Impacts of Protease Sources on Growth and Carcass Response, Gut Health, Nutrient Digestibility, and Cecal Microbiota Profiles in Broilers Fed Poultry-by-Product-Meal-Based Diets
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Experimental Design, Birds, and Housing
2.3. Dietary Treatments
2.4. Exogenous Proteases
2.5. Traits Measured
2.5.1. Growth and Carcass Parameters
2.5.2. Tissue Collection and Histo-Morphological Analysis of the Intestine
2.6. Sample Analysis
2.7. Cecal Microbiota
2.8. Data Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Characteristics
3.3. Gut Health
3.4. Apparent Ileal Digestibility of Crude Protein, Amino Acids, and Dry Matter
3.5. Cecal Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ullah, Z.; Ahmed, G.; Nisa, M.U.; Sarwar, M. Standardized ileal amino acid digestibility of commonly used feed ingredients in growing broilers. Asian-Australas. J. Anim. Sci. 2016, 29, 1322. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Jha, R. Macadamia nut cake as an alternative feedstuff for broilers: Effect on growth performance. Anim. Feed Sci. Technol. 2021, 275, 114873. [Google Scholar] [CrossRef]
- Mahmood, T.; Mirza, M.; Nawaz, H.; Shahid, M. Effect of different exogenous proteases on growth performance, nutrient digestibility, and carcass response in broiler chickens fed poultry by-product meal-based diets. Livest. Sci. 2017, 200, 71–75. [Google Scholar] [CrossRef]
- Wang, X.; Parsons, C. Effect of raw material source, processing systems, and processing temperatures on amino acid digestibility of meat and bone meals. Poult. Sci. 1998, 77, 834–841. [Google Scholar] [CrossRef]
- Jafari, M.; Ebrahimnezhad, Y.; Janmohammadi, H.; Nazeradl, K.; Nemati, M. Evaluation of protein and energy quality of poultry by-product meal using poultry assays. Afr. J. Agric. Res. 2011, 6, 1407–1412. [Google Scholar]
- Ravindran, V. Poultry feed availability and nutrition in developing countries. Poult. Dev. Rev. 2013, 2, 60–63. [Google Scholar]
- Lemme, A.; Ravindran, V.; Bryden, W. Ileal digestibility of amino acids in feed ingredients for broilers. World’s Poult. Sci. J. 2004, 60, 423–438. [Google Scholar] [CrossRef]
- Cowieson, A.; Abdollahi, M.; Zaefarian, F.; Pappenberger, G.; Ravindran, V. The effect of a mono-component exogenous protease and graded concentrations of ascorbic acid on the performance, nutrient digestibility and intestinal architecture of broiler chickens. Anim. Feed Sci. Technol. 2018, 235, 128–137. [Google Scholar] [CrossRef]
- Vieira, S.L.; Angel, C.R.; Miranda, D.J.A.; Favero, A.; Cruz, R.F.A.; Sorbara, J.O.B. Effects of a monocomponent protease on performance and protein utilization in 1- to 26-day-of-age turkey poults. J. Appl. Poult. Res. 2013, 22, 680–688. [Google Scholar] [CrossRef]
- Yin, D.; Yin, X.; Wang, X.; Lei, Z.; Wang, M.; Guo, Y.; Aggrey, S.E.; Nie, W.; Yuan, J. Supplementation of amylase combined with glucoamylase or protease changes intestinal microbiota diversity and benefits for broilers fed a diet of newly harvested corn. J. Anim. Sci. Biotechnol. 2018, 9, 24. [Google Scholar] [CrossRef]
- Dahiya, J.; Hoehler, D.; Van Kessel, A.; Drew, M. Effect of different dietary methionine sources on intestinal microbial populations in broiler chickens. Poult. Sci. 2007, 86, 2358–2366. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.; Zaefarian, F.; Knap, I.; Ravindran, V. Interactive effects of dietary protein concentration, a mono-component exogenous protease and ascorbic acid on broiler performance, nutritional status and gut health. Anim. Prod. Sci. 2016, 57, 1058–1068. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.L.; Pan, L.; Ma, X.K.; Tian, Q.Y.; Xu, Y.T.; Long, S.F.; Zhang, Z.H.; Piao, X.S. Effects of coated proteases on the performance, nutrient retention, gut morphology and carcass traits of broilers fed corn- or sorghum-based diets supplemented with soybean meal. Anim. Feed Sci. Technol. 2017, 223, 119–127. [Google Scholar] [CrossRef]
- Rada, V.; Lichovníková, M.; Foltyn, M.; Šafařík, I. The effect of exogenous protease in broiler diets on the apparent ileal digestibility of amino acids and on protease activity in jejunum. Acta Univ. Agric. Silvic. Mendel. Brun. 2016, 64, 1645–1652. [Google Scholar] [CrossRef]
- Erdaw, M.M.; Wu, S.; Iji, P.A. Growth and physiological responses of broiler chickens to diets containing raw, full-fat soybean and supplemented with a high-impact microbial protease. Asian-Australas J. Anim. Sci. 2017, 30, 1303. [Google Scholar] [CrossRef]
- Walk, C.; Pirgozliev, V.; Juntunen, K.; Paloheimo, M.; Ledoux, D. Evaluation of novel protease enzymes on growth performance and apparent ileal digestibility of amino acids in poultry: Enzyme screening. Poult. Sci. 2018, 97, 2123–2138. [Google Scholar] [CrossRef]
- Selle, P.H.; Truong, H.H.; McQuade, L.R.; Moss, A.F.; Liu, S.Y. Reducing agent and exogenous protease additions, individually and in combination, to wheat- and sorghum-based diets interactively influence parameters of nutrient utilisation and digestive dynamics in broiler chickens. Anim. Nutr. 2016, 2, 303–311. [Google Scholar] [CrossRef]
- Toghyani, M.; Wu, S.; Pérez-Maldonado, R.; Iji, P.; Swick, R.A. Performance, nutrient utilization, and energy partitioning in broiler chickens offered high canola meal diets supplemented with multicomponent carbohydrase and mono-component protease. Poult. Sci. 2017, 96, 3960–3972. [Google Scholar] [CrossRef]
- Angel, C.; Saylor, W.; Vieira, S.; Ward, N. Effects of a monocomponent protease on performance and protein utilization in 7-to 22-day-old broiler chickens. Poult. Sci. 2011, 90, 2281–2286. [Google Scholar] [CrossRef]
- Lee, S.; Bedford, M.; Walk, C. Meta-analysis: Explicit value of mono-component proteases in monogastric diets. Poult. Sci. 2018, 97, 2078–2085. [Google Scholar] [CrossRef]
- Xu, Z.R.; Hu, C.H.; Xia, M.S.; Zhan, X.A.; Wang, M.Q. Effects of Dietary Fructooligosaccharide on Digestive Enzyme Activities, Intestinal Microflora and Morphology of Male Broilers. Poult. Sci. 2003, 82, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- PS:3733; Pakistan Standard Specification for Halal Food Management Systems Requirement for Any Organization in the Food Chain. Pakistan Standards and Quality Control Authority: Karachi, Pakistan, 2016.
- Ojewola, G.; Onwuka, G. Evaluation of the organoleptic properties of ‘suya’ produced from various sources of meat. Niger. J. Anim. Prod. 2001, 28, 199–206. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Arlington, VA, USA, 2006. [Google Scholar]
- Ravindran, V.; Hew, L.; Ravindran, G.; Bryden, W. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim. Sci. 2005, 81, 85–97. [Google Scholar] [CrossRef]
- Ahmed, I.; Qaisrani, S.N.; Azam, F.; Pasha, T.N.; Bibi, F.; Naveed, S.; Murtaza, S. Interactive effects of threonine levels and protein source on growth performance and carcass traits, gut morphology, ileal digestibility of protein and amino acids and immunity in broilers. Poult. Sci. 2020, 99, 280–289. [Google Scholar] [CrossRef]
- Haque, A.; Lyons, J.; Vandepopuliere, J. Extrusion processing of broiler starter diets containing ground whole hens, poultry by-product meal, feather meal, or ground feathers. Poult. Sci. 1991, 70, 234–240. [Google Scholar] [CrossRef]
- dos Santos Andrade, T.; Nunes, R.V.; Wachholz, L.; da Silva, I.M.; de Freitas, D.M. The effect of exogenous enzymes on the performance and digestibility of nutrients in broiler. Semin. Ciênc. Agrár. 2018, 39, 711–718. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Roos, F.F. Bioefficacy of a mono-component protease in the diets of pigs and poultry: A meta-analysis of effect on ileal amino acid digestibility. J. Appl. Anim. Nutr. 2013, 2, e13. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Ravindran, V. Sensitivity of broiler starters to three doses of an enzyme cocktail in maize-based diets. Br. Poult. Sci. 2008, 49, 340–346. [Google Scholar] [CrossRef]
- Qiu, K.; Chen, J.; Zhang, G.; Chang, W.; Zheng, A.; Cai, H.; Liu, G.; Chen, Z. Effects of dietary crude protein and protease levels on performance, immunity capacity, and AA digestibility of broilers. Agriculture 2023, 13, 703. [Google Scholar] [CrossRef]
- Yi, W.; Liu, Y.; Fu, S.; Zhuo, J.; Zhang, W.; Liu, S.; Tu, Y.; Shan, T. Effect of a novel alkaline protease from Bacillus licheniformis on growth performance, carcass characteristics, meat quality, antioxidant capacity, and intestinal morphology of white feather broilers. J. Sci. Food Agric. 2024, 104, 5176–5185. [Google Scholar] [CrossRef]
- Olukosi, O.; Beeson, L.; Englyst, K.; Romero, L. Effects of exogenous proteases without or with carbohydrases on nutrient digestibility and disappearance of non-starch polysaccharides in broiler chickens. Poult. Sci. 2015, 94, 2662–2669. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yuan, T.; Yang, J.; Zheng, W.; Wu, Q.; Zhu, K.; Mou, X.; Wang, L.; Nie, K.; Li, X.; et al. Responses of combined non-starch polysaccharide enzymes and protease on growth performance, meat quality, and nutrient digestibility of yellow-feathered broilers fed with diets with different crude protein levels. Front. Vet. Sci. 2022, 9, 946204. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Mirza, M.; Nawaz, H.; Asghar, M.; Ahmed, G. Effect of exogenous protease, mannanase, and xylanase supplementation in corn and high protein corn DDGS-based diets on growth performance, intestinal morphology and nutrient digestibility in broiler chickens. Braz. J. Poult. Sci. 2019, 21, 1088. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Lv, Y.; Ma, W.; Wu, X.; Zhen, W.; Zhao, F. Effects of dietary protease supplementation on behaviour, slaughter performance, meat quality and immune organ indices of broilers. Czech J. Anim. Sci. 2023, 68, 255–265. [Google Scholar] [CrossRef]
- Mohammadigheisar, M.; Kim, I.H. Addition of a protease to low crude protein density diets of broiler chickens. J. Appl. Anim. Res. 2018, 46, 1377–1381. [Google Scholar] [CrossRef]
- Bertechini, A.G.; De Carvalho, J.C.; Carvalho, A.C.; Dalolio, F.S.; Sorbara, J.O. Amino acid digestibility coefficient values of animal protein meals with dietary protease for broiler chickens. Transl. Anim. Sci. 2020, 4, txaa187. [Google Scholar] [CrossRef]
- Rao, Z.Y.; Li, Y.; Yang, X.P.; Guo, Y.P.; Wang, Z.X.; Zhang, W. Effects of protease and probiotic combination supplementation on growth performance, intestinal health and cecal microbiota of broilers. Chin. J. Anim. Nutr. 2023, 35, 3659–3672. [Google Scholar]
- Stanley, D.; Denman, S.E.; Hughes, R.J.; Geier, M.S.; Crowley, T.M.; Chen, H.; Haring, V.R.; Moore, R.J. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl. Microbiol. Biotechnol. 2012, 96, 1361–1369. [Google Scholar] [CrossRef]
- Malo, M.S.; Alam, S.N.; Mostafa, G.; Zeller, S.J.; Johnson, P.V.; Mohammad, N.; Chen, K.T.; Moss, A.K.; Ramasamy, S.; Faruqui, A.; et al. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 2010, 59, 1476–1484. [Google Scholar] [CrossRef]
- Foley, S.L.; Nayak, R.; Hanning, I.B.; Johnson, T.J.; Han, J.; Ricke, S.C. Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Appl. Environ. Microbiol. 2013, 77, 4273–4279. [Google Scholar] [CrossRef]
- Van der Sluis, W. Clostridial enteritis is an often underestimated problem. World Poult. 2000, 16, 42–43. [Google Scholar]
- Mountzouris, K.C.; Tsirtsikos, P.; Kalamara, E.; Nitsch, S.; Schatzmayr, G.; Fegeros, K. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult. Sci. 2007, 86, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Ponomarova, O.; Gabrielli, N.; Sévin, D.C.; Mülleder, M.; Zirngibl, K.; Bulyha, K.; Andrejev, S.; Kafkia, E.; Typas, A.; Sauer, U.; et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 2017, 5, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Farrokhi, H.; Abdullahpour, R.; Rezaeipour, V. Influence of dietary phytase and protease, individually or in combination, on growth performance, intestinal morphology, microbiota composition and nutrient utilisation in broiler chickens fed sesame meal-based diets. Ital. J. Anim. Sci. 2021, 20, 2122–2130. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Z.; Lv, D.; Wang, T. Improved energy-utilizing efficiency by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poult. Sci. 2009, 88, 316–322. [Google Scholar] [CrossRef]
- Apajalahti, J.; Vienola, K. Interaction between chicken intestinal microbiota and protein digestion. Anim. Feed Sci. Technol. 2016, 221, 323–330. [Google Scholar] [CrossRef]
- Ma, N.; Tian, Y.; Wu, Y.; Ma, X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Pept. Sci. 2017, 18, 795–808. [Google Scholar] [CrossRef]
- Philipps-Wiemann, P. Proteases—Animal feed. In Enzymes in Human and Animal Nutrition; Elsevier: Amsterdam, The Netherlands, 2018; pp. 279–297. [Google Scholar]
Ingredients (%) | Starter (1 to 10 d) | Grower (11 to 24 d) | Finisher (25 to 35 d) |
---|---|---|---|
Maize grain | 52.61 | 58.8 | 64.07 |
Rice polishing | 0.26 | 0.20 | 0.20 |
Canola oil | 3.25 | 2.94 | 2.04 |
Soybean meal—44 | 29.5 | 23.73 | 21.0 |
Corn gluten meal—60 | 4.00 | 4.00 | 3.00 |
Canola meal—38 | 3.10 | 3.00 | 3.00 |
Guar meal—42 | 1.00 | 1.60 | 1.20 |
Poultry by-product meal—57.4 | 3.00 | 3.00 | 3.00 |
L-lysine HCl | 0.44 | 0.43 | 0.43 |
DL-methionine | 0.25 | 0.24 | 0.23 |
L-threonine | 0.18 | 0.17 | 0.16 |
Common salt | 0.20 | 0.20 | 0.20 |
Mono calcium phosphate | 0.09 | 0.05 | 0.05 |
Limestone | 1.82 | 1.34 | 1.12 |
Soda | 0.10 | 0.10 | 0.10 |
Choline | 0.05 | 0.05 | 0.05 |
Phytase | 0.01 | 0.01 | 0.01 |
Premix (a) | 0.14 | 0.14 | 0.14 |
Protease (b,c,d) | - | - | - |
Celite (e) | - | - | - |
Total | 100 | 100 | 100 |
Calculated composition, %, unless noted | |||
CP | 23.5 | 22 | 20 |
ME (Kcal/kg) | 3010 | 3075 | 3130 |
CF | 3.64 | 3.47 | 3.32 |
EE | 5.64 | 5.4 | 4.5 |
Dig. Lys | 1.32 | 1.18 | 1.08 |
Dig. Meth | 0.55 | 0.51 | 0.48 |
Dig. M+C | 1.00 | 0.92 | 0.86 |
Dig. Thr | 0.88 | 0.79 | 0.72 |
Analyzed composition (%) | |||
CP | 23.1 | 21.7 | 19.6 |
CF | 3.59 | 3.45 | 3.29 |
EE | 5.63 | 5.36 | 4.47 |
Lys | 1.30 | 1.17 | 1.07 |
Meth | 0.6 | 0.56 | 0.51 |
Thr | 0.86 | 0.77 | 0.69 |
Parameter | Treatments | Age (d) | |||
---|---|---|---|---|---|
Starter (1–10) | Grower (11–24) | Finisher (25–35) | Overall (1–35) | ||
FI (g/bird/d) (4) | T0 | 31.6 | 86.7 | 131.4 | 85.0 |
T1 | 31.5 | 86.8 | 128.2 | 84.0 | |
T2 | 31.5 | 86.4 | 129.5 | 84.3 | |
T3 | 31.3 | 86.5 | 128.5 | 83.9 | |
SEM (3) | 0.16 | 0.14 | 1.01 | 0.34 | |
p-value | 0.56 | 0.12 | 0.13 | 0.13 | |
BWG (g/bird/d) (5) | T0 | 28.5 c | 61.7 d | 77.6 | 57.2 c |
T1 | 29.7 b | 62.3 c | 78.1 | 58.0 bc | |
T2 | 30.5 a | 65.3 a | 79.6 | 59.9 a | |
T3 | 29.7 b | 64.2 b | 78.7 | 58.9 b | |
SEM (3) | 0.12 | 0.17 | 0.75 | 0.24 | |
p-value | 0.01 | 0.01 | 0.30 | 0.01 | |
FCR (6) | T0 | 1.11 c | 1.42 d | 1.69 b | 1.49 c |
T1 | 1.06 b | 1.39 c | 1.64 a | 1.45 b | |
T2 | 1.03 a | 1.32 a | 1.63 a | 1.41 a | |
T3 | 1.05 ab | 1.35 b | 1.63 a | 1.43 a | |
SEM (3) | 0.01 | 0.005 | 0.011 | 0.005 | |
p-value | 0.01 | 0.01 | 0.01 | 0.01 |
Item | (%) | ||||
---|---|---|---|---|---|
LW (3) (g) | DWG (3) | DWWG (3) | BY (3) | LQ (3) | |
T0 | 2042 c | 67.8 d | 62.4 d | 20.9 c | 9.33 c |
T1 | 2068 bc | 68.8 c | 63.6 c | 21.4 c | 9.46 b |
T2 | 2135 a | 71.6 a | 66.2 a | 23.6 a | 9.66 a |
T3 | 2102 b | 70.9 b | 64.5 b | 22.4 b | 9.52 b |
SEM (4) | 8.25 | 0.25 | 0.23 | 0.18 | 0.02 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Item | VH (μm) | CD (μm) | VCR |
---|---|---|---|
T0 | 1564 c | 297 c | 5.27 c |
T1 | 1697 b | 276 b | 6.14 b |
T2 | 1735 a | 268 a | 6.47 a |
T3 | 1707 b | 276 b | 6.17 b |
SEM (3) | 8.92 | 1.67 | 0.05 |
p-value | <0.001 | <0.001 | <0.001 |
Item (%) | T0 | T1 | T2 | T3 | SEM (3) | p-Value |
---|---|---|---|---|---|---|
DM | 70.5 c | 72.8 b | 75.2 a | 73.1 b | 0.70 | 0.01 |
CP | 78.5 c | 80.2 b | 82.8 a | 80.9 b | 0.60 | 0.01 |
EAAs (4) | ||||||
Meth | 82.7 c | 85.1 b | 87.9 a | 85.8 b | 0.85 | 0.01 |
Lys | 84.3 c | 86.7 b | 89.2 a | 87.4 b | 0.70 | 0.01 |
Leu | 80.3 c | 82.5 b | 85.4 a | 83.2 b | 0.60 | 0.01 |
Ile | 73.2 b | 75.0 ab | 77.8 a | 75.6 ab | 0.55 | 0.01 |
Thr | 64.5 c | 66.7 b | 69.4 a | 67.2 b | 0.70 | 0.01 |
Val | 60.5 c | 62.2 b | 64.9 a | 63.1 b | 0.55 | 0.01 |
His | 80.2 c | 82.3 b | 84.8 a | 82.9 b | 0.60 | 0.01 |
Arg | 85.4 c | 87.6 b | 90.3 a | 88.4 b | 0.60 | 0.01 |
Phe | 75.7 c | 77.8 b | 80.5 a | 78.3 b | 0.65 | 0.01 |
NEAAs (5) | ||||||
Gly | 63.5 c | 65.4 b | 68.3 a | 66.1 b | 0.60 | 0.01 |
Ala | 72.3 b | 74.6 ab | 76.9 a | 75.1 ab | 0.60 | 0.01 |
Cys | 78.5 c | 80.6 b | 84.2 a | 82.1 b | 0.90 | 0.01 |
Ser | 73.5 c | 75.2 b | 77.6 a | 75.8 b | 0.70 | 0.01 |
Glu | 83.7 b | 85.3 ab | 87.1 a | 85.9 ab | 0.40 | 0.01 |
Asp | 70.6 c | 72.4 b | 75.6 a | 73.2 b | 0.70 | 0.01 |
Tyr | 78.3 c | 80.7 b | 84.1 a | 81.6 b | 0.90 | 0.01 |
Orn | 75.1 a | 75.8 a | 77.1 a | 76.5 a | 0.50 | 0.15 |
Pro | 74.8 c | 76.7 b | 79.4 a | 77.2 ab | 0.75 | 0.01 |
Item | Salmonella | E. coli | Clostridia | Lactobacilli |
---|---|---|---|---|
T0 | 4.13 a | 8.09 a | 3.80 a | 7.20 c |
T1 | 3.30 b | 5.82 b | 3.55 b | 7.52 b |
T2 | 3.15 c | 5.02 c | 3.06 c | 8.53 a |
T3 | 3.18 c | 5.11 c | 3.46 b | 7.82 b |
SEM (3) | 0.11 | 0.32 | 0.07 | 0.14 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafar, M.S.; Qaisrani, S.N.; Saima; Hayat, Z.; Nauman, K. Impacts of Protease Sources on Growth and Carcass Response, Gut Health, Nutrient Digestibility, and Cecal Microbiota Profiles in Broilers Fed Poultry-by-Product-Meal-Based Diets. Metabolites 2025, 15, 445. https://doi.org/10.3390/metabo15070445
Zafar MS, Qaisrani SN, Saima, Hayat Z, Nauman K. Impacts of Protease Sources on Growth and Carcass Response, Gut Health, Nutrient Digestibility, and Cecal Microbiota Profiles in Broilers Fed Poultry-by-Product-Meal-Based Diets. Metabolites. 2025; 15(7):445. https://doi.org/10.3390/metabo15070445
Chicago/Turabian StyleZafar, Muhammad Shahbaz, Shafqat Nawaz Qaisrani, Saima, Zafar Hayat, and Kashif Nauman. 2025. "Impacts of Protease Sources on Growth and Carcass Response, Gut Health, Nutrient Digestibility, and Cecal Microbiota Profiles in Broilers Fed Poultry-by-Product-Meal-Based Diets" Metabolites 15, no. 7: 445. https://doi.org/10.3390/metabo15070445
APA StyleZafar, M. S., Qaisrani, S. N., Saima, Hayat, Z., & Nauman, K. (2025). Impacts of Protease Sources on Growth and Carcass Response, Gut Health, Nutrient Digestibility, and Cecal Microbiota Profiles in Broilers Fed Poultry-by-Product-Meal-Based Diets. Metabolites, 15(7), 445. https://doi.org/10.3390/metabo15070445