Amino Acid Metabolism in Liver Mitochondria: From Homeostasis to Disease
Abstract
1. Introduction
2. Mitochondrial Amino Acid Catabolism: Pathways and Disorders
2.1. Glycine Degradation
2.2. Glutamate Degradation
2.3. Proline Degradation
2.4. Lysine Degradation
2.5. Branched-Chain Amino Acid Degradation
2.6. Degradation of Isoleucine, Valine, Threonine, Methionine
3. Urea Cycle and Ammonia Detoxification
3.1. CPS1 Deficiency
3.2. OTC Deficiency
3.3. NAGS Deficiency
3.4. Carbonic Anhydrase Va (CA-VA) Deficiency
4. Mitochondrial Transporters in Amino Acid Metabolism
4.1. Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome (SLC25A15 Deficiency)
4.2. Citrin (SLC25A13) Deficiency
4.3. SLC25A22 Deficiency
5. Mitochondrial Amino Acid Metabolism and Cancer
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebhardt, R. Metabolic zonation of the liver: Regulation and implications for liver function. Pharmacol. Ther. 1992, 53, 275–354. [Google Scholar] [CrossRef] [PubMed]
- Häussinger, D.; Lames, H.W.; Moorman, F.M.A. Hepatocyte Heterogeneity in the Metabolism of Amino Acids and Ammonia. Enzyme 1992, 46, 72–93. [Google Scholar] [CrossRef] [PubMed]
- Chandel, S.N. Amino Acid Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040584. [Google Scholar] [CrossRef]
- Coughlin, R.C.; Swanson, A.M.; Kronquist, K.; Acquaviva, C.; Hutchin, T.; Rodríguez-Pombo, P.; Väisänen, M.-L.; Spector, E.; Creadon-Swindell, G.; Brás-Goldberg, M.A.; et al. The genetic basis of classic nonketotic hyperglycinemia due to mutations in GLDC and AMT. Genet. Med. 2017, 19, 104–111. [Google Scholar] [CrossRef]
- Majethia, P.; Somashekar, H.P.; Hebbar, M.; Kadavigere, R.; Praveen, K.B.; Girisha, M.K.; Shukla, A. Biallelic start loss variant, c.1A > G in GCSH is associated with variant nonketotic hyperglycinemia. Clin. Genet. 2021, 100, 201–205. [Google Scholar] [CrossRef]
- Arribas-Carreira, L.; Dallabona, C.; Swanson, A.M.; Farris, J.; Østergaard, E.; Tsiakas, K.; Hempel, M.; Aquaviva-Bourdain, C.; Koutsoukos, S.; Stence, V.N.; et al. Pathogenic variants in GCSH encoding the moonlighting H-protein cause combined nonketotic hyperglycinemia and lipoate deficiency. Hum. Mol. Genet. 2023, 32, 917–933. [Google Scholar] [CrossRef]
- Luczkowska, K.; Stekelenburg, C.; Sloan-Béna, F.; Ranza, E.; Gastaldi, G.; Schwitzgebel, V.; Maechler, P. Hyperinsulinism associated with GLUD1 mutation: Allosteric regulation and functional characterization of p.G446V glutamate dehydrogenase. Hum. Genom. 2020, 14, 9. [Google Scholar] [CrossRef]
- Safran, A.; Proskorovski-Ohayon, R.; Eskin-Schwartz, M.; Yogev, Y.; Drabkin, M.; Eremenko, E.; Aharoni, S.; Freund, O.; Jean, M.M.; Agam, N.; et al. Hyperinsulinism/hyperammonemia syndrome caused by biallelic SLC25A36 mutation. J. Inherit. Metab. Dis. 2023, 46, 744–755. [Google Scholar] [CrossRef]
- Shahroor, A.M.; Lasorsa, M.F.; Porcelli, V.; Dweikat, I.; Noia, D.A.M.; Gur, M.; Agostino, G.; Shaag, A.; Rinaldi, T.; Gasparre, G.; et al. PNC2 (SLC25A36) Deficiency Associated With the Hyperinsulinism/Hyperammonemia Syndrome. J. Clin. Endocrinol. Metab. 2022, 107, 1346–1356. [Google Scholar] [CrossRef]
- Jasper, L.; Scarcia, P.; Rust, S.; Reunert, J.; Palmieri, F.; Marquardt, T. Uridine Treatment of the First Known Case of SLC25A36 Deficiency. Int. J. Mol. Sci. 2021, 22, 9929. [Google Scholar] [CrossRef]
- Hama, R.; Kido, J.; Sugawara, K.; Nakamura, T.; Nakamura, K. Hyperprolinemia type I caused by homozygous p.T466M mutation in PRODH. Hum. Genome Var. 2021, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Paria, P.; Saini, G.A.; Suthar, R.; Bhatia, V.; Attri, V.S. Metabolic epilepsy in hyperprolinemia type II due to a novel nonsense ALDH4A1 gene variant. Metab. Brain Dis. 2021, 36, 1413–1417. [Google Scholar] [CrossRef] [PubMed]
- Motte, J.; Fisse, L.A.; Grüter, T.; Schneider, R.; Breuer, T.; Lücke, T.; Krueger, S.; Nguyen, P.H.; Gold, R.; Ayzenberg, I.; et al. Novel variants in a patient with late-onset hyperprolinemia type II: Diagnostic key for status epilepticus and lactic acidosis. BMC Neurol. 2019, 19, 345. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, M.; Auray-Blais, C.; Maranda, B.; Sabovic, A.; Devita, J.R.; Lazarus, B.M.; Houten, M.S. A case of hyperlysinemia identified by urine newborn screening. JIMD Rep. 2023, 64, 440–445. [Google Scholar] [CrossRef]
- Coughlin, R.C.; Swanson, A.M.; Spector, E.; Meeks, L.J.N.; Kronquist, E.K.; Aslamy, M.; Wempe, F.M.; Karnebeek, V.M.D.C.; Gospe, M.S.; Aziz, G.V.; et al. The genotypic spectrum of ALDH7A1 mutations resulting in pyridoxine dependent epilepsy: A common epileptic encephalopathy. J. Inherit. Metab. Dis. 2019, 42, 353–361. [Google Scholar] [CrossRef]
- Fang, C.; Yang, L.; Xiao, F.; Yan, K.; Zhou, W. Genotype and phenotype features and prognostic factors of neonatal-onset pyridoxine-dependent epilepsy: A systematic review. Epilepsy Res. 2024, 202, 107363. [Google Scholar] [CrossRef]
- Tibelius, A.; Evers, C.; Oeser, S.; Rinke, I.; Jauch, A.; Hinderhofer, K. Compilation of Genotype and Phenotype Data in GCDH-LOVD for Variant Classification and Further Application. Genes 2023, 14, 2218. [Google Scholar] [CrossRef]
- Gürbüz, B.B.; Yılmaz, Y.D.; Coşkun, T.; Tokatlı, A.; Dursun, A.; Sivri, S.H. Glutaric aciduria type 1: Genetic and phenotypic spectrum in 53 patients. Eur. J. Med. Genet. 2020, 63, 104032. [Google Scholar] [CrossRef]
- Carling, S.R.; Hedgethorne, K.; Chakrapani, A.; Hall, L.P.; Flynn, N.; Greenfield, T.; Moat, J.S.; Ssali, J.; Shakespeare, L.; Taj, N.; et al. Retrospective Review of Positive Newborn Screening Results for Isovaleric Acidemia and Development of a Strategy to Improve the Efficacy of Newborn Screening in the UK. Int. J. Neonatal Screen. 2024, 10, 24. [Google Scholar] [CrossRef]
- Szymańska, E.; Jezela-Stanek, A.; Bogdańska, A.; Rokicki, D.; Emczyńska-Seliga, V.E.E.; Pajdowska, M.; Ciara, E.; Tylki-Szymańska, A. Long Term Follow-Up of Polish Patients with Isovaleric Aciduria. Clinical and Molecular Delineation of Isovaleric Aciduria. Diagnostics 2020, 10, 738. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, P.; Yu, Z.; Yin, X.; Zhang, C.; Miao, H.; Huang, X. Newborn screening for 3-methylcrotonyl-CoA carboxylase deficiency in Zhejiang province, China. Clin. Chim. Acta 2023, 542, 117266. [Google Scholar] [CrossRef] [PubMed]
- Miragaia, P.; Grangeia, A.; Rodrigues, E.; Sousa, R.; Ribeiro, A. Acute Encephalopathy in a 10-Year-Old Patient With Maple Syrup Urine Disease: A Challenging Diagnosis. Cureus 2024, 16, e53043. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Lu, D.; Xu, F.; Ji, W.; Zhan, X.; Gao, X.; Qiu, W.; Zhang, H.; Liang, L.; Gu, X.; et al. Newborn screening of maple syrup urine disease and the effect of early diagnosis. Clin. Chim. Acta 2023, 548, 117483. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, R.; Zhang, T.; Tan, J.D.; Pan, R.; Chen, Z.; Wu, D.; Chen, C.; Xu, Y.; Zhang, L.; et al. Genotypic and phenotypic spectrum of maple syrup urine disease in Zhejiang of China. QJM Int. J. Med. 2024, 117, 717–727. [Google Scholar] [CrossRef]
- Oyarzabal, A.; Martínez-Pardo, M.; Merinero, B.; Navarrete, R.; Desviat, R.L.; Ugarte, M.; Rodríguez-Pombo, P. A Novel Regulatory Defect in the Branched-Chain α-Keto Acid Dehydrogenase Complex Due to a Mutation in the PPM1K Gene Causes a Mild Variant Phenotype of Maple Syrup Urine Disease. Hum. Mutat. 2013, 34, 355–362. [Google Scholar] [CrossRef]
- Ozcelik, F.; Arslan, S.; Caliskan, O.B.; Kardas, F.; Ozkul, Y.; Dundar, M. PPM1K defects cause mild maple syrup urine disease: The second case in the literature. Am. J. Med. Genet. Part A 2023, 191, 1360–1365. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Dong, H.; Ding, Y.; He, R.; Kang, L.; Li, D.; Shen, M.; Jin, Y.; Zhang, Y.; et al. Analysis of the relationship between phenotypes and genotypes in 60 Chinese patients with propionic acidemia: A fourteen-year experience at a tertiary hospital. Orphanet J. Rare Dis. 2022, 17, 135. [Google Scholar] [CrossRef]
- Yu, Y.; Shuai, R.; Liang, L.; Qiu, W.; Shen, L.; Wu, S.; Wei, H.; Chen, Y.; Yang, C.; Xu, P.; et al. Different mutations in the MMUT gene are associated with the effect of vitamin B12 in a cohort of 266 Chinese patients with mut-type methylmalonic acidemia: A retrospective study. Mol. Genet. Genom. Med. 2021, 9, e1822. [Google Scholar] [CrossRef]
- Stenson, D.P.; Mort, M.; Ball, V.E.; Chapman, M.; Evans, K.; Azevedo, L.; Hayden, M.; Heywood, S.; Millar, S.D.; Phillips, D.A.; et al. The Human Gene Mutation Database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Hum. Genet. 2020, 139, 1197–1207. [Google Scholar] [CrossRef]
- Häberle, J.; Shchelochkov, A.O.; Wang, J.; Katsonis, P.; Hall, L.; Reiss, S.; Eeds, A.; Willis, A.; Yadav, M.; Summar, S.; et al. Molecular defects in human carbamoyl phosphate synthetase I: Mutational spectrum, diagnostic and protein structure considerations. Hum. Mutat. 2011, 32, 579–589. [Google Scholar] [CrossRef]
- Hu, L.; Diez-Fernandez, C.; Rüfenacht, V.; Hismi, Ö.B.; Ünal, Ö.; Soyucen, E.; Çoker, M.; Bayraktar, T.B.; Gunduz, M.; Kiykim, E.; et al. Recurrence of carbamoyl phosphate synthetase 1 (CPS1) deficiency in Turkish patients: Characterization of a founder mutation by use of recombinant CPS1 from insect cells expression. Mol. Genet. Metab. 2014, 113, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Kido, J.; Sugawara, K.; Sawada, T.; Matsumoto, S.; Nakamura, K. Pathogenic variants of ornithine transcarbamylase deficiency: Nation-wide study in Japan and literature review. Front. Genet. 2022, 13, 952467. [Google Scholar] [CrossRef] [PubMed]
- Heibel, K.S.; Mew, A.N.; Caldovic, L.; Daikhin, Y.; Yudkoff, M.; Tuchman, M. N-carbamylglutamate enhancement of ureagenesis leads to discovery of a novel deleterious mutation in a newly defined enhancer of the NAGS gene and to effective therapy. Hum. Mutat. 2011, 32, 1153–1160. [Google Scholar] [CrossRef]
- Karnebeek, V.D.C.; Sly, S.W.; Ross, J.C.; Salvarinova, R.; Yaplito-Lee, J.; Santra, S.; Shyr, C.; Horvath, A.G.; Eydoux, P.; Lehman, M.A.; et al. Mitochondrial Carbonic Anhydrase VA Deficiency Resulting from CA5A Alterations Presents with Hyperammonemia in Early Childhood. Am. J. Hum. Genet. 2014, 94, 453–461. [Google Scholar] [CrossRef]
- Diez-Fernandez, C.; Rüfenacht, V.; Santra, S.; Lund, M.A.; Santer, R.; Lindner, M.; Tangeraas, T.; Unsinn, C.; Lonlay, D.P.; Burlina, A.; et al. Defective hepatic bicarbonate production due to carbonic anhydrase VA deficiency leads to early-onset life-threatening metabolic crisis. Genet. Med. 2016, 18, 991–1000. [Google Scholar] [CrossRef]
- Martinelli, D.; Diodato, D.; Ponzi, E.; Monné, M.; Boenzi, S.; Bertini, E.; Fiermonte, G.; Dionisi-Vici, C. The hyperornithinemia–hyperammonemia-homocitrullinuria syndrome. Orphanet J. Rare Dis. 2015, 10, 29. [Google Scholar] [CrossRef]
- Kido, J.; Makris, G.; Santra, S.; Häberle, J. Clinical landscape of citrin deficiency: A global perspective on a multifaceted condition. J. Inherit. Metab. Dis. 2024, 47, 1144–1156. [Google Scholar] [CrossRef]
- André, M.-V.; Cacciagli, P.; Cano, A.; Vaugier, L.; Roussel, M.; Girard, N.; Chabrol, B.; Villard, L.; Milh, M. The phenotype caused by recessive variations in SLC25A22: Report of a new case and literature review. Arch. Pédiatrie 2021, 28, 87–92. [Google Scholar] [CrossRef]
- Molinari, F.; Raas-Rothschild, A.; Rio, M.; Fiermonte, G.; Encha-Razavi, F.; Palmieri, L.; Palmieri, F.; Ben-Neriah, Z.; Kadhom, N.; Vekemans, M.; et al. Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy. Am. J. Hum. Genet. 2005, 76, 334–339. [Google Scholar] [CrossRef]
- Molinari, F.; Kaminska, A.; Fiermonte, G.; Boddaert, N.; Raas-Rothschild, A.; Plouin, P.; Palmieri, L.; Brunelle, F.; Palmieri, F.; Dulac, O.; et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin. Genet. 2009, 76, 188–194. [Google Scholar] [CrossRef]
- Poduri, A.; Heinzen, L.E.; Chitsazzadeh, V.; Lasorsa, M.F.; Elhosary, C.P.; Lacoursiere, M.C.; Martin, E.; Yuskaitis, J.C.; Hill, S.R.; Atabay, D.K.; et al. SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann. Neurol. 2013, 74, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Nicotera, G.A.; Dicanio, D.; Pironti, E.; Bonsignore, M.; Cafeo, A.; Efthymiou, S.; Mondello, P.; Salpietro, V.; Houlden, H.; Rosa, D.G. De novo mutation in SLC25A22 gene: Expansion of the clinical and electroencephalographic phenotype. J. Neurogenet. 2021, 35, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.J.; Ascher, P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987, 325, 529–531. [Google Scholar] [CrossRef]
- Bjoraker, J.K.; Swanson, A.M.; Coughlin, R.C.; Christodoulou, J.; Tan, S.E.; Fergeson, M.; Dyack, S.; Ahmad, A.; Friederich, W.M.; Spector, B.E.; et al. Neurodevelopmental Outcome and Treatment Efficacy of Benzoate and Dextromethorphan in Siblings with Attenuated Nonketotic Hyperglycinemia. J. Pediatr. 2016, 170, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Kava, P.M.; Robertson, A.; Greed, L.; Balasubramaniam, S. Ketogenic diet, a potentially valuable therapeutic option for the management of refractory epilepsy in classical neonatal nonketotic hyperglycinemia: A case report. Eur. J. Clin. Nutr. 2019, 73, 961–965. [Google Scholar] [CrossRef]
- Shelkowitz, E.; Saneto, P.R.; Al-Hertani, W.; Lubout, A.M.C.; Stence, V.N.; Brown, S.M.; Long, P.; Walleigh, D.; Nelson, A.J.; Perez, E.F.; et al. Ketogenic diet as a glycine lowering therapy in nonketotic hyperglycinemia and impact on brain glycine levels. Orphanet J. Rare Dis. 2022, 17, 423. [Google Scholar] [CrossRef]
- Macmullen, C.; Fang, J.; Hsu, L.Y.B.; Kelly, A.; Lonlay-Debeney, D.P.; Saudubray, J.-M.; Ganguly, A.; Smith, J.T.; Stanley, A.C. Hyperinsulinism/Hyperammonemia Syndrome in Children with Regulatory Mutations in the Inhibitory Guanosine Triphosphate-Binding Domain of Glutamate Dehydrogenase1. J. Clin. Endocrinol. Metab. 2001, 86, 1782–1787. [Google Scholar] [CrossRef]
- Plaitakis, A.; Kalef-Ezra, E.; Kotzamani, D.; Zaganas, I.; Spanaki, C. The Glutamate Dehydrogenase Pathway and Its Roles in Cell and Tissue Biology in Health and Disease. Biology 2017, 6, 11. [Google Scholar] [CrossRef]
- Hsu, Y.L.B.; Kelly, A.; Thornton, S.P.; Greenberg, R.C.; Dilling, A.L.; Stanley, A.C. Protein-sensitive and fasting hypoglycemia in children with the hyperinsulinism/hyperammonemia syndrome. J. Pediatr. 2001, 138, 383–389. [Google Scholar] [CrossRef]
- Huijmans, M.G.J.; Duran, M.; Klerk, D.C.B.J.; Rovers, J.M.; Scholte, R.H. Functional Hyperactivity of Hepatic Glutamate Dehydrogenase as a Cause of the Hyperinsulinism/Hyperammonemia Syndrome: Effect of Treatment. Pediatrics 2000, 106, 596–600. [Google Scholar] [CrossRef]
- Raizen, M.D.; Brooks-Kayal, A.; Steinkrauss, L.; Tennekoon, I.G.; Stanley, A.C.; Kelly, A. Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations. J. Pediatr. 2005, 146, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Bahi-Buisson, N.; Sabbagh, E.S.; Soufflet, C.; Escande, F.; Boddaert, N.; Valayannopoulos, V.; Bellané-Chantelot, C.; Lascelles, K.; Dulac, O.; Plouin, P.; et al. Myoclonic absence epilepsy with photosensitivity and a gain of function mutation in glutamate dehydrogenase. Seizure 2008, 17, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Noia, D.A.M.; Todisco, S.; Cirigliano, A.; Rinaldi, T.; Agrimi, G.; Iacobazzi, V.; Palmieri, F. The Human SLC25A33 and SLC25A36 Genes of Solute Carrier Family 25 Encode Two Mitochondrial Pyrimidine Nucleotide Transporters. J. Biol. Chem. 2014, 289, 33137–33148. [Google Scholar] [CrossRef] [PubMed]
- Palladino, A.A.; Stanley, A.C. The hyperinsulinism/hyperammonemia syndrome. Rev. Endocr. Metab. Disord. 2010, 11, 171–178. [Google Scholar] [CrossRef]
- Tanner, J.J.; Fendt, S.-M.; Becker, F.D. The Proline Cycle As a Potential Cancer Therapy Target. Biochemistry 2018, 57, 3433–3444. [Google Scholar] [CrossRef]
- Raux, G.; Bumsel, E.; Hecketsweiler, B.; Amelsvoort, V.T.; Zinkstok, J.; Manouvrier-Hanu, S.; Fantini, C.; Brévière, M.G.-M.; Rosa, D.G.; Pustorino, G.; et al. Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum. Mol. Genet. 2007, 16, 83–91. [Google Scholar] [CrossRef]
- Farrant, D.R.; Walker, V.; Mills, A.G.; Mellor, M.J.; Langley, J.G. Pyridoxal Phosphate De-activation by Pyrroline-5-carboxylic Acid. J. Biol. Chem. 2001, 276, 15107–15116. [Google Scholar] [CrossRef]
- Tondo, M.; Calpena, E.; Arriola, G.; Sanz, P.; Martorell, L.; Ormazabal, A.; Castejon, E.; Palacin, M.; Ugarte, M.; Espinos, C.; et al. Clinical, biochemical, molecular and therapeutic aspects of 2 new cases of 2-aminoadipic semialdehyde synthase deficiency. Mol. Genet. Metab. 2013, 110, 231–236. [Google Scholar] [CrossRef]
- Mills, B.P.; Struys, E.; Jakobs, C.; Plecko, B.; Baxter, P.; Baumgartner, M.; Willemsen, P.A.A.M.; Omran, H.; Tacke, U.; Uhlenberg, B.; et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat. Med. 2006, 12, 307–309. [Google Scholar] [CrossRef]
- Barzi, M.; Johnson, G.C.; Chen, T.; Rodriguiz, M.R.; Hemmingsen, M.; Gonzalez, J.T.; Rosales, A.; Beasley, J.; Peck, K.C.; Ma, Y.; et al. Rescue of glutaric aciduria type I in mice by liver-directed therapies. Sci. Transl. Med. 2023, 15, eadf4086. [Google Scholar] [CrossRef]
- Vockley, J.; Ensenauer, R. Isovaleric acidemia: New aspects of genetic and phenotypic heterogeneity. Am. J. Med. Genet. Part C: Semin. Med. Genet. Part C 2006, 142, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.; Carter, M.J.; Cederbaum, D.S.; Neidich, J.; Gallant, M.N.; Lorey, F.; Feuchtbaum, L.; Wong, A.D. Analysis of cases of 3-methylcrotonyl CoA carboxylase deficiency (3-MCCD) in the California newborn screening program reported in the state database. Mol. Genet. Metab. 2013, 110, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Dercksen, M.; Ijlst, L.; Duran, M.; Mienie, L.J.; Cruchten, V.A.; Westhuizen, D.V.F.H.; Wanders, R.J.A. Inhibition of N-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme A esters and the production of alternative glutamate esters. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 2510–2516. [Google Scholar] [CrossRef] [PubMed]
- Filipowicz, R.H.; Ernst, L.S.; Ashurst, L.C.; Pasquali, M.; Longo, N. Metabolic changes associated with hyperammonemia in patients with propionic acidemia. Mol. Genet. Metab. 2006, 88, 123–130. [Google Scholar] [CrossRef]
- Stanescu, S.; Belanger-Quintana, A.; Fernandez-Felix, M.B.; Ruiz-Sala, P.; Valle, D.M.; Garcia, F.; Arrieta, F.; Martinez-Pardo, M. Interorgan amino acid interchange in propionic acidemia: The missing key to understanding its physiopathology. Amino Acids 2022, 54, 777–786. [Google Scholar] [CrossRef]
- Baumgartner, R.M.; Hörster, F.; Dionisi-Vici, C.; Haliloglu, G.; Karall, D.; Chapman, A.K.; Huemer, M.; Hochuli, M.; Assoun, M.; Ballhausen, D.; et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J. Rare Dis. 2014, 9, 130. [Google Scholar] [CrossRef]
- Carrillo-Carrasco, N.; Chandler, J.R.; Venditti, P.C. Combined methylmalonic acidemia and homocystinuria, cblC type. I. Clinical presentations, diagnosis and management. J. Inherit. Metab. Dis. 2012, 35, 91–102. [Google Scholar] [CrossRef]
- Hörster, F.; Tuncel, T.A.; Gleich, F.; Plessl, T.; Froese, D.S.; Garbade, F.S.; Kölker, S.; Baumgartner, R.M. Delineating the clinical spectrum of isolated methylmalonic acidurias: cblA and mut. J. Inherit. Metab. Dis. 2021, 44, 193–214. [Google Scholar] [CrossRef]
- Dowling, K.J.; Afzal, R.; Gearing, J.L.; Cervantes-Silva, P.M.; Annett, S.; Davis, M.G.; Santi, D.C.; Assmann, N.; Dettmer, K.; Gough, J.D.; et al. Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages. Nat. Commun. 2021, 12, 1460. [Google Scholar] [CrossRef]
- Zhang, Y.; Higgins, B.C.; Fortune, M.H.; Chen, P.; Stothard, I.A.; Mayer, L.A.; Swarts, M.B.; Debosch, J.B. Hepatic arginase 2 (Arg2) is sufficient to convey the therapeutic metabolic effects of fasting. Nat. Commun. 2019, 10, 1587. [Google Scholar] [CrossRef]
- Nguyen, H.-H.; Nguyen, K.N.; Vu, D.C.; Nguyen, H.T.T.; Nguyen, N.-L. Late-Onset Ornithine Transcarbamylase Deficiency and Variable Phenotypes in Vietnamese Females With OTC Mutations. Front. Pediatr. 2020, 8, 321. [Google Scholar] [CrossRef]
- Wang, L.; Bell, P.; Morizono, H.; He, Z.; Pumbo, E.; Yu, H.; White, J.; Batshaw, L.M.; Wilson, M.J. AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice. Mol. Genet. Metab. 2017, 120, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Summar, L.M.; Koelker, S.; Freedenberg, D.; Mons, L.C.; Haberle, J.; Lee, H.-S.; Kirmse, B. The incidence of urea cycle disorders. Mol. Genet. Metab. 2013, 110, 179–180. [Google Scholar] [CrossRef] [PubMed]
- Haidar, A.L.; Pachnis, P.; Gotway, K.G.; Ni, M.; Deberardinis, J.R.; Mcnutt, C.M. Partial N-acetyl glutamate synthase deficiency presenting as postpartum hyperammonemia: Diagnosis and subsequent pregnancy management. JIMD Rep. 2023, 64, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Guffon, N.; Schiff, M.; Cheillan, D.; Wermuth, B.; Häberle, J.; Vianey-Saban, C. Neonatal Hyperammonemia: The N-carbamoyl-L-glutamic Acid Test. J. Pediatr. 2005, 147, 260–262. [Google Scholar] [CrossRef]
- Olgac, A.; Kasapkara, S.C.; Kilic, M.; Keskin, Y.E.; Sandal, G.; Cram, S.D.; Haberle, J.; Torun, D. Carbonic anhydrase VA deficiency: A very rare case of hyperammonemic encephalopathy. J. Pediatr. Endocrinol. Metab. 2020, 33, 1349–1352. [Google Scholar] [CrossRef]
- Hayasaka, K. Metabolic basis and treatment of citrin deficiency. J. Inherit. Metab. Dis. 2021, 44, 110–117. [Google Scholar] [CrossRef]
- Kido, J.; Häberle, J.; Sugawara, K.; Tanaka, T.; Nagao, M.; Sawada, T.; Wada, Y.; Numakura, C.; Murayama, K.; Watanabe, Y.; et al. Clinical manifestation and long-term outcome of citrin deficiency: Report from a nationwide study in Japan. J. Inherit. Metab. Dis. 2022, 45, 431–444. [Google Scholar] [CrossRef]
- Okano, Y.; Ohura, T.; Sakamoto, O.; Inui, A. Current treatment for citrin deficiency during NICCD and adaptation/compensation stages: Strategy to prevent CTLN2. Mol. Genet. Metab. 2019, 127, 175–183. [Google Scholar] [CrossRef]
- Hayasaka, K.; Numakura, C.; Toyota, K.; Kakizaki, S.; Watanabe, H.; Haga, H.; Takahashi, H.; Takahashi, Y.; Kaneko, M.; Yamakawa, M.; et al. Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Mol. Genet. Metab. Rep. 2014, 1, 42–50. [Google Scholar] [CrossRef]
- Reid, S.E.; Williams, H.; Anderson, G.; Benatti, M.; Chong, K.; James, C.; Ocaka, L.; Hemingway, C.; Little, D.; Brown, R.; et al. Mutations in SLC25A22: Hyperprolinaemia, vacuolated fibroblasts and presentation with developmental delay. J. Inherit. Metab. Dis. 2017, 40, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Goubert, E.; Mircheva, Y.; Lasorsa, M.F.; Melon, C.; Profilo, E.; Sutera, J.; Becq, H.; Palmieri, F.; Palmieri, L.; Aniksztejn, L.; et al. Inhibition of the Mitochondrial Glutamate Carrier SLC25A22 in Astrocytes Leads to Intracellular Glutamate Accumulation. Front. Cell. Neurosci. 2017, 11, 149. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, A.R. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Faubert, B.; Solmonson, A.; Deberardinis, J.R. Metabolic reprogramming and cancer progression. Science 2020, 368, eaaw5473. [Google Scholar] [CrossRef]
- Pavlova, N.N.; Thompson, B.C. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef]
- Locasale, W.J. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer 2013, 13, 572–583. [Google Scholar] [CrossRef]
- Kulis, M.; Esteller, M. DNA Methylation and Cancer. Adv. Genet. 2010, 70, 27–56. [Google Scholar] [CrossRef]
- Kennedy, L.; Sandhu, K.J.; Harper, M.-E.; Cuperlovic-Culf, M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020, 10, 1429. [Google Scholar] [CrossRef]
- Gamcsik, P.M.; Kasibhatla, S.M.; Teeter, D.S.; Colvin, M.O. Glutathione levels in human tumors. Biomarkers 2012, 17, 671–691. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, M.; Li, H.; Rao, X.; Ao, L.; Wang, H.; Yao, L.; Wang, X.; Hong, X.; Wang, J.; et al. Therapeutic targeting of glutamate dehydrogenase 1 that links metabolic reprogramming and Snail-mediated epithelial–mesenchymal transition in drug-resistant lung cancer. Pharmacol. Res. 2022, 185, 106490. [Google Scholar] [CrossRef]
- Wang, L.; Fang, Z.; Gao, P.; Zheng, J. GLUD1 suppresses renal tumorigenesis and development via inhibiting PI3K/Akt/mTOR pathway. Front. Oncol. 2022, 12, 975517. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yu, M.; Li, J.; Guo, Y.; Wang, Z.; Hu, K.; Xu, F.; Liu, Y.; Li, L.; Wan, D.; et al. GLUD1 inhibits hepatocellular carcinoma progression via ROS-mediated p38/JNK MAPK pathway activation and mitochondrial apoptosis. Discov. Oncol. 2024, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Peeters, H.T.; Lenting, K.; Breukels, V.; Lith, V.M.A.S.; Heuvel, D.V.M.A.N.C.; Molenaar, R.; Rooij, V.A.; Wevers, R.; Span, N.P.; Heerschap, A.; et al. Isocitrate dehydrogenase 1-mutated cancers are sensitive to the green tea polyphenol epigallocatechin-3-gallate. Cancer Metab. 2019, 7, 4. [Google Scholar] [CrossRef]
- Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009, 458, 762–765. [Google Scholar] [CrossRef]
- Suzuki, S.; Venkatesh, D.; Kanda, H.; Nakayama, A.; Hosokawa, H.; Lee, E.; Miki, T.; Stockwell, R.B.; Yokote, K.; Tanaka, T.; et al. GLS2 Is a Tumor Suppressor and a Regulator of Ferroptosis in Hepatocellular Carcinoma. Cancer Res. 2022, 82, 3209–3222. [Google Scholar] [CrossRef]
- Saha, S.; Islam, S.M.; Abdullah-Al-Wadud, M.; Islam, S.; Ali, F.; Park, K. Multiomics Analysis Reveals that GLS and GLS2 Differentially Modulate the Clinical Outcomes of Cancer. J. Clin. Med. 2019, 8, 355. [Google Scholar] [CrossRef]
- Kim, J.; Hu, Z.; Cai, L.; Li, K.; Choi, E.; Faubert, B.; Bezwada, D.; Rodriguez-Canales, J.; Villalobos, P.; Lin, Y.-F.; et al. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature 2017, 546, 168–172. [Google Scholar] [CrossRef]
- Ma, S.-L.; Li, A.-J.; Hu, Z.-Y.; Shang, F.-S.; Wu, M.-C. Co-expression of the carbamoyl-phosphate synthase 1 gene and its long non-coding RNA correlates with poor prognosis of patients with intrahepatic cholangiocarcinoma. Mol. Med. Rep. 2015, 12, 7915–7926. [Google Scholar] [CrossRef]
- Liu, H.; Dong, H.; Robertson, K.; Liu, C. DNA Methylation Suppresses Expression of the Urea Cycle Enzyme Carbamoyl Phosphate Synthetase 1 (CPS1) in Human Hepatocellular Carcinoma. Am. J. Pathol. 2011, 178, 652–661. [Google Scholar] [CrossRef]
- Lee, M.-S.; Dennis, C.; Naqvi, I.; Dailey, L.; Lorzadeh, A.; Ye, G.; Zaytouni, T.; Adler, A.; Hitchcock, S.D.; Lin, L.; et al. Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer. Nature 2023, 616, 339–347. [Google Scholar] [CrossRef]
- He, L.; Cai, X.; Cheng, S.; Zhou, H.; Zhang, Z.; Ren, J.; Ren, F.; Yang, Q.; Tao, N.; Chen, J. Ornithine transcarbamylase downregulation is associated with poor prognosis in hepatocellular carcinoma. Oncol. Lett. 2019, 17, 5030–5038. [Google Scholar] [CrossRef] [PubMed]
- Kayler, K.L.; Rasmussen, S.C.; Dykstra, M.D.; Punch, D.J.; Rudich, M.S.; Magee, C.J.; Maraschio, A.M.; Arenas, D.J.; Campbell, A.D.; Merion, M.R. Liver Transplantation in Children with Metabolic Disorders in the United States. Am. J. Transplant. 2003, 3, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Mazariegos, G.; Shneider, B.; Burton, B.; Fox, J.I.; Hadzic, N.; Kishnani, P.; Morton, H.D.; Mcintire, S.; Sokol, J.R.; Summar, M.; et al. Liver transplantation for pediatric metabolic disease. Mol. Genet. Metab. 2014, 111, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Attarwala, H.; Lumley, M.; Liang, M.; Ivaturi, V.; Senn, J. Translational Pharmacokinetic/Pharmacodynamic Model for mRNA-3927, an Investigational Therapeutic for the Treatment of Propionic Acidemia. Nucleic Acid Ther. 2023, 33, 141–147. [Google Scholar] [CrossRef]
- Wang, L.; Warzecha, C.C.; Kistner, A.; Chichester, A.J.; Bell, P.; Buza, L.E.; He, Z.; Pampena, B.M.; Couthouis, J.; Sethi, S.; et al. Prednisolone reduces the interferon response to AAV in cynomolgus macaques and may increase liver gene expression. Mol. Ther.-Methods Clin. Dev. 2022, 24, 292–305. [Google Scholar] [CrossRef]
- Musunuru, K.; Grandinette, A.S.; Wang, X.; Hudson, R.T.; Briseno, K.; Berry, M.A.; Hacker, L.J.; Hsu, A.; Silverstein, A.R.; Hille, T.L.; et al. Patient-Specific In Vivo Gene Editing to Treat a Rare Genetic Disease. N. Engl. J. Med. 2025, 392, 2235–2243. [Google Scholar] [CrossRef]
- Yin, X.; Chan, S.L.; Bose, D.; Jackson, U.A.; Vandehaar, P.; Locke, E.A.; Fuchsberger, C.; Stringham, M.H.; Welch, R.; Yu, K.; et al. Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nat. Commun. 2022, 13, 1644. [Google Scholar] [CrossRef]
- Khan, A.; Unlu, G.; Lin, P.; Liu, Y.; Kilic, E.; Kenny, C.T.; Birsoy, K.; Gamazon, R.E. Metabolic gene function discovery platform GeneMAP identifies SLC25A48 as necessary for mitochondrial choline import. Nat. Genet. 2024, 56, 1614–1623. [Google Scholar] [CrossRef]
Amino Acid | Disease | Inheritance | Biochemical Markers | Genes | Notable Reported Mutations |
---|---|---|---|---|---|
Glycine | Nonketotic hyperglycinemia (MIM#605899) | AR | High serum and CSF glycine levels (high CSF-to-plasma glycine ratio) | GLDC | Coughlin et al. identified p.R515S as the most common missense mutation. Other recurrent missense mutations were listed as p.S564I, p.G761R, p.A389V, p.A802V, p.R790W, p.R905G, p.G771R, and p.R461Q [4]. |
GCSH | Majethia et al. reported a biallelic start loss variant, c.1A > G [5] and Arribas-Carreira et al. reported pathogenic variants including c.1A > G (p.(Met1?)) and c.226C > T (p.(Gln76*)) in patients presenting with combined NKH and lipoate deficiency [6]. | ||||
AMT | Coughlin et al. reported that p.R320H mutation was the most common missense mutation identified in 16% of all AMT alleles [4]. | ||||
Glutamate | Hyperinsulinism—Hyperammonemia Syndrome (MIM#606762) | AD | Leucine-sensitive hypoglycemia High ammonia levels | GLUD1 | Luczkowska et al. reported that c.1496G > T (p.(Gly499Val)) variant in GLUD1 altered the allosteric sensitivity to both inhibitory action of GTP and activation by ADP, rendering cells metabolically responsive to glutamine [7]. |
SLC25A36 | The only reported pathogenic variants are c.284 + 3A > T [8,9] and c.803dupT (p.Ser269llefs*35) [10]. | ||||
Proline | Hyperprolinemia type I (MIM#239500) | AR | High serum proline levels without urinary P5C excretion | PRODH | Hama et al. described a case of a patient with HPI and harboring the c.1397 C > T (p.T466M) mutation [11]. |
Hyperprolinemia type II (MIM#239510) | AR | High serum proline levels with high urinary P5C | ALDH4A1 | Kaur et al. detected a nonsense homozygous variant, c. 1633C > T, in the ALDH4A1 gene [12]. Motte et al. identified two compound heterozygous variants in an adult patient: c.62 + 1G > A, which is located in intron 1 and results in aberrant splicing, and c.349G > C, a missense variant in exon 5 that affects a highly conserved residue [13]. | |
Lysine | Hyperlysinemia type I (MIM#238700) | AR | High plasma lysine levels | AASS | Yeganeh et al. identified biallelic variants in AASS, c.436C > T (p.R146W) and c.1112C > T affecting the folding of the lysine-2-oxoglutarate domain of AASS [14]. |
Pyridoxine-dependent epilepsy (MIM#266100) | AR | High plasma levels of pipecolic acid, α-aminoadipic semialdehyde (AASA) and its cyclic form Δ1-piperideine-6-carboxylate (P6C) | ALDH7A1 | More than 165 pathogenic variants have been reported to date [15]. Gene variant c.1279G > C (p.E427Q) was the most frequently reported, followed by c.834G > A (p.V278V) and c.1364T > C (p.L455P) [16]. | |
Glutaric aciduria type I (MIM#231670) | AR | High levels of glutaric acid (GA), 3-hydroxyglutaric acid (3-OH-GA), glutaconic acid, and glutarylcarnitine (C5DC) in various bodily fluids | GCDH | c.1204C > T (p.Arg402Trp) is the most prevalent pathogenic variant in various populations followed by c.1262 C > T (p.Ala421Val) [17,18]. | |
BCAA (Leucine, Isoleucine, Valine) | Isovaleric acidemia (MIM#243500) | AR | High urinary C5-carnitine (C5) metabolites, isovalerylglycine (IVG), and 3-hydroxyisovaleric acid (3-HIVA) | IVD | The distribution of hotspots varies significantly across various ethnic backgrounds. c.941C > T (p.Ala314Val) is the most common variant in patients identified through newborn screening in multiple populations [19,20]. |
MCC deficiency (MIM#210200) | AR | High urinary excretion levels of 3-hydroxyisovaleric acid (3-HIVA) and 3-methylcrotonylglycine (3-MCG). 3-hydroxyisovalerylcarnitine (C5OH) is high in plasma and urine. | MCCC1 and MCCC2 | According to the newborn screening data from a Chinese province, variants with the highest frequency were listed as c.639 + 2T > A, c.1679dupA, c.980C > G in MCCC1 gene and c.1144-1147delinsTTTT, c.416C > T, c.1073–6T > A, c.735dupC, c.470A > G in MCCC2 gene [21]. | |
MSUD type IA (MIM#248600) | AR | High levels of alloisoleucine (chemical derivative of isoleucine) Elevated plasma branched-chain amino acids (isoleucine, leucine, and valine) Elevated urine branched-chain ketoacids | BCKDHA | Miragaia et al. presents a case with a patient who developed acute encephalopathy, later revealed a pathogenic variant c.659C > T (p.A220V) in homozygosity in the BCKDHA gene [22]. | |
MSUD type IB (MIM#620698) | BCKDHB | Among MSUD patients, pathogenic variants of BCKDHB are more commonly seen in most populations. Chen et al. show that c.331C > T in the BCKDHB gene is a relatively common variant in MSUD with a frequency of 5.8%. [23]. | |||
MSUD type II (MIM#620699) | DBT | c.280C > T, c.433 + 2T > G, c.500del, c.1264dup, c.1268T > C variants in the DBT gene are reported to be causing MSUD phenotype [24]. | |||
Variant MSUD (MIM#611065) | PPM1K | A homozygous truncating mutation (c.417delTA) [25] and a homozygous stop-loss mutation (c.1A-G) [26] are the only reported mutations in the literature to date. | |||
Propionic acidemia (MIM#606054) | AR | High plasma propionylcarnitine (C3) and glycine levels High urinary 3-hydroxypropionate excretion in addition to the presence of methylcitrate, tigylglycine, propionylglycine and lactic acid | PCCA and PCCB | In a Chinese cohort, c.2002G > A and c.937C > T were reported to be the most frequent variants in PCCA gene; while c.838dupC was the most common PCCB variant, followed by c.1087T > C, c.1228C > T and c.1283C > T in PCCB gene [27]. | |
Methylmalonic acidemia (MIM#251000) | AR | High plasma methylmalonic acid and glycine High urinary methylmalonic acid and methylcitrate excretion | MMUT | Yu et al. identified 144 different mutations in MMUT gene in 266 Chinese patients. Patients harboring the mutations c.1663G > A, c.2080C > T, c.1880A > G, and c.1208G > A exhibited complete responsiveness to vitamin B12 treatment. In contrast, those with the mutations c.1741C > T, c.1630_1631GG > TA, and c.599T > C demonstrated partial responsiveness to the same treatment [28]. | |
Urea Cycle | CPS1 deficiency (MIM#237300) | AR | Hyperammonemia with low plasma levels of citrulline and arginine and high levels of glutamine Low or normal levels of orotic acid in urine. | CPS1 | According to HGMD, more than 340 CPS1 mutations have been reported [29]. It has been illustrated that the extensive genetic heterogeneity at the CPS1 locus, wherein private mutations are the norm, while the recurrence of mutations is observed only as an exception [30]. The only currently known recurrent CPS1 mutation, c.3037_3039del (p.Val1013del) is found to be a recurrent mutation in the Turkish population [31]. |
OTC deficiency (MIM#311250) | XR | Hyperammonemia with low levels of citrulline and arginine, high levels of glutamine and alanine, and normal ornithine levels. High urinary excretion of orotic acid. | OTC | Kido et al. evaluated 523 variants in Japanese patients and found a degree of genotype–phenotype correlation in male OTCD patients, with all 53 detected nonsense variants associated with the neonatal-onset phenotype [32]. | |
NAGS deficiency (MIM#237310) | AR | Hyperammonemia with low levels of citrulline and arginine, high levels of glutamine. Low or normal levels of orotic acid in urine. | NAGS | Heibel et al. described the first disease-causing enhancer mutation in NAGS. The homozygous mutation, c.-3064C > A, affects a highly conserved nucleotide within the hepatic nuclear factor 1 (HNF-1) binding site, significantly impairing NAGS gene expression and thereby causing the NAGSD phenotype in the reported patient [33]. | |
CA5A deficiency (MIM#615751) | AR | Hyperammonemia and hyperlactatemia with high glutamine and low-to-normal citrulline levels without orotic aciduria | CA5A | Only a small number of mutations have been identified. Two clinical missense mutations, c.697T > C (p.Ser233Pro) and c.721G > A (p.Glu241Lys) were shown to decrease enzyme activity in vitro [34,35]. | |
AA Transporters | Hyperornithinemia—hyperammonemia—homocitrullinuria syndrome (MIM#238970) | AR | Hyperammonemia with high plasma ornithine, and high homocitrulline excretion | SLC25A15 | HHH has been reported in less than 100 cases, with less than 45 variants described. Two common mutations are considered to be p.F188del and p.R179* [36]. |
Citrin deficiency (MIM#605814) | AR | Hyperammonemia with high plasma levels of citrulline and arginine. Increased plasma threonine-to-serine ratio. | SLC25A13 | Specific SLC25A13 variants such as c.852_855delTATG, c.1177 + 1G > A, IVS16ins3kb, and c.1638_1660dup are notably prevalent within East Asian cohorts [37]. | |
SLC25A22 deficiency (MIM#609304) | AR | High plasma proline levels with intermittently elevated plasma ornithine or arginine levels. | SLC25A22 | Only a small number of cases have been reported to date. Some of these mutations include c.835dupG; p.Glu279Gly [38]; c.617C > T; p.Pro206Leu [39]; c.706G > T; p.Gly236Trp [40]; c.328G > C; p.Gly110Arg [41]; c.97A > G; p.Lys33Glu [42]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdal, R.; Birsoy, K.; Unlu, G. Amino Acid Metabolism in Liver Mitochondria: From Homeostasis to Disease. Metabolites 2025, 15, 446. https://doi.org/10.3390/metabo15070446
Erdal R, Birsoy K, Unlu G. Amino Acid Metabolism in Liver Mitochondria: From Homeostasis to Disease. Metabolites. 2025; 15(7):446. https://doi.org/10.3390/metabo15070446
Chicago/Turabian StyleErdal, Ranya, Kıvanç Birsoy, and Gokhan Unlu. 2025. "Amino Acid Metabolism in Liver Mitochondria: From Homeostasis to Disease" Metabolites 15, no. 7: 446. https://doi.org/10.3390/metabo15070446
APA StyleErdal, R., Birsoy, K., & Unlu, G. (2025). Amino Acid Metabolism in Liver Mitochondria: From Homeostasis to Disease. Metabolites, 15(7), 446. https://doi.org/10.3390/metabo15070446