellström, A.; Swolin-Eide, D. Bone and fat mass in relation to postnatal levels of insulin-like growth factors in prematurely born children at 4 y of age. Pediatr. Res. 2014, 75, 544–550. [Google Scholar] [PubMed]
- Breukhoven, P.E.; Leunissen, R.W.; de Kort, S.W.; Willemsen, R.H.; Hokken-Koelega, A.C. Preterm birth does not affect bone mineral density in young adults. Eur. J. Endocrinol. 2011, 164, 133–138. [Google Scholar]
- Buttazzoni, C.; Rosengren, B.; Tveit, M.; Landin, L.; Nilsson, J.Å.; Karlsson, M. Preterm Children Born Small for Gestational Age are at Risk for Low Adult Bone Mass. Calcif. Tissue Int. 2016, 98, 105–113. [Google Scholar]
- Dalziel, S.R.; Fenwick, S.; Cundy, T.; Parag, V.; Beck, T.J.; Rodgers, A.; Harding, J.E. Peak bone mass after exposure to antenatal betamethasone and prematurity: Follow-up of a randomized controlled trial. J. Bone Miner. Res. 2006, 21, 1175–1186. [Google Scholar]
- Fewtrell, M.S.; Prentice, A.; Jones, S.C.; Bishop, N.J.; Stirling, D.; Buffenstein, R.; Lunt, M.; Cole, T.J.; Lucas, A. Bone mineralization and turnover in preterm infants at 8-12 years of age: The effect of early diet. J. Bone Miner. Res. 1999, 14, 810–820. [Google Scholar]
- Wang, J.; Zhao, Q.; Chen, B.; Sun, J.; Huang, J.; Meng, J.; Li, S.; Yan, W.; Ren, C.; Hao, L. Risk factors for metabolic bone disease of prematurity: A meta-analysis. PLoS ONE 2022, 17, e0269180. [Google Scholar]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar]
- American College of Obstetricians and Gynecologists (ACOG) Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet. Gynecol. 2018, 131, e49–e64.
- American College of Obstetricians and Gynecologists (ACOG) Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet. Gynecol. 2019, 133, e1–e25.
- Higgins, R.D.; Jobe, A.H.; Koso-Thomas, M.; Bancalari, E.; Viscardi, R.M.; Hartert, T.V.; Ryan, R.M.; Kallapur, S.G.; Steinhorn, R.H.; Konduri, G.G.; et al. Bronchopulmonary Dysplasia: Executive Summary of a Workshop. J. Pediatr. 2018, 197, 300–308. [Google Scholar] [PubMed]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and development. Vital Health Stat. 11. 2002, 246, 1–190. [Google Scholar]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar]
- Doulgeraki, A.; Fragodimitri, C.; Athanasopoulou, H.; Drakaki, K.; Karabatsos, F.; Schiza, V.; Yousef, J.; Monopolis, I.; Chatziliami, A. Chronic Hemolysis May Adversely Affect Skeletal Health. A Cross-Sectional Study of a Pediatric Population. Hemoglobin 2021, 45, 30–36. [Google Scholar]
- Doulgeraki, A.; Skarpalezou, A.; Theodosiadou, A.; Monopolis, I.; Schulpis, K. Body composition profile of young patients with phenylketonuria and mild hyperphenylalaninemia. Int. J. Endocrinol. Metab. 2014, 12, e16061. [Google Scholar]
- Kalkwarf, H.J.; Abrams, S.A.; DiMeglio, L.A.; Koo, W.W.; Specker, B.L.; Weiler, H. Bone densitometry in infants and young children: The 2013 ISCD Pediatric Official Positions. J. Clin. Densitom. 2014, 17, 243–257. [Google Scholar]
- Laine, C.M.; Laine, T. Diagnosis of Osteoporosis in Children and Adolescents. Eur. Endocrinol. 2013, 9, 141–144. [Google Scholar]
- Mocking, M.; Adu-Bonsaffoh, K.; Osman, K.A.; Tamma, E.; Ruiz, A.M.; van Asperen, R.; Oppong, S.A.; Kleinhout, M.Y.; Gyamfi-Bannerman, C.; Browne, J.L. Causes, survival rates, and short-term outcomes of preterm births in a tertiary hospital in a low resource setting: An observational cohort study. Front. Glob. Womens Health 2023, 3, 989020. [Google Scholar]
- Cauley, J.A. Public health impact of osteoporosis. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1243–1251. [Google Scholar]
- Haseltine, K.N.; Chukir, T.; Smith, P.J.; Jacob, J.T.; Bilezikian, J.P.; Farooki, A. Bone Mineral Density: Clinical Relevance and Quantitative Assessment. J. Nucl. Med. 2021, 62, 446–454. [Google Scholar]
- Lageweg, C.M.T.; van der Putten, M.E.; van Goudoever, J.B.; Feuth, T.; Gotthardt, M.; van Heijst, A.F.J.; Christmann, V. Evaluation of bone mineralization in former preterm born children: Phalangeal quantitative ultrasound cannot replace dual-energy X-ray absorptiometry. Bone Rep. 2018, 8, 38–45. [Google Scholar]
- Wren, T.A.; Gilsanz, V. Assessing bone mass in children and adolescents. Curr. Osteoporos. Rep. 2006, 4, 153–158. [Google Scholar] [PubMed]
- Cummings, S.R.; Black, D.M.; Nevitt, M.C.; Browner, W.; Cauley, J.; Ensrud, K.; Genant, H.K.; Palermo, L.; Scott, J.; Vogt, T.M. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 1993, 341, 72–75. [Google Scholar] [PubMed]
- Embleton, N.; Wood, C.L. Growth, bone health, and later outcomes in infants born preterm. J. Pediatr. 2014, 90, 529–532. [Google Scholar]
- Ahmad, I.; Nemet, D.; Eliakim, A.; Koeppel, R.; Grochow, D.; Coussens, M.; Gallitto, S.; Rich, J.; Pontello, A.; Leu, S.Y.; et al. Body composition and its components in preterm and term newborns: A cross-sectional, multimodal investigation. Am. J. Hum. Biol. 2010, 22, 69–75. [Google Scholar]
- Bowden, L.S.; Jones, C.J.; Ryan, S.W. Bone mineralisation in ex-preterm infants aged 8 years. Eur. J. Pediatr. 1999, 158, 658–661. [Google Scholar]
- Xu, H.; Zhao, Z.; Wang, H.; Ding, M.; Zhou, A.; Wang, X.; Zhang, P.; Duggan, C.; Hu, F.B. Bone mineral density of the spine in 11,898 Chinese infants and young children: A cross-sectional study. PLoS ONE 2013, 8, e82098. [Google Scholar]
- Mihatsch, W.; Dorronsoro Martín, I.; Barrios-Sabador, V.; Couce, M.L.; Martos-Moreno, G.Á.; Argente, J.; Quero, J.; Saenz de Pipaon, M. Bone Mineral Density, Body Composition, and Metabolic Health of Very Low Birth Weight Infants Fed in Hospital Following Current Macronutrient Recommendations during the First 3 Years of Life. Nutrients 2021, 13, 1005. [Google Scholar] [CrossRef]
- Jones, C.A.; Bowden, L.S.; Watling, R.; Ryan, S.W.; Judd, B.A. Hypercalciuria in ex-preterm children, aged 7-8 years. Pediatr. Nephrol. 2001, 16, 665–671. [Google Scholar]
- Fewtrell, M.S.; Prentice, A.; Cole, T.J.; Lucas, A. Effects of growth during infancy and childhood on bone mineralization and turnover in preterm children aged 8-12 years. Acta Paediatr. 2000, 89, 148–153. [Google Scholar]
- Congdon, P.J.; Horsman, A.; Ryan, S.W.; Truscott, J.G.; Durward, H. Spontaneous resolution of bone mineral depletion in preterm infants. Arch. Dis. Child. 1990, 65, 1038–1042. [Google Scholar]
- Horsman, A.; Ryan, S.W.; Congdon, P.J.; Truscott, J.G.; Simpson, M. Bone mineral content and body size 65 to 100 weeks’ postconception in preterm and full term infants. Arch. Dis. Child. 1989, 64, 1579–1586. [Google Scholar] [PubMed]
- Kurl, S.; Heinonen, K.; Länsimies, E.; Launiala, K. Determinants of bone mineral density in prematurely born children aged 6-7 years. Acta Paediatr. 1998, 87, 650–653. [Google Scholar] [PubMed]
- Bishop, N.J.; Dahlenburg, S.L.; Fewtrell, M.S.; Morley, R.; Lucas, A. Early diet of preterm infants and bone mineralization at age five years. Acta Paediatr. 1996, 85, 230–236. [Google Scholar] [PubMed]
- Fewtrell, M.S.; Williams, J.E.; Singhal, A.; Murgatroyd, P.R.; Fuller, N.; Lucas, A. Early diet and peak bone mass: 20 year follow-up of a randomized trial of early diet in infants born preterm. Bone 2009, 45, 142–149. [Google Scholar]
- Weiler, H.A.; Yuen, C.K.; Seshia, M.M. Growth and bone mineralization of young adults weighing less than 1500 g at birth. Early Hum. Dev. 2002, 67, 101–112. [Google Scholar]
- Magnusson, A.; Swolin-Eide, D.; Elfvin, A. Body composition and bone mass among 5-year-old survivors of necrotizing enterocolitis. Pediatr. Res. 2023, 93, 924–931. [Google Scholar]
- Magnusson, A.; Ahle, M.; Andersson, R.E.; Swolin-Eide, D.; Elfvin, A. Increased risk of rickets but not fractures during childhood and adolescence following necrotizing enterocolitis among children born preterm in Sweden. Pediatr. Res. 2019, 86, 100–106. [Google Scholar]
- Bezirganoglu, H.; Karacaglar, N.B.; KanmazKutman, G. Increased risk of metabolic bone disease in preterms born to preeclamptic mothers: A case-control study. Ann. Med. Res. 2023, 30, 778–781. [Google Scholar]
- Perrone, S.; Caporilli, C.; Grassi, F.; Ferrocino, M.; Biagi, E.; Dell’Orto, V.; Beretta, V.; Petrolini, C.; Gambini, L.; Street, M.E.; et al. Prenatal and Neonatal Bone Health: Updated Review on Early Identification of Newborns at High Risk for Osteopenia. Nutrients 2023, 15, 3515. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Z.; Dai, S.; Xu, L. Risk factors for metabolic bone disease among preterm infants less than 32 weeks gestation with Bronchopulmonary dysplasia. BMC Pediatr. 2021, 21, 235. [Google Scholar]
- Wilson, B.M.; Wilson, A.B.; Kraemer, M.; Bowker, R.; Patel, A.L.; Sumner, D.R. Bone mineral density deficits in individuals born preterm persist through young adulthood: A systematic review and meta-analysis of DXA studies. Bone 2025, 198, 117519. [Google Scholar]
- Kovacs, C.S. Bone development and mineral homeostasis in the fetus and neonate: Roles of the calciotropic and phosphotropic hormones. Physiol. Rev. 2014, 94, 1143–1218. [Google Scholar]
- Tsukahara, H.; Takeuchi, M.; Fujisawa, K.; Miura, M.; Hata, K.; Yamamoto, K.; Mayumi, M. High-turnover osteopenia in preterm infants: Determination of urinary pyridinium cross-links of collagen. Metabolism 1998, 47, 333–335. [Google Scholar] [PubMed]
- Karsenty, G.; Khosla, S. The crosstalk between bone remodeling and energy metabolism: A translational perspective. Cell Metab. 2022, 34, 805–817. [Google Scholar] [PubMed]
- D’Amato, G.; Brescia, V.; Fontana, A.; Natale, M.P.; Lovero, R.; Varraso, L.; Di Serio, F.; Simonetti, S.; Muggeo, P.; Faienza, M.F. Biomarkers and Biochemical Indicators to Evaluate Bone Metabolism in Preterm Neonates. Biomedicines 2024, 12, 1271. [Google Scholar] [CrossRef]
- Crofton, P.M.; Shrivastava, A.; Wade, J.C.; Stephen, R.; Kelnar, C.J.; Lyon, A.J.; McIntosh, N. Bone and collagen markers in preterm infants: Relationship with growth and bone mineral content over the first 10 weeks of life. Pediatr. Res. 1999, 46, 581–587. [Google Scholar]
- Aly, H.; Moustafa, M.F.; Amer, H.A.; Hassanein, S.; Keeves, C.; Patel, K. Gestational age, sex and maternal parity correlate with bone turnover in premature infants. Pediatr. Res. 2005, 57, 708–711. [Google Scholar]
- Halleen, J.M.; Alatalo, S.L.; Suominen, H.; Cheng, S.; Janckila, A.J.; Väänänen, H.K. Tartrate-resistant acid phosphatase 5b: A novel serum marker of bone resorption. J. Bone Miner. Res. 2000, 15, 1337–1345. [Google Scholar]
- Nitta, A.; Suzumura, H.; Arisaka, O.; Miura, T.; Igarashi, Y. Fetal Bone Formation Is Decreased from Middle Pregnancy to Birth. Tohoku J. Exp. Med. 2016, 239, 147–153. [Google Scholar]
- Motte-Signoret, E.; Jlassi, M.; Lecoq, L.; Wachter, P.Y.; Durandy, A.; Boileau, P. Early elevated alkaline phosphatase as a surrogate biomarker of ongoing metabolic bone disease of prematurity. Eur. J. Pediatr. 2023, 182, 1829–1837. [Google Scholar]
- Brennan-Speranza, T.C.; Conigrave, A.D. Osteocalcin: An osteoblast-derived polypeptide hormone that modulates whole body energy metabolism. Calcif. Tissue Int. 2015, 96, 1–10. [Google Scholar]
- Seo, W.Y.; Kim, J.H.; Baek, D.S.; Kim, S.J.; Kang, S.; Yang, W.S.; Song, J.A.; Lee, M.S.; Kim, S.; Kim, Y.S. Production of recombinant human procollagen type I C-terminal propeptide and establishment of a sandwich ELISA for quantification. Sci. Rep. 2017, 7, 15946. [Google Scholar]
- Mizokami, A.; Kawakubo-Yasukochi, T.; Hirata, M. Osteocalcin and its endocrine functions. Biochem. Pharmacol. 2017, 132, 1–8. [Google Scholar]
- Alenius, S.; Kajantie, E.; Sund, R.; Nurhonen, M.; Haaramo, P.; Näsänen-Gilmore, P.; Vääräsmäki, M.; Lemola, S.; Räikkönen, K.; Schnitzlein, D.D.; et al. Risk-Taking Behavior of Adolescents and Young Adults Born Preterm. J. Pediatr. 2023, 253, 135–143. [Google Scholar]
- Kajantie, E.; Strang-Karlsson, S.; Hovi, P.; Räikkönen, K.; Pesonen, A.K.; Heinonen, K.; Järvenpää, A.L.; Eriksson, J.G.; Andersson, S. Adults born at very low birth weight exercise less than their peers born at term. J. Pediatr. 2010, 157, 610–616. [Google Scholar]
- Tamai, K.; Matsumoto, N.; Takeuchi, A.; Nakamura, M.; Nakamura, K.; Kageyama, M.; Washio, Y.; Tsukahara, H.; Yorifuji, T. Sports participation and preterm birth: A nationwide birth cohort in Japan. Pediatr. Res. 2022, 92, 572–579. [Google Scholar]
- Specker, B.; Thiex, N.W.; Sudhagoni, R.G. Does Exercise Influence Pediatric Bone? A Systematic Review. Clin. Orthop. Relat. Res. 2015, 473, 3658–3672. [Google Scholar]
- Kohrt, W.M.; Bloomfield, S.A.; Little, K.D.; Nelson, M.E.; Yingling, V.R.; American College of Sports Medicine. American College of Sports Medicine Position Stand: Physical activity and bone health. Med. Sci. Sports Exerc. 2004, 36, 1985–1996. [Google Scholar]
- Torró-Ferrero, G.; Fernández-Rego, F.J.; Agüera-Arenas, J.J.; Gomez-Conesa, A. Effect of physiotherapy on the promotion of bone mineralization in preterm infants: A randomized controlled trial. Sci. Rep. 2022, 12, 11680. [Google Scholar]
- Schulzke, S.M.; Kaempfen, S.; Trachsel, D.; Patole, S.K. Physical activity programs for promoting bone mineralization and growth in preterm infants. Cochrane Database Syst. Rev. 2014, 2014, CD005387. [Google Scholar] [PubMed]
- Aparisi Gómez, M.P.; Wáng, Y.J.; Yu, J.S.; Johnson, R.; Chang, C.Y. Dual-Energy X-Ray Absorptiometry for Osteoporosis Screening: AJR Expert Panel Narrative Review. AJR Am. J. Roentgenol. 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Fuggle, N.R.; Reginster, J.Y.; Al-Daghri, N.; Bruyere, O.; Burlet, N.; Campusano, C.; Cooper, C.; Perez, A.D.; Halbout, P.; Ghi, T.; et al. Radiofrequency echographic multi spectrometry (REMS) in the diagnosis and management of osteoporosis: State of the art. Aging Clin. Exp. Res. 2024, 36, 135. [Google Scholar] [PubMed]
- Ahmed, B.; Abushama, M.; Konje, J.C. Prevention of spontaneous preterm delivery—An update on where we are today. J. Matern.-Fetal Neonatal Med. 2023, 36, 2183756. [Google Scholar]
- Young, B.E.; McNanley, T.J.; Cooper, E.M.; McIntyre, A.W.; Witter, F.; Harris, Z.L.; O’Brien, K.O. Maternal vitamin D status and calcium intake interact to affect fetal skeletal growth in utero in pregnant adolescents. Am. J. Clin. Nutr. 2012, 95, 1103–1112. [Google Scholar]
- Zemel, B.S.; Leonard, M.B.; Kelly, A.; Lappe, J.M.; Gilsanz, V.; Oberfield, S.; Mahboubi, S.; Shepherd, J.A.; Hangartner, T.N.; Frederick, M.M.; et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J. Clin. Endocrinol. Metab. 2010, 95, 1265–1273. [Google Scholar]
- Mølgaard, C.; Thomsen, B.L.; Prentice, A.; Cole, T.J.; Michaelsen, K.F. Whole body bone mineral content in healthy children and adolescents. Arch. Dis. Child. 1997, 76, 9–15. [Google Scholar]
- Wikland, K.A.; Luo, Z.C.; Niklasson, A.; Karlberg, J. Swedish population-based longitudinal reference values from birth to 18 years of age for height, weight and head circumference. Acta Paediatr. 2002, 91, 739–754. [Google Scholar]
Variable | Children Born Preterm (n = 86) | Controls (n = 58) | p-Value * | |
---|---|---|---|---|
Group A (n = 49) | Group B (n = 37) | |||
Age (years) | 10.8 ± 1.2 | 11.0 ± 2.0 | 10.7 ± 1.5 | 0.40 |
Males (n) | 24 | 15 | 32 | 0.42 |
Small for gestational age (SGA) [n (%)] | 3 (6.1) | 10 (27.0) | 8 (13.8) | 0.06 |
Maternal age at birth (years) | 33.9 ± 4.8 | 32.8 ± 5.5 | 33.3 ± 4.7 | 0.76 |
Maternal gestational hypertension [n (%)] | 1 (2.0) | 1 (3.6) | 3 (5.2) | 0.41 |
Maternal preeclampsia [n (%)] | 7 (14.3) † | 5 (13.9) # | 1 (1.7) | 0.05 |
Maternal gestational diabetes [n (%)] | 7 (14.3) | 8 (22.2) | 9 (15.5) | 0.58 |
Maternal smoking during pregnancy [n (%)] | 7 (14.3) † | 8 (22.2) † | 1 (1.7) | 0.007 |
Antenatal corticosteroids [n (%)] | 29 (59.2) ‡§ | 13 (46.4) ‡ | 4 (6.9) | <0.001 |
Cesarean delivery [n (%)] | 44 (89.8) ‡ | 35 (94.6) ‡ | 27 (46.6) | <0.001 |
Gestational age (weeks) | 29.0 ± 2.2 ‡¶ | 34.4 ± 1.4 ‡ | 38.9 ± 1.0 | <0.001 |
Birth weight (g) | 1254.6 ± 353.8 ‡¶ | 2011.1 ± 458.1 ‡ | 3241.8 ± 491.7 | <0.001 |
RDS [n (%)] | 40 (81.6) ‡¶ | 13 (37.1) ‡ | 0 (0) | <0.001 |
Surfactant therapy [n (%)] | 35 (71.4) ‡¶ | 8 (22.9) ‡ | 0 (0) | <0.001 |
Mechanical ventilation [n (%)] | 40 (81.6) ‡¶ | 9 (25.7) ‡ | 0 (0) | <0.001 |
Duration of mechanical ventilation (days) | 12.0 (2.0–30.5) ‡¶ | 0 (0–2.0) ‡ | 0 (0) | <0.001 |
Duration of parenteral nutrition (days) | 30.5 (15.8–44.0) ‡§ | 9 (2.0–32.5) # | 0 (0) | 0.02 |
BPD [n (%)] | 19 (38.8) ‡¶ | 0 (0) | 0 (0) | <0.001 |
IVH [n (%)] | 17 (34.7) ‡¥ | 4 (11.4) # | 0 (0) | <0.001 |
ROP [n (%)] | 16 (32.7) ‡¥ | 4 (14.3) † | 0 (0) | <0.001 |
PDA [n (%)] | 12 (24.5) ‡¶ | 0 (0) | 0 (0) | <0.001 |
NEC [n (%)] | 3 (6.1) | 1 (2.9) | 0 (0) | 0.19 |
Variable | Children Born Preterm (n = 86) | Controls (n = 58) | p-Value * | |
---|---|---|---|---|
Group A (n = 49) | Group B (n = 37) | |||
Weight (kg) | 41.6 ± 11.2 | 39.1 ± 10.7 | 39.9 ± 8.7 | 0.13 |
Weight Z-score | 0.50 ± 0.99 | 0.33 ± 0.83 | 0.55 ± 0.81 | 0.29 |
Height (cm) | 145.8 ± 9.9 | 145.5 ± 11.7 | 145.1 ± 10.1 | 0.57 |
Height Z-score | 0.38 ± 0.93 | 0.32 ± 0.89 | 0.46 ± 0.91 | 0.79 |
BMI (kg/m2) | 19.4 ± 3.9 § | 18.1 ± 3.0 | 18.8 ± 2.7 | 0.07 |
BMI Z-score | 0.42 ± 1.27 | 0.23 ± 0.89 | 0.47 ± 0.98 | 0.36 |
Waist circumference (cm) | 72.8 ± 10.6 ¶ | 68.7 ± 9.1 | 69.5 ± 8.0 | 0.02 |
Hip circumference (cm) | 79.2 ± 9.7 | 79.7 ± 9.8 | 79.0 ± 7.8 | 0.63 |
WHR | 0.92 ± 0.05 ‡¥ | 0.87 ± 0.05 | 0.88 ± 0.04 | <0.001 |
Tanner stage 1–2 [n (%)] | 34 (69.4) | 25 (67.6) | 42 (72.4) | 0.06 |
Previous fracture history [n (%)] | 1 (2.0) | 0 (0) | 5 (8.6) | 0.31 |
Inadequate daily calcium intake [n (%)] | 7 (14.3) | 3 (8.1) | 5 (8.6) | 0.07 |
Physical activity (hours per week) | 5.0 (4.0–7.0) †¥ | 6.3 (5.0–9.8) | 6.0 (4.0–8.0) | 0.006 |
Calcium (mg/dL) | 9.80 ± 0.21 | 9.71 ± 0.33 | 9.70 ± 0.28 | 0.08 |
Phosphorus (mg/dL) | 4.46 ± 0.41 | 4.45 ± 0.40 | 4.55 ± 0.43 | 0.49 |
Alkaline phosphatase (IU/L) | 274.49 ± 68.89 †¶ | 213.67 ± 79.47 | 234.87 ± 80.73 | <0.001 |
25(OH)D (ng/mL) | 22.88 ± 9.03 | 27.18 ± 10.13 | 23.05 ± 10.54 | 0.17 |
Osteocalcin (OC) (ng/mL) | 27.08 ± 5.24 #¶ | 14.75 ± 9.3 † | 22.72 ± 9.11 | <0.001 |
Procollagen type I C-terminal propeptide (PICP) (ng/mL) | 475.69 ± 291.85 †¶ | 234.72 ± 97.00 # | 302.34 ± 153.16 | <0.001 |
Insulin growth factor-1 (IGF-1) (ng/mL) | 308.67 ± 162.72 | 275.64 ± 115.94 | 256.47 ± 123.85 | 0.59 |
Serum tartrate-resistant acid phosphatase 5b (bone TRAP5b) (U/L) | 7.91 ± 1.99 †¶ | 4.80 ± 2.09 † | 6.45 ± 1.72 | <0.001 |
Urinary calcium/creatinine (uCa/uCr) | 0.26 (0.12–0.52) | 0.23 (0.15–0.39) | 0.23 (0.08–0.47) | 0.47 |
Variable | Children Born Preterm (n = 86) | Controls (n = 58) | p-Value * | |
---|---|---|---|---|
Group A (n = 49) | Group B (n = 37) | |||
LTM (g) | 27,757.4 ± 5758.9 | 26,801.3 ± 6078.5 | 28,436.8 ± 6115.1 | 0.56 |
LTM (%) | 68.7 ± 8.9 | 69.9 ± 9.0 | 70.5 ± 8.0 | 0.52 |
FM (g) | 12,002.8 ± 6748.1 | 10,874.7 ± 5781.3 | 11,082.7 ± 5395.3 | 0.47 |
FM (%) | 28.8 ± 9.5 | 27.4 ± 9.5 | 27.1 ± 8.8 | 0.59 |
Total-body-less-head | ||||
BMC (g) | 1420.3 ± 290.9 | 1475.4 ± 475.3 | 1509.2 ± 354.1 | 0.86 |
BMD (g/cm2) | 0.82 ± 0.08 # | 0.85 ± 0.11 | 0.85 ± 0.07 | 0.04 |
BMD Z-score | 0.41 ± 0.91 † | 0.50 ± 0.77 † | 0.84 ± 0.63 | 0.03 |
BMD Z-score < −1.0 SD [n (%)] | 4 (8.2) # | 0 (0) | 0 (0) | 0.03 |
Lumbar-spine (L1–L4) | ||||
BMC (g) | 28.7 ± 6.4 # | 32.1 ± 11.8 | 31.52 ± 9.05 | 0.03 |
Bone area (cm2) | 37.5 ± 5.5 | 37.7 ± 7.1 | 37.8 ± 6.3 | 0.97 |
BMD (g/cm2) | 0.76 ± 0.10 † | 0.83 ± 0.16 | 0.82 ± 0.11 | 0.05 |
BMD Z-score | −0.34 ± 0.84 ‡ | −0.09 ± 0.77 # | 0.23 ± 0.71 | 0.006 |
BMD Z-score < −1.0 SD [n (%)] | 11 (22.4) # | 5 (16.7) | 4 (6.9) | 0.05 |
Variable | Very Preterm-Born Children with Low BMD (n = 13) | Very Preterm-Born Children with Normal BMD (n = 36) | p-Value |
---|---|---|---|
Age (years) | 11.0 ± 1.6 | 10.8 ± 1.0 | 0.80 |
Males (n) | 8 | 16 | 0.29 |
Small for gestational age (SGA) [n (%)] | 1 (7.7) | 2 (5.6) | 0.92 |
Maternal age at birth (years) | 34.6 ± 5.9 | 33.6 ± 4.3 | 0.54 |
Maternal gestational hypertension [n (%)] | 1 (7.7) | 0 (0) | NA |
Maternal preeclampsia [n (%)] | 3 (23.1) | 4 (11.1) | 0.38 |
Maternal gestational diabetes [n (%)] | 1 (7.7) | 6 (16.7) | 0.35 |
Maternal smoking during pregnancy [n (%)] | 1 (7.7) | 6 (16.7) | 0.35 |
Antenatal corticosteroids [n (%)] | 6 (46.2) | 23 (63.9) | 0.96 |
Cesarean delivery [n (%)] | 12 (92.3) | 32 (88.9) | 0.73 |
Gestational age (weeks) | 29.0 ± 2.5 | 29.0 ± 2.1 | 0.98 |
Birth weight (g) | 1242.9 ± 386.2 | 1258.8 ± 347.1 | 0.89 |
RDS [n (%)] | 10 (76.9) | 30 (83.3) | 0.33 |
Surfactant therapy [n (%)] | 10 (76.9) | 25 (69.4) | 0.93 |
Mechanical ventilation [n (%)] | 12 (92.3) | 28 (77.8) | 0.39 |
Duration of mechanical ventilation (days) | 14.0 (1.0–38.5) | 10.5 (2.3–29.0) | 0.90 |
Duration of parenteral nutrition (days) | 38.5 (12.5–48.5) | 30.0 (17.5–37.5) | 0.72 |
BPD [n (%)] | 7 (53.8) | 12 (33.3) | 0.21 |
IVH [n (%)] | 5 (38.5) | 12 (33.3) | 0.75 |
ROP [n (%)] | 5 (38.5) | 11 (30.6) | 0.23 |
PDA [n (%)] | 3 (23.1) | 9 (25.0) | 0.80 |
NEC [n (%)] | 2 (15.4) | 1 (2.8) | 0.13 |
Weight (kg) | 34.5 ± 6.4 | 44.2 ± 11.5 | 0.01 |
Weight Z-score | −0.38 ± 0.64 | 0.82 ± 0.90 | <0.001 |
Height (cm) | 144.8 ± 11.2 | 146.2 ± 9.6 | 0.67 |
Height Z-score | 0.10 ± 0.93 | 0.49 ± 0.92 | 0.20 |
BMI (kg/m2) | 16.5 ± 2.8 | 20.5 ± 3.7 | 0.001 |
BMI Z-score | −0.74 ± 1.38 | 0.84 ± 0.94 | 0.002 |
Waist circumference (cm) | 65.1 ± 7.5 | 75.6 ± 10.3 | 0.002 |
Hip circumference (cm) | 70.3 ± 7.3 | 81.8 ± 8.8 | 0.004 |
WHR | 0.89 ± 0.06 | 0.93 ± 0.04 | 0.05 |
Tanner stage 1–2 [n (%)] | 11 (84.6) | 23 (63.9) | 0.20 |
Previous fracture history [n (%)] | 0 (0) | 1 (2.8) | NA |
Inadequate daily calcium intake [n (%)] | 5 (38.5) | 2 (5.6) | <0.001 |
Physical activity (hours per week) | 5.0 (2.8–6.3) | 5.0 (4.0–6.0) | 0.94 |
Calcium (mg/dL) | 9.84 ± 0.20 | 9.79 ± 0.22 | 0.48 |
Phosphorus (mg/dL) | 4.60 ± 0.36 | 4.42 ± 0.42 | 0.17 |
Alkaline phosphatase (IU/L) | 270.92 ± 69.66 | 275.78 ± 69.55 | 0.83 |
25(OH)D (ng/mL) | 24.04 ± 8.23 | 22.55 ± 9.38 | 0.71 |
Osteocalcin (OC) (ng/mL) | 26.56 ± 4.46 | 27.27 ± 5.64 | 0.81 |
Procollagen type I C-terminal propeptide (PICP) (ng/mL) | 531.75 ± 322.98 | 457.00 ± 293.56 | 0.67 |
Insulin growth factor-1 (IGF-1) (ng/mL) | 188.25 ± 95.39 | 352.45 ± 162.57 | 0.04 |
Serum tartrate-resistant acid phosphatase 5b (bone TRAP5b) (U/L) | 7.20 ± 1.30 | 8.17 ± 2.19 | 0.32 |
Urinary calcium/creatinine (uCa/uCr) | 0.37 (0.15–0.52) | 0.26 (0.11–0.53) | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markopoulou, P.; Doulgeraki, A.; Koutroumpa, A.; Polyzois, G.; Athanasopoulou, H.; Kanaka-Gantenbein, C.; Siahanidou, T. The Long-Term Impact of Preterm Birth on Metabolic Bone Profile and Bone Mineral Density in Childhood. Metabolites 2025, 15, 463. https://doi.org/10.3390/metabo15070463
Markopoulou P, Doulgeraki A, Koutroumpa A, Polyzois G, Athanasopoulou H, Kanaka-Gantenbein C, Siahanidou T. The Long-Term Impact of Preterm Birth on Metabolic Bone Profile and Bone Mineral Density in Childhood. Metabolites. 2025; 15(7):463. https://doi.org/10.3390/metabo15070463
Chicago/Turabian StyleMarkopoulou, Panagiota, Artemis Doulgeraki, Arsinoi Koutroumpa, Georgios Polyzois, Helen Athanasopoulou, Christina Kanaka-Gantenbein, and Tania Siahanidou. 2025. "The Long-Term Impact of Preterm Birth on Metabolic Bone Profile and Bone Mineral Density in Childhood" Metabolites 15, no. 7: 463. https://doi.org/10.3390/metabo15070463
APA StyleMarkopoulou, P., Doulgeraki, A., Koutroumpa, A., Polyzois, G., Athanasopoulou, H., Kanaka-Gantenbein, C., & Siahanidou, T. (2025). The Long-Term Impact of Preterm Birth on Metabolic Bone Profile and Bone Mineral Density in Childhood. Metabolites, 15(7), 463. https://doi.org/10.3390/metabo15070463