Association Between Habitual Dietary Intake and Urinary Metabolites in Adults—Results of a Population-Based Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Dietary Assessment
2.4. Assessment of Urinary Metabolites
2.5. Covariables
2.6. Statistical Analysis
3. Results
3.1. Study Population
3.2. Individual Associations Between Habitual Food Intake and Urinary Metabolites
3.3. Description of Identified Metabolite Clusters
3.4. Association of Habitual Food Intake and Clusters of Urinary Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin Converting Enzyme |
AIC | Akaike Information Criterion |
BMI | Body Mass Index |
EHIS-PAQ | European Health Interview Survey-Physical Activity Questionnaire |
HPHPA | 3-(3-hydroxyphenyl)-3-hydroxypropionic acid |
2-HPPA | 3-(2-hydroxyphenyl)-propionic acid |
IQR | Interquartile Range |
IS | Indoxyl Sulphate |
MEIA | Metabolism, Nutrition, and Immune System in Augsburg Study |
NCD | Non-Communicable Disease |
N1-MN | 1-Methylnicotinamide |
oPLS | orthogonal Projection to Latent Structures |
PAL | Physical Activity Level |
PCA | Principal Component Analysis |
RNA | Ribonucleic Acid |
SCFA | Short-Chain Fatty Acid |
SD | Standard Deviation |
TMAO | Trimethylamine-N-oxide |
VIF | Variance Inflation Factor |
VIP | Variable in Projection |
References
- Bauer, U.E.; Briss, P.A.; Goodman, R.A.; Bowman, B.A. Prevention of Chronic Disease in the 21st Century: Elimination of the Leading Preventable Causes of Premature Death and Disability in the USA. Lancet 2014, 384, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Muka, T.; Imo, D.; Jaspers, L.; Colpani, V.; Chaker, L.; van der Lee, S.J.; Breteler, M.M.; Franco, O.H. The Global Impact of Non-Communicable Diseases on Healthcare Spending and National Income: A Systematic Review. Eur. J. Epidemiol. 2015, 30, 251–277. [Google Scholar] [CrossRef] [PubMed]
- Pan American Health Organization (PAHO). Economics of NCDs—PAHO/WHO | Pan American Health Organization. Available online: https://www.paho.org/en/topics/economics-ncds (accessed on 8 November 2024).
- World Health Organization. Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 30 October 2024).
- Peng, W.; Chen, S.; Chen, X.; Ma, Y.; Wang, T.; Sun, X.; Wang, Y.; Ding, G.; Wang, Y. Trends in Major Non-Communicable Diseases and Related Risk Factors in China 2002–2019: An Analysis of Nationally Representative Survey Data. Lancet 2023, 43, 100809. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, A.; Gibney, M.J.; Brennan, L. Dietary Intake Patterns Are Reflected in Metabolomic Profiles: Potential Role in Dietary Assessment Studies. Am. J. Clin. Nutr. 2010, 93, 314–321. [Google Scholar] [CrossRef]
- Rao, L.; Yadav, D.; Rai, N.; Jalwal, P. Metabolomics Applications in Food Science and Nutritional Research. In Springer Handbook of Nutritional Biochemistry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 425–439. [Google Scholar]
- Fraga-Corral, M.; Carpena, M.; Garcia-Oliveira, P.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Analytical Metabolomics and Applications in Health, Environmental, and Food Science. Crit. Rev. Anal. Chem. 2020, 52, 712–734. [Google Scholar] [CrossRef]
- Collins, C.; McNamara, A.E.; Brennan, L. Role of metabolomics in identification of biomarkers related to food intake. Proc. Nutr. Soc. 2019, 78, 189–196. [Google Scholar] [CrossRef]
- Falcke, J.M.; Bose, N.; Artyukhin, A.B.; Rödelsperger, C.; Markov, G.V.; Yim, J.J.; Grimm, D.; Claassen, M.H.; Panda, O.; Baccile, J.A.; et al. Linking Genomic and Metabolomic Natural Variation Uncovers Nematode Pheromone Biosynthesis. Cell Chem. Biol. 2018, 25, 787–796.e12. [Google Scholar] [CrossRef]
- Schuijt, T.J.; Lankelma, J.M.; Scicluna, B.P.; de Sousa e Melo, F.; Roelofs, J.J.T.H.; de Boer, J.D.; Hoogendijk, A.J.; de Beer, R.; de Vos, A.; Belzer, C.; et al. The Gut Microbiota Plays a Protective Role in the Host Defence Against Pneumococcal Pneumonia. Gut 2016, 65, 575–583. [Google Scholar] [CrossRef]
- Playdon, M.C.; Sampson, J.N.; Cross, A.J.; Sinha, R.; Guertin, K.A.; Moy, K.A.; Rothman, N.; Irwin, M.L.; Mayne, S.T.; Stolzenberg-Solomon, R.; et al. Comparing Metabolite Profiles of Habitual Diet in Serum and Urine. Am. J. Clin. Nutr. 2016, 104, 776–789. [Google Scholar] [CrossRef]
- Winkvist, A.; Johansson, I.; Ellegård, L.; Lindqvist, H.M. Towards Objective Measurements of Habitual Dietary Intake Patterns: Comparing NMR Metabolomics and Food Frequency Questionnaire Data in a Population-Based Cohort. Nutr. J. 2024, 23, 29. [Google Scholar] [CrossRef]
- Landberg, R.; Karra, P.; Hoobler, R.; Loftfield, E.; Huybrechts, I.; Rattner, J.I.; Noerman, S.; Claeys, L.; Neveu, V.; Vidkjaer, N.H.; et al. Dietary Biomarkers—An Update on Their Validity and Applicability in Epidemiological Studies. Nutr. Rev. 2023, 82, 909–924. [Google Scholar] [CrossRef] [PubMed]
- What Is myfood24 [Internet]. myfood24. Available online: https://www.myfood24.org/about/what-is-myfood24/ (accessed on 13 November 2024).
- Haines, P.S.; Hama, M.Y.; Guilkey, D.K.; Popkin, B.M. Weekend Eating in the United States Is Linked with Greater Energy, Fat, and Alcohol Intake. Obes. Res. 2003, 11, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Tooze, J.A.; Kipnis, V.; Buckman, D.W.; Carroll, R.J.; Freedman, L.S.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Dodd, K.W. A Mixed-Effects Model Approach for Estimating the Distribution of Usual Intake of Nutrients: The NCI Method. Stat. Med. 2010, 29, 2857–2868. [Google Scholar] [CrossRef]
- Dodd, K.W.; Guenther, P.M.; Freedman, L.S.; Subar, A.F.; Kipnis, V.; Midthune, D.; Tooze, J.A.; Krebs-Smith, S.M. Statistical Methods for Estimating Usual Intake of Nutrients and Foods: A Review of the Theory. J. Am. Diet. Assoc. 2006, 106, 1640–1650. [Google Scholar] [CrossRef] [PubMed]
- Wawro, N.; Kleiser, C.; Himmerich, S.; Gedrich, K.; Boeing, H.; Knüppel, S.; Linseisen, J. Estimating Usual Intake in the 2nd Bavarian Food Consumption Survey: Comparison of the Results Derived by the National Cancer Institute Method and a Basic Individual Means Approach. Ann. Nutr. Metab. 2017, 71, 164–174. [Google Scholar] [CrossRef]
- Mitry, P.; Wawro, N.; Six-Merker, J.; Zoller, D.; Jourdan, C.; Meisinger, C.; Thierry, S.; Nöthlings, U.; Knüppel, S.; Boeing, H.; et al. Usual Dietary Intake Estimation Based on a Combination of Repeated 24-H Food Lists and a Food Frequency Questionnaire in the KORA FF4 Cross-Sectional Study. Front. Nutr. 2019, 6, 145. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting Basal Metabolic Rate, New Standards and Review of Previous Work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar]
- Bizzarri, D.; Reinders, M.J.T.; Beekman, M.; Slagboom, P.E.; van den Akker, E.B. Technical Report: A Comprehensive Comparison between Different Quantification Versions of Nightingale Health’s 1H-NMR Metabolomics Platform. Metabolites 2023, 13, 1181. [Google Scholar] [CrossRef]
- Wang, Y.; Hodge, R.A.; Stevens, V.L.; Hartman, T.J.; McCullough, M.L. Identification and Reproducibility of Urinary Metabolomic Biomarkers of Habitual Food Intake in a Cross-Sectional Analysis of the Cancer Prevention Study-3 Diet Assessment Substudy. Metabolites 2021, 11, 248. [Google Scholar] [CrossRef]
- Finger, J.D.; Tafforeau, J.; Gisle, L.; Oja, L.; Ziese, T.; Thelen, J.; Mensink, G.B.M.; Lange, C. Development of the European Health Interview Survey—Physical Activity Questionnaire (EHIS-PAQ) to Monitor Physical Activity in the European Union. Arch. Public Health 2015, 73, 59. [Google Scholar] [CrossRef]
- Gerrior, S.; Juan, W.; Basiotis, P. An Easy Approach to Calculating Estimated Energy Requirements. Prev. Chronic Dis. 2006, 3, A129. [Google Scholar] [PubMed]
- U.S. Department of Veterans Affairs. VA.gov | Veterans Affairs. Available online: https://www.hepatitis.va.gov/alcohol/treatment/audit-c.asp (accessed on 15 November 2024).
- Heinzmann, S.S.; Brown, I.J.; Chan, Q.; Bictash, M.; Dumas, M.E.; Kochhar, S.; Stamler, J.; Holmes, E.; Nicholson, J.K.; Elliott, P. Metabolic Profiling Strategy for Discovery of Nutritional Biomarkers: Proline Betaine as a Marker of Citrus Consumption. Am. J. Clin. Nutr. 2010, 92, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, A.J.; Beckmann, M.; Favé, G.; Mathers, J.C.; Draper, J. Proline Betaine and Its Biotransformation Products in Fasting Urine Samples Are Potential Biomarkers of Habitual Citrus Fruit Consumption. Br. J. Nutr. 2011, 106, 812–824. [Google Scholar] [CrossRef]
- French, C.D.; Arnold, C.D.; Taha, A.Y.; Engle-Stone, R.; Schmidt, R.J.; Hertz-Picciotto, I.; Slupsky, C.M. Assessing Repeated Urinary Proline Betaine Measures as a Biomarker of Usual Citrus Intake During Pregnancy: Sources of Within-Person Vari-ation and Correlation with Reported Intake. Metabolites 2023, 13, 904. [Google Scholar] [CrossRef]
- He, Z.; Li, P.; Liu, P.; Xu, P. Exploring Stachydrine: From Natural Occurrence to Biological Activities and Metabolic Pathways. Front. Plant Sci. 2024, 15, 1442879. [Google Scholar] [CrossRef]
- Kamel, K.S.; Halperin, M.L. Dogmas and Controversies in the Handling of Nitrogenous Wastes: Excretion of Nitrogenous Wastes in Human Subjects. J. Exp. Biol. 2004, 207, 1985–1991. [Google Scholar] [CrossRef]
- Weiner, I.D.; Mitch, W.E.; Sands, J.M. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion. Clin. J. Am. Soc. Nephrol. 2014, 10, 1444–1458. [Google Scholar] [CrossRef] [PubMed]
- Adeyomoye, O.; Akintayo, C.; Omotuyi, K.; Adewumi, A. The Biological Roles of Urea: A Review of Preclinical Studies. Indian J. Nephrol. 2022, 32, 87–94. [Google Scholar] [CrossRef]
- Dennis, B.; Stamler, J.; Buzzard, M.; Conway, R.; Elliott, P.; Moag-Stahlberg, A.; Okayama, A.; Okuda, N.; Robertson, C.; Robinson, F.; et al. INTERMAP: The Dietary Data—Process and Quality Control. J. Hum. Hypertens. 2003, 17, 609–622. [Google Scholar] [CrossRef]
- Holmes, E.; Loo, R.L.; Stamler, J.; Bictash, M.; Yap, I.K.S.; Chan, Q.; Ebbels, T.; De Iorio, M.; Brown, I.J.; Veselkov, K.A.; et al. Human Metabolic Phenotype Diversity and Its Association with Diet and Blood Pressure. Nature 2008, 453, 396–400. [Google Scholar] [CrossRef]
- Rasmussen, L.G.; Winning, H.; Savorani, F.; Ritz, C.; Engelsen, S.B.; Astrup, A.; Larsen, T.M.; Dragsted, L.O. Assessment of Dietary Exposure Related to Dietary GI and Fibre Intake in a Nutritional Metabolomic Study of Human Urine. Genes Nutr. 2011, 7, 281–293. [Google Scholar] [CrossRef]
- Unión-Caballero, A.; Meroño, T.; Zamora-Ros, R.; Rostgaard-Hansen, A.L.; Miñarro, A.; Sánchez-Pla, A.; Estanyol-Torres, N.; Martínez-Huelamo, M.; Cubedo, M.; González-Domínguez, R.; et al. Metabolome Biomarkers Linking Dietary Fibre Intake with Cardiometabolic Effects: Results from the Danish Diet, Cancer and Health-Next Generations MAX Study. Food Funct. 2023, 15, 820–834. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef]
- Walsh, M.C.; Brennan, L.; Pujos-Guillot, E.; Sébédio, J.L.; Scalbert, A.; Fagan, A.; Gibney, E.R.; Gibney, M.J. Influence of Acute Phytochemical Intake on Human Urinary Metabolomic Profiles. Am. J. Clin. Nutr. 2007, 86, 1687–1693. [Google Scholar] [CrossRef] [PubMed]
- Stratakis, N.; Siskos, A.P.; Papadopoulou, E.; Nguyen, A.N.; Zhao, Y.; Margetaki, K.; Lau, C.; Coen, M.; Maitre, L.; Fer-nández-Barrés, S.; et al. Urinary Metabolic Biomarkers of Diet Quality in European Children Are Associated with Metabolic Health. eLife 2022, 11, e71332. [Google Scholar] [CrossRef]
- Brial, F.; Chilloux, J.; Nielsen, T.; Vieira-Silva, S.; Falony, G.; Andrikopoulos, P.; Olanipekun, M.; Hoyles, L.; Djouadi, F.; Neves, A.L.; et al. Human and Preclinical Studies of the Host–Gut Microbiome Co-Metabolite Hippurate as a Marker and Mediator of Metabolic Health. Gut 2021, 70, 2105–2114. [Google Scholar] [CrossRef]
- Pallister, T.; Jackson, M.A.; Martin, T.C.; Zierer, J.; Jennings, A.; Mohney, R.P.; MacGregor, A.; Steves, C.J.; Cassidy, A.; Spector, T.D.; et al. Hippurate as a Metabolomic Marker of Gut Microbiome Diversity: Modulation by Diet and Relationship to Metabolic Syndrome. Sci. Rep. 2017, 7, 13670. [Google Scholar] [CrossRef]
- Cuparencu, C.; Praticó, G.; Hemeryck, L.Y.; Sri Harsha, P.S.C.S.; Noerman, S.; Rombouts, C.; Xi, M.; Vanhaecke, L.; Hanhineva, K.; Brennan, L.; et al. Biomarkers of Meat and Seafood Intake: An Extensive Literature Review. Genes Nutr. 2019, 14, 1. [Google Scholar] [CrossRef]
- Cross, A.J.; Major, J.M.; Sinha, R. Urinary Biomarkers of Meat Consumption. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1107–1111. [Google Scholar] [CrossRef]
- Stella, C.; Beckwith-Hall, B.; Cloarec, O.; Holmes, E.; Lindon, J.C.; Powell, J.; Van der Ouderaa, F.; Bingham, S.; Cross, A.J.; Nicholson, J.K. Susceptibility of Human Metabolic Phenotypes to Dietary Modulation. J. Proteome Res. 2006, 5, 2780–2788. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bergeron, N.; Levison, B.S.; Li, X.S.; Chiu, S.; Jia, X.; Koeth, R.A.; Li, L.; Wu, Y.; Tang, W.H.W.; et al. Impact of Chronic Dietary Red Meat, White Meat, or Non-Meat Protein on Trimethylamine N-Oxide Metabolism and Renal Excretion in Healthy Men and Women. Eur. Heart J. 2019, 40, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Mitry, P.; Wawro, N.; Rohrmann, S.; Giesbertz, P.; Daniel, H.; Linseisen, J. Plasma Concentrations of Anserine, Carnosine and Pi-Methylhistidine as Biomarkers of Habitual Meat Consumption. Eur. J. Clin. Nutr. 2018, 73, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhang, J.; Wang, Z.; Xu, S.; Zhang, Q.; Duan, Z.; Tan, R.; Qi, X.; Guo, J.; Chang, X.; et al. Associations of Diet with Urinary Trimethylamine-N-Oxide (TMAO) and Its Precursors among Free-Living 10-Year-Old Children: Data from SMBCS. Nutrients 2022, 14, 3419. [Google Scholar] [CrossRef]
- Yin, X.; Gibbons, H.; Rundle, M.; Frost, G.; McNulty, B.A.; Nugent, A.P.; Walton, J.; Flynn, A.; Brennan, L. The Relationship between Fish Intake and Urinary Trimethylamine-N-Oxide. Mol. Nutr. Food Res. 2020, 64, 1900799. [Google Scholar] [CrossRef]
- Gibson, R.J.; Lau, C.H.E.; Loo, R.L.; Ebbels, T.M.; Chekmeneva, E.; Dyer, A.R.; Miura, K.; Ueshima, H.; Zhao, L.; Daviglus, M.L.; et al. The Association of Fish Consumption and Its Urinary Metabolites with Cardiovascular Risk Factors: The International Study of Macro-/Micronutrients and Blood Pressure (IN-TERMAP). Am. J. Clin. Nutr. 2020, 111, 280–290. [Google Scholar] [CrossRef]
- Stapleton, P.P.; Charles, R.P.; Redmond, H.P.; Bouchier-Hayes, D.J. Taurine and human nutrition. Clin. Nutr. 1997, 16, 103–108. [Google Scholar] [CrossRef]
- Post, A.; Said, M.Y.; Gomes-Neto, A.W.; van der Krogt, J.; de Blaauw, P.; Berger, S.P.; Geleijnse, J.M.; Borgonjen, K.; van den Berg, E.; van Goor, H.; et al. Urinary Taurine Excretion and Risk of Late Graft Failure in Renal Transplant Recipients. Nutrients 2019, 11, 2212. [Google Scholar] [CrossRef]
- Laidlaw, S.A.; Shultz, T.D.; Cecchino, J.T.; Kopple, J.D. Plasma and urine taurine levels in vegans. Am. J. Clin. Nutr. 1988, 47, 660–663. [Google Scholar] [CrossRef]
- Leong, S.; Sirich, T. Indoxyl Sulfate—Review of Toxicity and Therapeutic Strategies. Toxins 2016, 8, 358. [Google Scholar] [CrossRef]
- Soh, N.L.; Walter, G. Tryptophan and depression: Can diet alone be the answer? Acta Neuropsychiatr. 2011, 23, 3–11. [Google Scholar] [CrossRef]
- Cheng, T.H.; Ma, M.C.; Liao, M.T.; Zheng, C.M.; Lu, K.C.; Liao, C.H.; Hou, Y.C.; Liu, W.C.; Lu, C.L. Indoxyl Sulfate, a Tubular Toxin, Contributes to the Development of Chronic Kidney Disease. Toxins 2020, 12, 684. [Google Scholar] [CrossRef] [PubMed]
- Deen, C.P.J.; van der Veen, A.; Gomes-Neto, A.W.; Geleijnse, J.M.; Borgonjen-van den Berg, K.J.; Heiner-Fokkema, M.R.; Kema, I.P.; Bakker, S.J.L. Urinary Excretion of N1-Methylnicotinamide and N1-Methyl-2-Pyridone-5-Carboxamide and Mortality in Kidney Transplant Recipients. Nutrients 2020, 12, 2059. [Google Scholar] [CrossRef]
- Gibson, R.S. Nutritional Assessment of Niacin Status Deficiency Intake Diet. Nutritional Assessment.org. 2024. Available online: https://nutritionalassessment.org/niacin/ (accessed on 13 November 2024).
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Niacin. In Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press, Ed.; National Academies Press (US): Washington, DC, USA, 1998; Chapter 6. [Google Scholar]
- Lombardo, M.; Aulisa, G.; Marcon, D.; Rizzo, G.; Tarsisano, M.G.; Di Renzo, L.; Federici, M.; Caprio, M.; De Lorenzo, A. Association of Urinary and Plasma Levels of Trimethylamine N-Oxide (TMAO) with Foods. Nutrients 2021, 13, 1426. [Google Scholar] [CrossRef]
- Evans, M.; Dai, L.; Avesani, C.M.; Kublickiene, K.; Stenvinkel, P. The Dietary Source of Trimethylamine N-Oxide and Clinical Outcomes: An Unexpected Liaison. NDT Plus 2023, 16, 1804–1812. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Hazen, S.L. Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl. Res. 2017, 179, 108–115. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zeng, S.Y.; Leu, Y.L.; Tsai, T.Y. Antihypertensive Effect of a Combination of Uracil and Glycerol Derived from Lactobacillus plantarum Strain TWK10-Fermented Soy Milk. J. Agric. Food Chem. 2015, 63, 7333–7339. [Google Scholar] [CrossRef]
- Chang, C.J.; Dai, R.Y.; Leu, Y.L.; Tsai, T.Y. Effects of the Melanogenic Inhibitor, Uracil, Derived from Lactobacillus plantarum TWK10-Fermented Soy Milk on Anti-Melanogenesis in B16F0 Mouse Melanoma Cells. J. Funct. Foods 2015, 17, 314–327. [Google Scholar] [CrossRef]
- Charette, M.; Gray, M. Pseudouridine in RNA: What, Where, How, and Why. IUBMB Life 2000, 49, 341–351. [Google Scholar] [CrossRef]
- Marvel, C.C.; Del Rowe, J.; Bremer, E.G.; Moskal, J.R. Altered RNA Turnover in Carcinogenesis: The Diagnostic Potential of Modified Base Excretion. Mol. Chem. Neuropathol. 1994, 21, 353–368. [Google Scholar] [CrossRef]
- Tamura, S.; Fujioka, H.; Nakano, T.; Amuro, Y.; Hada, T.; Nakao, N.; Higashino, K. Urinary Pseudouridine as a Biochemical Marker in the Diagnosis and Monitoring of Primary Hepatocellular Carcinoma. Am. J. Gastroenterol. 1988, 83, 841–845. [Google Scholar] [PubMed]
- Jacobs, D.M.; Spiesser, L.; Garnier, M.; de Roo, N.; van Dorsten, F.; Hollebrands, B.; van Velzen, E.J.; Draijer, R.; van Duynhoven, J.P. SPE–NMR Metabolite Sub-Profiling of Urine. Anal. Bioanal. Chem. 2012, 404, 2349–2361. [Google Scholar] [CrossRef] [PubMed]
- Rechner, A.; Kuhnle, G.; Hu, H.; Roedig-Penman, A.; van den Braak, M.H.; Moore, K.P.; Rice-Evans, C. The Metabolism of Dietary Polyphenols and the Relevance to Circulating Levels of Conjugated Metabolites. Free Radic. Res. 2002, 36, 1229–1241. [Google Scholar] [CrossRef]
- Pero, R.W.; Lund, H.; Leanderson, T. Antioxidant Metabolism Induced by Quinic Acid: Increased Urinary Excretion of Tryptophan and Nicotinamide. Phytother. Res. 2008, 23, 335–346. [Google Scholar] [CrossRef]
- Sova, M.; Saso, L. Natural Sources, Pharmacokinetics, Biological Activities, and Health Benefits of Hydroxycinnamic Acids and Their Metabolites. Nutrients 2020, 12, 2190. [Google Scholar] [CrossRef]
- del Portocarrero, A.C.M.; Lopez-Santamarina, A.; Lopez, P.R.; Samuel, I.; Duman, H.; Karav, S.; Miranda, J.M. Substitutive Effects of Milk vs. Vegetable Milk on the Human Gut Microbiota and Implications for Human Health. Nutrients 2024, 16, 3108. [Google Scholar] [CrossRef]
- Zhong, T.; Wang, C.; Wang, X.; Freitas-de-Melo, A.; Zeng, B.; Zhao, Q.; Zhan, S.; Wang, L.; Cao, J.; Dai, D.; et al. Early Weaning and Milk Substitutes Affect the Gut Microbiome, Metabolomics, and Antibody Profile in Goat Kids Suffering from Diarrhea. Front. Microbiol. 2022, 13, 904475. [Google Scholar] [CrossRef] [PubMed]
- Kumps, A.; Duez, P.; Mardens, Y. Metabolic, Nutritional, Iatrogenic, and Artifactual Sources of Urinary Organic Acids: A Comprehensive Table. Clin. Chem. 2002, 48, 708–717. [Google Scholar]
- Shaw, W. Increased Urinary Excretion of 3-(3-Hydroxyphenyl)-3-Hydroxypropionic Acid (HPHPA), an Abnormal Phenyl-alanine Metabolite of Clostridia spp., in Urine Samples from Patients with Autism and Schizophrenia. Nutr. Neurosci. 2010, 13, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Keşli, R.; Gökçen, C.; Buluğ, U.; Terzi, Y. Investigation of the Relation Between Anaerobic Bacteria Genus Clostridium and Late-Onset Autism Etiology in Children. J. Immunoass. Immunochem. 2013, 35, 101–109. [Google Scholar] [CrossRef]
- Ellis, R.J.; Small, D.M.; Vesey, D.A.; Johnson, D.W.; Francis, R.; Vitetta, L.; Gobe, G.C.; Morais, C. Indoxyl Sulfate and Kidney Disease: Causes, Consequences, and Interventions. Nephrology 2016, 21, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, M.; Zhu, Y.; Qin, L. The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids. Foods 2023, 12, 1023. [Google Scholar] [CrossRef] [PubMed]
- Havenaar, R. Intestinal Health Functions of Colonic Microbial Metabolites: A Review. Benef. Microbes 2011, 2, 103–114. [Google Scholar] [CrossRef]
- Moffett, J.R.; Puthillathu, N.; Vengilote, R.; Jaworski, D.M.; Namboodiri, A.M. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics, and Oncogenesis. Front. Physiol. 2020, 11, 580167. [Google Scholar]
- Graveno, M.; Stratford, R.E. Absorption, Distribution, Metabolism, and Excretion of Biopharmaceutical Drug Products. In Biopharmaceuticals: Drug Discovery to Commercialization, 1st ed.; Springer: New York, NY, USA, 2024; pp. 309–336. [Google Scholar]
- Roberts, L.D.; Boström, P.; O’Sullivan, J.F.; Schinzel, R.T.; Lewis, G.D.; Dejam, A.; Lee, Y.K.; Palma, M.J.; Calhoun, S.; Georgiadi, A.; et al. β-Aminoisobutyric Acid Induces Browning of White Fat and Hepatic β-Oxidation and Is Inversely Correlated with Cardiometabolic Risk Factors. Cell Metab. 2014, 19, 96–108. [Google Scholar] [CrossRef]
- Dankel, S.N. 3-Hydroxyisobutyrate (3-HIB): Features and Links as a Biological Marker in Diabetes. In Recent Advances in Biomarkers for Diabetes and Obesity; Springer: Berlin/Heidelberg, Germany, 2022; pp. 299–309. [Google Scholar]
- Pietzke, M.; Meiser, J.; Vazquez, A. Formate Metabolism in Health and Disease. Mol. Metab. 2020, 33, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Lamarre, S.G.; Morrow, G.; Macmillan, L.; Brosnan, M.E.; Brosnan, J.T. Formate: An Essential Metabolite, a Biomarker, or More? Clin. Chem. Lab. Med. 2013, 51, 571–577. [Google Scholar] [CrossRef]
- Gil, F.; Pla, A. Biomarkers as Biological Indicators of Xenobiotic Exposure. J. Appl. Toxicol. 2001, 21, 245–255. [Google Scholar] [CrossRef]
- Biocrates. The Fluid of Everything—Urine and Precision Nutrition. Available online: https://biocrates.com/urine-and-precision-nutrition/ (accessed on 15 November 2024).
- Kasubuchi, M.; Hasegawa, S.; Hiramatsu, T.; Ichimura, A.; Kimura, I. Dietary Gut Microbial Metabolites, Short-Chain Fatty Acids, and Host Metabolic Regulation. Nutrients 2015, 7, 2839–2849. [Google Scholar] [CrossRef]
- Liu, J.; Tan, Y.; Cheng, H.; Zhang, D.; Feng, W.; Peng, C. Functions of Gut Microbiota Metabolites: Current Status and Future Perspectives. Aging Dis. 2022, 13, 1106–1123. [Google Scholar] [CrossRef]
- Posma, J.M.; Garcia-Perez, I.; Frost, G.; Aljuraiban, G.S.; Chan, Q.; Van Horn, L.; Daviglus, M.L.; Stamler, J.; Elliott, P.; Holmes, E.; et al. Nutriome–Metabolome Relationships Provide Insights into Dietary Intake and Metabolism. Nat. Food 2020, 1, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.H.E.; Siskos, A.P.; Maitre, L.; Robinson, O.J.; Athersuch, T.J.; Want, E.J.; Urquiza, J.; Casas, M.; Vafeiadi, M.; Rou-meliotaki, T.; et al. Determinants of the Urinary and Serum Metabolome in Children from Six European Populations. BMC Med. 2018, 16, 202. [Google Scholar] [CrossRef]
- Prendiville, O.; Walton, J.; Flynn, A.; Nugent, A.P.; McNulty, B.; Brennan, L. Classifying Individuals into a Dietary Pattern Based on Metabolomic Data. Mol. Nutr. Food Res. 2021, 65, 2100506. [Google Scholar] [CrossRef]
- García-Pérez, P.; Becchi, P.P.; Zhang, L.; Rocchetti, G.; Lucini, L. Metabolomics and Chemometrics: The Next-Generation Analytical Toolkit for the Evaluation of Food Quality and Authenticity. Trends Food Sci. Technol. 2024, 147, 104481. [Google Scholar] [CrossRef]
- Rais, N.; Ved, A.; Mohd, S.; Ahmad, R.; Shahid, M. Taurine, a non-proteinous essential amino acid for human body systems: An overview. Arab Gulf J. Sci. Res. 2022, 41, 48–66. [Google Scholar] [CrossRef]
- Nightingale Health. Nightingale Health—CoreMetabolomics: Urine Biomarker Description [Internet]; Nightingale Health Ltd.: Helsinki, Finland, 2024; Available online: https://research.nightingalehealth.com/uploads/documents/Nightingale-Health-CoreMetabolomics-Urine-biomarker-description.pdf (accessed on 31 May 2025).
- Tasevska, N. Urinary Sucrose and Fructose as Biomarkers for Sugar Consumption. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1287–1294. [Google Scholar] [CrossRef]
- Tasevska, N. Urinary Sugars—A Biomarker of Total Sugars Intake. Nutrients 2015, 7, 5816–5833. [Google Scholar] [CrossRef]
- Muli, S.; Schnermann, M.E.; Merdas, M.; Rattner, J.; Achaintre, D.; Perrar, I.; Goerdten, J.; Alexy, U.; Scalbert, A.; Schmid, M.; et al. Metabolomics Signatures of Sweetened Beverages and Added Sugar Are Related to Anthropometric Measures of Adiposity in Young Individuals: Results from a Cohort Study. Am. J. Clin. Nutr. 2024, 120, 879–890. [Google Scholar] [CrossRef]
- Hasan, N.; Yang, H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019, 7, e7502. [Google Scholar] [CrossRef]
Characteristics | Total (n = 496) | Male (n = 211) | Female (n = 285) | p-Value | |||
---|---|---|---|---|---|---|---|
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | ||
Age (y) | 47.33 (14.64) | 49.00 (26.00) | 47.81 (15.10) | 50.00 (27.00) | 46.98 (14.31) | 49.00 (23.00) | 0.430 b |
BMI (kg/m2) | 26.27 (5.13) | 25.56 (6.26) | 27.38 (4.43) | 26.93 (5.13) | 25.45 (5.46) | 24.10 (6.78) | <0.001 b |
Waist circumference (cm) | 87.84 (15.16) | 87.00 (24.00) | 96.00 (13.56) | 96.00 (18.00) | 81.81 (13.38) | 79.00 (19.00) | <0.001 b |
Cholesterol (mg/dL) | 194.94 (38.67) | 194.00 (54.00) | 190.13 (38.98) | 189.00 (54.50) | 198.54 (38.10) | 196.00 (56.00) | 0.017 a |
LDL-C (mg/dL) | 118.81 (33.70) | 117.00 (47.00) | 120.00 (34.04) | 120.00 (44.50) | 117.91 (33.47) | 116.00 (50.00) | 0.497 a |
HDL-C (mg/dL) | 62.96 (16.81) | 61.00 (22.00) | 54.68 (13.54) | 52.00 (19.00) | 69.16 (16.35) | 67.50 (21.00) | <0.001 b |
Dietary Protein (g) | 69.35 (26.91) | 65.55 (32.69) | 81.48 (29.59) | 78.06 (33.53) | 60.37 (20.61) | 57.53 (25.80) | <0.001 b |
Dietary Fat (g) | 74.40 (30.84) | 69.81 (40.45) | 84.31 (33.35) | 83.41 (41.02) | 65.33 (26.11) | 63.22 (34.78) | <0.001 b |
Dietary Carbohydrates (g) | 188.41 (66.90) | 179.67 (79.32) | 215.40 (70.28) | 207.59 (78.64) | 168.43 (56.64) | 164.47 (68.83) | <0.001 b |
Dietary Fiber (g) | 18.77 (8.64) | 17.00 (10.26) | 19.54 (9.51) | 16.95 (11.49) | 18.20 (7.90) | 17.08 (10.20) | <0.001 b |
Dietary Energy (kcal) | 1775.66 (593.57) | 1728.26 (700.45) | 2072.31 (618.20) | 1985.50 (781.20) | 1556.05 (466.61) | 1532.23 (594.69) | <0.001 b |
Dietary Energy (kJ) | 7435.34 (2485.69) | 7239.34 (2969.87) | 8678.10 (2588.25) | 8313.46 (3266.01) | 6515.26 (1954.13) | 6413.02 (2490.85) | <0.001 b |
n (%) | n (%) | n (%) | p-Value | ||||
Smoker: | 0.160 | ||||||
Current | 76 (15.32%) | 35 (16.59%) | 41 (14.39%) | ||||
Never | 248 (50.00%) | 95 (45.02%) | 153 (53.68%) | ||||
Previous | 172 (34.68% | 81 (38.39%) | 91 (31.93%) | ||||
PAL: | 0.301 | ||||||
Sedentary | 139 (28.66%) | 31 (15.12%) | 56 (20.00%) | ||||
Low Active | 154 (31.75%) | 61 (29.76%) | 93 (33.21%) | ||||
Active | 87 (17.94%) | 64 (31.22%) | 75 (26.79%) | ||||
Very Active | 105 (21.65%) | 49 (23.90%) | 56 (20.00%) | ||||
Risky Alcohol Consumption Pattern: | <0.001 | ||||||
Low | 239 (49.08%) | 91 (43.96%) | 148 (52.86%) | ||||
Moderate | 183 (37.58%) | 67 (32.37%) | 116 (41.43%) | ||||
High | 46 (9.45%) | 35 (16.91%) | 11 (3.93%) | ||||
Severe | 19 (3.90%) | 14 (6.76%) | 5 (1.79%) |
Food Groups | Total (n = 496) | Male (n = 211) | Female (n = 285) | p-Value | |||
---|---|---|---|---|---|---|---|
(g/Day) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | |
Fresh Meat | 31.60 (51.45) | 0.00 (46.82) | 39.53 (60.77) | 0.00 (63.48) | 25.73 (42.46) | 0.00 (35.71) | 0.084 |
Processed Meat | 32.18 (48.20) | 14.29 (46.43) | 45.87 (57.21) | 28.57 (71.08) | 22.05 (37.23) | 8.57 (30.00) | <0.001 |
Fish and Fish Products | 11.12 (28.43) | 0.00 (4.71) | 14.22 (36.29) | 0.00 (7.14) | 8.83 (20.57) | 0.00 (4.29) | 0.819 |
Eggs | 8.77 (17.50) | 0.00 (10.11) | 9.14 (18.25) | 0.00 (9.99) | 8.49 (16.95) | 0.00 (10.00) | 0.882 |
Milk and Dairy Products | 106.57 (115.16) | 71.43 (126.99) | 114.57 (135.57) | 69.29 (146.42) | 100.64 (97.16) | 76.68 (120.73) | 0.881 |
Butter | 6.55 (8.07) | 4.29 (8.72) | 7.83 (9.38) | 5.14 (11.61) | 5.60 (6.81) | 4.00 (7.15) | 0.057 |
Other Edible Fats/Oils | 5.26 (9.06) | 1.82 (6.36) | 5.27 (10.41) | 1.14 (4.62) | 5.25 (7.93) | 2.11 (7.41) | 0.008 |
Bread and Bakery Products | 107.98 (77.21) | 95.00 (100.97) | 126.72 (87.42) | 115.00 (106.84) | 94.10 (65.46) | 86.63 (88.81) | <0.001 |
Staple Food | 61.54 (76.81) | 34.23 (90.01) | 63.62 (82.22) | 35.71 (93.91) | 60.00 (72.66) | 33.67 (88.85) | 0.735 |
Whole Grain Products | 35.94 (50.36) | 14.29 (53.93) | 41.23 (60.65) | 11.43 (66.67) | 32.02 (40.80) | 16.67 (46.43) | 0.842 |
Potatoes | 22.47 (46.41) | 0.00 (24.40) | 23.32 (50.36) | 0.00 (20.36) | 21.84 (43.33) | 0.00 (26.57) | 0.535 |
Vegetables | 88.25 (97.34) | 58.57 (112.75) | 76.27 (104.77) | 44.36 (100.78) | 97.12 (90.62) | 72.75 (110.87) | <0.001 |
Legumes | 6.90 (27.09) | 0.00 (0.00) | 6.78 (27.57) | 0.00 (0.00) | 6.99 (26.78) | 0.00 (0.00) | 0.768 |
Fruits | 100.72 (108.23) | 70.72 (139.38) | 82.58 (108.95) | 43.43 (125.95) | 114.15 (105.90) | 90.00 (131.14) | <0.001 |
Nuts | 10.11 (18.33) | 0.00 (13.72) | 9.80 (19.30) | 0.00 (12.74) | 10.34 (17.61) | 0.00 (14.29) | 0.194 |
Sweets | 20.88 (27.45) | 10.71 (31.11) | 22.27 (31.09) | 9.29 (30.44) | 19.85 (24.41) | 12.86 (31.43) | 0.850 |
Non-Alcoholic Beverages | 1382.40 (808.89) | 1307.14 (983.16) | 1472.31 (854.85) | 1367.86 (1064.55) | 1315.83 (767.86) | 1261.35 (926.05) | 0.048 |
Alcoholic Beverages | 200.31 (338.81) | 45.53 (266.49) | 352.36 (446.18) | 176.43 (622.50) | 87.73 (151.60) | 14.29 (107.14) | <0.001 |
Roasted Coffee | 283.12 (235.24) | 241.36 (300.00) | 274.89 (254.52) | 232.14 (348.22) | 289.21 (220.13) | 250.00 (264.29) | 0.156 |
Soups and Sauces | 55.61 (95.30) | 4.22 (80.00) | 57.00 (96.18) | 0.00 (85.71) | 54.58 (94.80) | 5.71 (71.43) | 0.752 |
Meat and Milk Alternatives | 19.81 (60.32) | 0.00 (0.00) | 16.47 (59.74) | 0.00 (0.00) | 22.28 (60.74) | 0.00 (2.14) | 0.006 |
Abbreviations | Metabolites | Total (n = 496) | Male (n = 211) | Female (n = 285) | p-Value | |||
---|---|---|---|---|---|---|---|---|
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | |||
(mmol/mmol Creatine) × 100 | ||||||||
ACE rCr | Acetate | 1.83 (24.89) | 0.49 (0.53) | 3.14 (37.94) | 0.36 (0.40) | 0.85 (0.87) | 0.60 (0.67) | <0.001 b |
ALA rCr | Alanine | 1.88 (0.84) | 1.71 (0.91) | 1.94 (0.84) | 1.82 (1.18) | 1.83 (0.83) | 1.68 (0.78) | 0.153 b |
ALN rCr | Allantoin | 4.26 (40.28) | 0.59 (0.72) | 3.88 (43.67) | 0.73 (0.75) | 4.54 (37.62) | 0.52 (0.59) | <0.001 b |
AOHIBUT rCr | 2-Hydroxyisobutyrate | 0.51 (0.15) | 0.50 (0.19) | 0.50 (0.14) | 0.48 (0.18) | 0.51 (0.15) | 0.51 (0.20) | 0.209 a |
ARB rCr | Arabinose | 0.54 (0.41) | 0.45 (0.33) | 0.50 (0.46) | 0.41 (0.27) | 0.58 (0.36) | 0.50 (0.36) | <0.001 b |
BNHIBUT rCr | 3-Aminoisobutyrate | 8.36 (74.61) | 0.65 (1.16) | 8.09 (71.86) | 0.53 (1.12) | 8.56 (76.75) | 0.73 (1.13) | 0.042 b |
BOHIBUT rCr | 3-Hydroxyisobutyrate | 0.77 (0.35) | 0.70 (0.35) | 0.77 (0.30) | 0.71 (0.35) | 0.77 (0.38) | 0.70 (0.37) | 0.418 b |
BOHIVA rCr | 3-Hydroxyisovalerate | 0.54 (1.67) | 0.41 (0.25) | 0.64 (2.52) | 0.43 (0.23) | 0.46 (0.27) | 0.40 (0.25) | 0.161 b |
CACO rCr | cis-Aconitate | 1.97 (0.78) | 1.83 (0.85) | 1.76 (0.83) | 1.65 (0.57) | 2.12 (0.70) | 2.03 (0.87) | <0.001 b |
CIT rCr | Citrate | 22.47 (12.32) | 20.81 (16.09) | 15.39 (8.22) | 14.37 (10.58) | 27.85 (12.21) | 27.32 (16.31) | <0.001 b |
CREA rCr | Creatinine | 10.19 (6.75) | 9.06 (9.89) | 11.69 (6.91) | 10.79 (9.62) | 9.06 (6.41) | 7.68 (9.03) | <0.001 b |
DMA rCr | Dimethylamine | 3.09 (0.80) | 2.99 (0.63) | 2.92 (0.70) | 2.78 (0.56) | 3.21 (0.85) | 3.11 (0.55) | <0.001 b |
DOETA rCr | 4-Deoxyerythronic acid | 0.77 (0.36) | 0.69 (0.40) | 0.74 (0.30) | 0.68 (0.36) | 0.79 (0.40) | 0.70 (0.43) | 0.643 b |
DTA rCr | 4-Deoxythreonate | 2.30 (0.97) | 2.14 (1.10) | 2.59 (1.03) | 2.40 (1.26) | 2.08 (0.86) | 1.96 (1.01) | <0.001 b |
ETNH rCr | Ethanolamine | 4.32 (1.49) | 4.21 (1.90) | 3.95 (1.27) | 3.89 (1.78) | 4.60 (1.58) | 4.52 (1.96) | <0.001 a |
ETOH rCr | Ethanol | 10.96 (91.73) | 0.19 (0.32) | 8.03 (83.70) | 0.15 (0.25) | 13.12 (97.40) | 0.24 (0.35) | 0.002 b |
FORM rCr | Formate | 1.59 (0.84) | 1.52 (1.00) | 1.48 (0.82) | 1.33 (1.01) | 1.68 (0.84) | 1.62 (1.05) | 0.002 b |
FURGL rCr | 2-Furoylglycine | 18.89 (106.47) | 0.13 (0.17) | 23.50 (124.05) | 0.15 (0.17) | 15.27 (90.38) | 0.11 (0.18) | 0.487 b |
GLC rCr | Glucose | 7.66 (65.92) | 2.97 (1.54) | 12.60 (100.33) | 2.59 (0.95) | 3.93 (2.67) | 3.51 (1.65) | <0.001 b |
GLN rCr | Glutamine | 3.69 (29.84) | 2.05 (2.02) | 2.34 (1.57) | 2.00 (1.87) | 4.72 (39.56) | 2.10 (2.26) | 0.980 b |
GLY rCr | Glycine | 9.52 (6.56) | 8.00 (5.94) | 7.51 (4.12) | 6.49 (4.42) | 11.02 (7.57) | 9.16 (7.26) | <0.001 b |
GLYA rCr | Glycolic acid | 4.15 (2.19) | 3.80 (2.41) | 4.20 (2.11) | 3.79 (2.32) | 4.11 (2.25) | 3.81 (2.50) | 0.731 b |
HIP rCr | Hippurate | 31.18 (26.51) | 23.23 (24.43) | 25.65 (22.06) | 20.05 (21.06) | 35.36 (28.77) | 27.47 (27.11) | <0.001 b |
HPHPA rCr | 3-(3-Hydroxyphenyl)-3-Hydroxypropionic acid | 2.55 (2.26) | 1.71 (2.51) | 2.27 (2.20) | 1.41 (1.95) | 2.75 (2.29) | 2.01 (2.75) | 0.004 b |
HYP rCr | Hypoxanthine | 0.94 (0.53) | 0.85 (0.54) | 0.87 (0.55) | 0.78 (0.47) | 0.99 (0.51) | 0.92 (0.51) | 0.001 b |
ILE rCr | Isoleucine | 2.52 (41.60) | 0.09 (0.08) | 4.43 (61.08) | 0.08 (0.06) | 1.09 (15.86) | 0.10 (0.11) | <0.001 b |
IND rCr | Indoxyl Sulfate | 2.73 (1.37) | 2.50 (1.67) | 2.40 (1.11) | 2.19 (1.37) | 2.98 (1.49) | 2.79 (1.74) | <0.001 b |
LAC rCr | Lactate | 1.33 (1.65) | 0.89 (0.94) | 0.81 (1.69) | 0.65 (0.45) | 1.71 (1.52) | 1.25 (1.34) | <0.001 b |
LEU rCr | Leucine | 0.18 (0.07) | 0.17 (0.09) | 0.18 (0.07) | 0.17 (0.07) | 0.18 (0.08) | 0.17 (0.09) | 0.519 b |
MNT rCr | Mannitol | 5.28 (41.82) | 1.18 (3.08) | 7.51 (63.40) | 0.99 (2.43) | 3.59 (4.99) | 1.30 (4.10) | 0.231 b |
MOHHIP rCr | 3-Hydroxyhippurate | 2.05 (1.94) | 1.39 (1.99) | 1.91 (1.94) | 1.24 (1.79) | 2.15 (1.93) | 1.49 (2.24) | 0.082 b |
OMNA rCr | 1-Methylnicotinamide | 0.70 (0.37) | 0.62 (0.41) | 0.60 (0.28) | 0.55 (0.34) | 0.78 (0.41) | 0.69 (0.46) | <0.001 b |
PGLU rCr | Pyroglutamate | 2.35 (0.70) | 2.26 (0.77) | 2.27 (0.75) | 2.10 (0.71) | 2.41 (0.64) | 2.35 (0.77) | <0.001 b |
POHHIP rCr | 4-Hydroxyhippurate | 1.40 (1.27) | 1.06 (0.82) | 1.35 (1.44) | 0.96 (0.78) | 1.43 (1.12) | 1.14 (0.81) | 0.004 b |
PRGLY rCr | Propylene Glycol | 6.30 (61.79) | 0.40 (0.46) | 3.49 (39.47) | 0.40 (0.52) | 8.35 (73.89) | 0.40 (0.41) | 0.888 b |
PROBET rCr | Proline Betaine | 6.37 (63.18) | 0.67 (1.26) | 2.02 (11.64) | 0.61 (1.17) | 9.68 (83.12) | 0.71 (1.36) | 0.352 b |
PSEUR rCr | Pseudouridine | 3.04 (0.49) | 3.03 (0.57) | 2.84 (0.42) | 2.82 (0.49) | 3.19 (0.47) | 3.17 (0.54) | <0.001 a |
QUINA rCr | Quinic acid | 2.60 (2.00) | 2.22 (2.62) | 2.17 (1.79) | 1.79 (1.98) | 2.93 (2.09) | 2.62 (2.76) | <0.001 b |
SCR rCr | Sucrose | 72.68 (197.82) | 0.23 (0.49) | 88.40 (204.72) | 0.24 (1.39) | 58.33 (190.74) | 0.21 (0.34) | 0.294 b |
TACO rCr | trans-Aconitate | 0.48 (0.29) | 0.44 (0.21) | 0.48 (0.20) | 0.45 (0.20) | 0.48 (0.34) | 0.43 (0.21) | 0.282 b |
TAU rCr | Taurine | 7.25 (38.37) | 3.61 (5.45) | 5.49 (5.92) | 3.86 (5.01) | 8.82 (52.44) | 3.16 (5.71) | 0.048 b |
THRE rCr | Threonine | 0.65 (0.40) | 0.58 (0.43) | 0.68 (0.40) | 0.61 (0.42) | 0.63 (0.40) | 0.55 (0.44) | 0.075 b |
TMAO rCr | Trimethylamine-N-oxide | 4.67 (4.81) | 3.56 (2.59) | 4.50 (4.19) | 3.24 (2.61) | 4.81 (5.23) | 3.65 (2.60) | 0.161 b |
TRIG rCr | Trigonelline | 3.48 (2.81) | 2.85 (3.26) | 2.88 (2.75) | 2.08 (2.84) | 3.94 (2.77) | 3.31 (3.59) | <0.001 b |
TRP rCr | Tryptophan | 3.58 (48.15) | 0.57 (0.33) | 7.55 (73.70) | 0.56 (0.31) | 0.63 (0.30) | 0.57 (0.35) | 0.452 b |
TYR rCr | Tyrosine | 1.03 (0.51) | 0.96 (0.65) | 1.09 (0.50) | 1.04 (0.68) | 0.98 (0.51) | 0.88 (0.61) | 0.003 b |
URA rCr | Uracil | 0.59 (0.28) | 0.53 (0.31) | 0.51 (0.26) | 0.46 (0.25) | 0.64 (0.28) | 0.59 (0.34) | <0.001 b |
VAL rCr | Valine | 0.23 (0.09) | 0.21 (0.11) | 0.22 (0.09) | 0.20 (0.12) | 0.23 (0.09) | 0.22 (0.10) | 0.020 b |
XAN rCr | Xanthosine | 0.93 (0.22) | 0.89 (0.23) | 0.87 (0.21) | 0.84 (0.19) | 0.98 (0.22) | 0.96 (0.23) | <0.001 b |
XYL rCr | Xylose | 0.74 (0.44) | 0.68 (0.36) | 0.74 (0.59) | 0.64 (0.33) | 0.73 (0.30) | 0.70 (0.36) | 0.094 b |
Food Groups/Items | Metabolites | Estimate | Lower CI | Upper CI | p-Value |
---|---|---|---|---|---|
CITRUS FRUITS | |||||
Citrus Fruits | PROBET rCr | 0.0054 | 0.0016 | 0.0093 | 0.0061 c |
DIETARY PROTEIN | |||||
Dietary Protein | URA rCr | 0.0789 | 0.0281 | 0.1297 | 0.0024 c |
MEAT | |||||
Fresh Meat | TAU rCr | 0.0035 | 0.0007 | 0.0063 | 0.0145 d |
Red Meat | TAU rCr | 0.0021 | −0.0024 | 0.0067 | 0.3599 d |
Red Meat | TMAO rCr | 0.0009 | −0.0005 | 0.0024 | 0.2217 c |
Poultry | TAU rCr | 0.0052 | 0.0021 | 0.0084 | 0.0010 d |
Poultry | IND rCr | 0.0021 | 0.0006 | 0.0037 | 0.0069 c |
Poultry | OMNA rCr | 0.0014 | 0.0001 | 0.0027 | 0.0326 c |
Poultry | TMAO rCr | 0.0022 | 0.0005 | 0.0039 | 0.0094 c |
FISH | |||||
Fish | DMA rCr | −0.0003 | −0.0011 | 0.0005 | 0.4603 c |
Fish | TMAO rCr | −0.0020 | −0.0046 | 0.0007 | 0.1409 c |
Fish | TAU rCr | 0.0025 | −0.0091 | 0.0143 | 0.6648 d |
MILK SUBSTITUTES | |||||
Milk Substitutes | URA rCr | 0.0009 | 0.0001 | 0.0017 | 0.0163 c |
Milk Substitutes | PSEUR rCr | 0.0010 | 0.0003 | 0.0017 | 0.0036 c |
Milk Substitutes | MOHHIP rCr | 0.0019 | 0.0002 | 0.0036 | 0.0221 d |
Milk Substitutes | POHHIP rCr | 0.0016 | 0.0001 | 0.0030 | 0.0316 d |
Milk Substitutes | QUINA rCr | −0.0025 | −0.0046 | −0.0003 | 0.0224 d |
DIETARY FIBER | |||||
Dietary Fiber | ACE rCr | 0.0092 | −0.0013 | 0.0198 | 0.0866 d |
Dietary Fiber | BNHIBUT rCr | 0.0170 | −0.0003 | 0.0376 | 0.1042 d |
Dietary Fiber | BOHIBUT rCr | 0.0003 | −0.0049 | 0.0056 | 0.9062 d |
Dietary Fiber | HPHPA rCr | 0.0233 | 0.0055 | 0.0412 | 0.0105 d |
Dietary Fiber | HIP rCr | 0.0137 | 0.0060 | 0.0215 | 0.0004 c |
Dietary Fiber | IND rCr | −0.0066 | −0.0128 | −0.0003 | 0.0390 c |
Dietary Fiber | FORM rCr | 0.0034 | −0.0046 | 0.0115 | 0.4056 c |
Dietary Fiber | AOHIBUT rCr | −0.0009 | −0.0024 | 0.0006 | 0.2580 c |
Dietary Fiber | BOHIVAL rCr | 0.0034 | −0.0037 | 0.0106 | 0.3521 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blümlhuber, A.; Freuer, D.; Wawro, N.; Rohm, F.; Meisinger, C.; Linseisen, J. Association Between Habitual Dietary Intake and Urinary Metabolites in Adults—Results of a Population-Based Study. Metabolites 2025, 15, 441. https://doi.org/10.3390/metabo15070441
Blümlhuber A, Freuer D, Wawro N, Rohm F, Meisinger C, Linseisen J. Association Between Habitual Dietary Intake and Urinary Metabolites in Adults—Results of a Population-Based Study. Metabolites. 2025; 15(7):441. https://doi.org/10.3390/metabo15070441
Chicago/Turabian StyleBlümlhuber, Annika, Dennis Freuer, Nina Wawro, Florian Rohm, Christine Meisinger, and Jakob Linseisen. 2025. "Association Between Habitual Dietary Intake and Urinary Metabolites in Adults—Results of a Population-Based Study" Metabolites 15, no. 7: 441. https://doi.org/10.3390/metabo15070441
APA StyleBlümlhuber, A., Freuer, D., Wawro, N., Rohm, F., Meisinger, C., & Linseisen, J. (2025). Association Between Habitual Dietary Intake and Urinary Metabolites in Adults—Results of a Population-Based Study. Metabolites, 15(7), 441. https://doi.org/10.3390/metabo15070441