Metabolomic Profiling Reveals PGPR-Driven Drought Tolerance in Contrasting Brassica juncea Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of PGPR Consortium
2.2. Seed Preparation and Inoculation
2.3. Experimental Setup and Growth Conditions
2.4. Sample Preparation and Derivatization
2.5. GC–MS Analysis
2.6. Metabolite Data Analysis
3. Results
3.1. Metabolome Profiling
3.1.1. Effects of Drought Stress on Metabolite Profile
Metabolite Changes in RH-725 Under Drought Stress
Metabolite Changes in RH-749 Under Drought Stress
Sample Name | Metabolite Name | Fold Change (Control/ Drought) | log2 (Fold Change) | Raw. p Val | Class |
---|---|---|---|---|---|
RH-725 Leaves | Fructose | 16.881 | 4.0773 | 0.017021 | Sugar |
Stigmast-5-ene | 2.351 | 1.2333 | 0.02766 | Other (Phytosterol) | |
L-5-Oxoproline | 2.2886 | 1.1945 | 0.010638 | Amino acid | |
Urea | 2.2713 | 1.1835 | 0.031915 | Other (Amide) | |
Ribono-1,4-lactone | 2.1726 | 1.1194 | 0.012766 | Other (Lactone) | |
Ethanolamine | 2.1664 | 1.1153 | 0.048936 | Amine | |
RH-725 Roots | Methyl galactoside | 8.9131 | 3.1559 | 0.034884 | Sugar |
Oleic acid | 6.933 | 2.7935 | 0.015163 | Fatty acid | |
Pentanedioic acid | 6.2312 | 2.6395 | 0.023256 | Organic acid | |
SILANOL | 5.2106 | 2.3814 | 0.004651 | Other | |
Galactonic acid | 2.9734 | 1.5721 | 0.062791 | Sugar acid | |
Talose | 2.5905 | 1.3732 | 0.018605 | Sugar | |
Ribono-1,4-lactone | 2.3741 | 1.2474 | 0.005116 | Other (Lactone) | |
Serine | 2.2148 | 1.1472 | 0.030233 | Amino acid | |
Turanose | 2.1416 | 1.0987 | 0.027907 | Sugar | |
Butanedioic acid | 2.1364 | 1.0952 | 0.016279 | Organic acid | |
L-5-Oxoproline | 2.0348 | 1.0249 | 0.04186 | Amino acid | |
Ethanolamine | 2.0278 | 1.0199 | 0.037209 | Amine | |
RH-749 Leaves | meso-Erythritol | 361.58 | 8.4982 | 0.037037 | Sugar alcohol |
Stearic acid | 5.7936 | 2.5345 | 0.025926 | Organic acid | |
Bis(2-ethylhexyl) phthalate | 5.5863 | 2.4819 | 0.040741 | Other | |
Scyllo-Inositol | 5.5495 | 2.4724 | 0.011111 | Sugar alcohol | |
Acetin | 4.7995 | 2.2629 | 0.003704 | Other (Ester) | |
Cellobiose | 2.976 | 1.5734 | 0.033333 | Sugar | |
6,7-DIHYDROXYCOUMARIN | 2.9244 | 1.5481 | 0.018519 | Other | |
Arabinose | 2.8182 | 1.4948 | 0.044444 | Sugar | |
Stigmast-5-ene | 2.5413 | 1.3456 | 0.015852 | Other (Phytosterol) | |
INOSITOL | 2.4784 | 1.3094 | 0.007407 | Sugar alcohol | |
RH-749 Roots | PROPANETRICARBOXYLIC ACID | 6.429 | 2.6846 | 0.004255 | Organic acid |
6,7-DIHYDROXYCOUMARIN | 5.4608 | 2.4491 | 0.02766 | Other | |
Ribono-1,4-lactone | 5.3218 | 2.4119 | 0.031915 | Other (Lactone) | |
Threonic acid | 2.6216 | 1.3904 | 0.021277 | Sugar acid | |
Sorbose | 2.4383 | 1.2859 | 0.029787 | Sugar | |
SILANOL | 2.1086 | 1.0763 | 0.023404 | Other |
3.1.2. Metabolomic Adjustments Induced by PGPR Under Control and Drought Conditions
PGPR-Induced Changes in Metabolites Under Control Conditions
PGPR-Induced Changes in Metabolites Under Drought Stress
3.2. Multivariate Analysis of Metabolite Profiles
3.3. Pathway Enrichment Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, D.; Lakhanpal, N.; Singh, K. Genome-wide identification and characterization of abiotic-stress responsive SOD (superoxide dismutase) gene family in Brassica juncea and B. rapa. BMC Genom. 2019, 20, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Artés-Hernández, F.; Martínez-Zamora, L.; Cano-Lamadrid, M.; Hashemi, S.; Castillejo, N. Genus Brassica by-products revalorization with green technologies to fortify innovative foods: A scoping review. Foods 2023, 12, 561. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Singh, V.; Dutt, V.; Walia, N.; Kumawat, G.; Jakhar, M.L.; Yadava, D.K.; Sharma, P.C. Insights into salt tolerance of mustard (Brassica juncea L. Czern & Coss): A metabolomics perspective. Environ. Exp. Bot. 2022, 194, 104760. [Google Scholar] [CrossRef]
- Ji, Y.; Fu, J.; Lu, Y.; Liu, B. Three-dimensional-based global drought projection under global warming tendency. Atmos. Res. 2023, 291, 106812. [Google Scholar] [CrossRef]
- Khan, A.; Anwar, Y.; Hasan, M.; Iqbal, A.; Ali, M.; Alharby, H.F.; Hakeem, K.R.; Hasanuzzaman, M. Attenuation of drought stress in Brassica seedlings with exogenous application of Ca2+ and H2O2. Plants 2017, 6, 20. [Google Scholar] [CrossRef]
- Channaoui, S.; El Kahkahi, R.; Charafi, J.; Mazouz, H.; El Fechtali, M.; Nabloussi, A. Germination and seedling growth of a set of rapeseed (Brassica napus) varieties under drought stress conditions. Int. J. Environ. Agric. Biotechnol. 2017, 2, 238696. [Google Scholar] [CrossRef]
- Shawon, R.A.; Kang, B.S.; Lee, S.G.; Kim, S.K.; Lee, H.J.; Katrich, E.; Gorinstein, S.; Ku, Y.G. Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food Chem. 2020, 308, 125657. [Google Scholar] [CrossRef]
- Batool, M.; El-Badri, A.M.; Hassan, M.U.; Haiyun, Y.; Chunyun, W.; Zhenkun, Y.; Zhou, G. Drought stress in Brassica napus: Effects, tolerance mechanisms, and management strategies. J. Plant Growth Regul. 2022, 42, 21–45. [Google Scholar] [CrossRef]
- Kumari, A.; Avtar, R.; Jattan, A.N.M.; Rani, B. Screening for drought tolerance in Indian mustard (Brassica juncea L.) genotypes based on yield contributing characters and physiological parameters. J. Oilseed Brassica 2019, 10, 1–7. [Google Scholar]
- Ahmad, H.T.; Hussain, A.; Aimen, A.; Jamshaid, M.U.; Ditta, A.; Asghar, H.N.; Zahir, Z.A. Improving resilience against drought stress among crop plants through inoculation of plant growth-promoting rhizobacteria. In Harsh Environment and Plant Resilience; Springer: Cham, Switzerland, 2021; pp. 387–408. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, D.; Wang, J.; Cao, J.; Wen, Y.; He, J.; Zhao, L.; Wang, D.; Zhang, S. Physiological and anatomical changes in two rapeseed (Brassica napus L.) genotypes under drought stress conditions. Oil Crop. Sci. 2021, 6, 97–104. [Google Scholar] [CrossRef]
- Lata, C.; Yadav, A.; Prasad, M. Role of plant transcription factors in abiotic stress tolerance. In Abiotic Stress Response Plants; InTech Open Access Publishers: Slavka Krautzeka, Croatia, 2011; Volume 10, pp. 269–296. [Google Scholar] [CrossRef]
- Salehi-Lisar, S.Y.; Bakhshayeshan-Agdam, H. Drought stress in plants: Causes, consequences, and tolerance. In Drought Stress Tolerance in Plants, Volume 1: Physiology and Biochemistry; Springer: Berlin, Germany, 2016; pp. 1–16. [Google Scholar] [CrossRef]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Chandra, K.; Pandey, A.; Mishra, S.B. Genetic variability of physiological parameters among Indian mustard (Brassica juncea L. Czern & Coss) genotypes under non-irrigated and irrigated conditions. Pharma Innov. 2018, 7, 517–525. [Google Scholar]
- Ahlawat, Y.; Liu, T. Varied expression of senescence-associated and ethylene-related genes during postharvest storage of brassica vegetables. Int. J. Mol. Sci. 2021, 22, 839. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, Y.; Li, S.; Timilsena, P.R.; Pliakoni, E.D.; Brecht, J.K.; Liu, T. Identification of senescence-associated genes in broccoli (Brassica oleracea) following harvest. Postharvest Biol. Technol. 2022, 183, 111729. [Google Scholar] [CrossRef]
- Montesinos, C.; Benito, P.; Porcel, R.; Bellón, J.; González-Guzmán, M.; Arbona, V.; Yenush, L.; Mulet, J.M. Field evaluation and characterization of a novel biostimulant for broccoli (Brassica oleracea var. Italica) cultivation under drought and salt stress which increases antioxidant, glucosinolate and phytohormone content. Sci. Hortic. 2024, 338, 113584. [Google Scholar] [CrossRef]
- Gull, A.; Lone, A.A.; Wani, N.U.I. Biotic and abiotic stresses in plants. In Abiotic and Biotic Stress in Plants; InTech Open: London, UK, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Grover, M.; Bodhankar, S.; Sharma, A.; Sharma, P.; Singh, J.; Nain, L. PGPR mediated alterations in root traits: Way toward sustainable crop production. Front. Sustain. Food Syst. 2021, 4, 618230. [Google Scholar] [CrossRef]
- Bhat, M.A.; Rasool, R.; Ramzan, S. Plant growth promoting rhizobacteria (PGPR) for sustainable and eco-friendly agriculture. Acta Sci. Agric 2019, 3, 23–25. [Google Scholar]
- Prasad, V.S.S.K.; Kumar, N.V.; Sravani, S.; Ali, S.Z.; Sandhya, V. ACC deaminase containing plant growth promoting Agrobacterium larrymoorie strain MZ 3-abf confers tolerance to drought stress in chickpea (Cicer arietinum L.) seedlings. Asian J. Adv. Agric. Res. 2022, 18, 37–51. [Google Scholar] [CrossRef]
- Chieb, M.; Gachomo, E.W. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biol. 2023, 23, 407. [Google Scholar] [CrossRef]
- Harkhani, K.; Sharma, A.K. Alleviation of drought stress by plant growth-promoting rhizobacteria (PGPR) in crop plants: A review. Commun. Soil Sci. Plant Anal. 2024, 55, 735–758. [Google Scholar] [CrossRef]
- Benito, P.; Celdrán, M.; Bellón, J.; Arbona, V.; González-Guzmán, M.; Porcel, R.; Yenush, L.; Mulet, J.M. The combination of a microbial and a non-microbial biostimulant increases yield in lettuce (Lactuca sativa) under salt stress conditions by up-regulating cytokinin biosynthesis. J. Integr. Plant Biol. 2024, 66, 2140–2157. [Google Scholar] [CrossRef] [PubMed]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef] [PubMed]
- Bonini, P.; Rouphael, Y.; Miras-Moreno, B.; Lee, B.; Cardarelli, M.; Erice, G.; Cirino, V.; Lucini, L.; Colla, G. A microbial-based biostimulant enhances sweet pepper performance by metabolic reprogramming of phytohormone profile and secondary metabolism. Front. Plant Sci. 2020, 11, 567388. [Google Scholar] [CrossRef] [PubMed]
- Konappa, N.; Krishnamurthy, S.; Arakere, U.C.; Chowdappa, S.; Ramachandrappa, N.S. Efficacy of indigenous plant growth-promoting rhizobacteria and Trichoderma strains in eliciting resistance against bacterial wilt in a tomato. Egypt. J. Biol. Pest Control 2020, 30, 1–13. [Google Scholar] [CrossRef]
- Waheed, Z.; Iqbal, S.; Irfan, M.; Jabeen, K.; Ilyas, N.; Al-Qahtani, W.H. Isolation and characterization of PGPR obtained from different arsenic-contaminated soil samples and their effect on photosynthetic characters of maize grown under arsenic stress. Environ. Sci. Pollut. Res. 2024, 31, 18656–18671. [Google Scholar] [CrossRef]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat. Protoc. 2006, 1, 387–396. [Google Scholar] [CrossRef]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; E MacDonald, P.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Toosi, A.F.; Baki Bakar, B.B.; Azizi, M. Effect of drought stress by using PEG 6000 on germination and early seedling growth of Brassica juncea Var. Ensabi. Sci. Pap. Ser. A. Agron. 2014, 14, 360–363. [Google Scholar]
- Tanveer, S.; Akhtar, N.; Ilyas, N.; Sayyed, R.Z.; Fitriatin, B.N.; Perveen, K.; Bukhari, N.A. Interactive effects of Pseudomonas putida and salicylic acid for mitigating drought tolerance in canola (Brassica napus L.). Heliyon 2023, 9, e14193. [Google Scholar] [CrossRef]
- Borah, P.; Gogoi, N.; Asad, S.A.; Rabha, A.J.; Farooq, M. An insight into plant growth-promoting rhizobacteria-mediated mitigation of stresses in plant. J. Plant Growth Regul. 2023, 42, 3229–3256. [Google Scholar] [CrossRef]
- Mir, M.I.; Hameeda, B.; Quadriya, H.; Kumar, B.K.; Ilyas, N.; Zuan, A.T.K.; El Enshasy, H.A.; Dailin, D.J.; Kassem, H.S.; Gafur, A.; et al. Multifarious indigenous diazotrophic rhizobacteria of rice (Oryza sativa L.) rhizosphere and their effect on plant growth promotion. Front. Nutr. 2022, 8, 781764. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Premi, O.P.; Meena, S.L.; Asha, A.D.; Nivetha, N.; Vikram, K.V.; Lavanya, A.K.; Rathi, M.S.; Bandeppa, S.; Manjunatha, B.S. PGPR improve physiological and yield attributes in mustard under different regimes of water supply. Arch. Agron. Soil Sci. 2023, 69, 1482–1493. [Google Scholar] [CrossRef]
- Yaseen, R.; Aziz, O.; Saleem, M.H.; Riaz, M.; Zafar-ul-Hye, M.; Rehman, M.; Ali, S.; Rizwan, M.; Nasser Alyemeni, M.; El-Serehy, H.; et al. Ameliorating the drought stress for wheat growth through application of ACC-deaminase containing rhizobacteria along with biogas slurry. Sustainability 2020, 12, 6022. [Google Scholar] [CrossRef]
- Kaur, H.; Manna, M.; Thakur, T.; Gautam, V.; Salvi, P. Imperative role of sugar signaling and transport during drought stress responses in plants. Physiol. Plant. 2021, 171, 833–848. [Google Scholar] [CrossRef]
- Mulet, J.M.; Alejandro, S.; Romero, C.; Serrano, R. The trehalose pathway and intracellular glucose phosphates as modulators of potassium transport and general cation homeostasis in yeast. Yeast 2004, 21, 569–582. [Google Scholar] [CrossRef]
- Diniz, A.L.; da Silva, D.I.R.; Lembke, C.G.; Costa, M.D.-B.L.; Ten-Caten, F.; Li, F.; Vilela, R.D.; Menossi, M.; Ware, D.; Endres, L.; et al. Amino acid and carbohydrate metabolism are coordinated to maintain energetic balance during drought in sugarcane. Int. J. Mol. Sci. 2020, 21, 9124. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, Y.; Li, J.; Zhang, J.; Zhang, X.; Hu, L.; Ding, D.; Bakpa, E.P.; Xie, J. Trehalose alleviated salt stress in tomato by regulating ROS metabolism, photosynthesis, osmolyte synthesis, and trehalose metabolic pathways. Front. Plant Sci. 2022, 13, 772948. [Google Scholar] [CrossRef]
- Silvente, S.; Sobolev, A.P.; Lara, M. Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS ONE 2012, 7, e38554. [Google Scholar] [CrossRef]
- Khanna-Chopra, R.; Semwal, V.K.; Lakra, N.; Pareek, A. Proline—A key regulator conferring plant tolerance to salinity and drought. In Plant Tolerance to Environmental Stress; CRC Press: Florida, FL, USA, 2019; pp. 59–80. [Google Scholar]
- Hildebrandt, T.M.; Nesi, A.N.; Araújo, W.L.; Braun, H.P. Amino acid catabolism in plants. Mol. Plant 2015, 8, 1563–1579. [Google Scholar] [CrossRef]
- Guo, R.; Shi, L.; Jiao, Y.; Li, M.; Zhong, X.; Gu, F.; Liu, Q.; Xia, X.; Li, H. Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants 2018, 10, ply016. [Google Scholar] [CrossRef]
- Koobaz, P.; Ghaffari, M.R.; Heidari, M.; Mirzaei, M.; Ghanati, F.; Amirkhani, A.; Mortazavi, S.E.; Moradi, F.; Hajirezaei, M.R.; Salekdeh, G.H. Proteomic and metabolomic analysis of desiccation tolerance in wheat young seedlings. Plant Physiol. Biochem. 2020, 146, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, X.; Dong, S. Biochemical characterization and metabolic reprogramming of amino acids in Soybean roots under drought stress. Physiol. Plant. 2024, 176, e14319. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, U.; Degu, A.; Toubiana, D.; Gendler, T.; Nikoloski, Z.; Rachmilevitch, S.; Fait, A. Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biol. 2013, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Bisht, N.; Mishra, S.K.; Chauhan, P.S. Bacillus amyloliquefaciens inoculation alters physiology of rice (Oryza sativa L. var. IR-36) through modulating carbohydrate metabolism to mitigate stress induced by nutrient starvation. Int. J. Biol. Macromol. 2020, 143, 937–951. [Google Scholar] [CrossRef]
- Bharti, A.; Maheshwari, H.S.; Chourasiya, D.; Prakash, A.; Sharma, M.P. Role of trehalose in plant–rhizobia interaction and induced abiotic stress tolerance. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 245–263. [Google Scholar] [CrossRef]
- Sharma, M.P.; Grover, M.; Chourasiya, D.; Bharti, A.; Agnihotri, R.; Maheshwari, H.S.; Pareek, A.; Buyer, J.S.; Sharma, S.K.; Schütz, L.; et al. Deciphering the role of trehalose in tripartite symbiosis among rhizobia, arbuscular mycorrhizal fungi, and legumes for enhancing abiotic stress tolerance in crop plants. Front. Microbiol. 2020, 11, 509919. [Google Scholar] [CrossRef]
- Nephali, L.; Moodley, V.; Piater, L.; Steenkamp, P.; Buthelezi, N.; Dubery, I.; Burgess, K.; Huyser, J.; Tugizimana, F. A metabolomic landscape of maize plants treated with a microbial biostimulant under well-watered and drought conditions. Front. Plant Sci. 2021, 12, 676632. [Google Scholar] [CrossRef]
- Chevilly, S.; Dolz-Edo, L.; López-Nicolás, J.M.; Morcillo, L.; Vilagrosa, A.; Yenush, L.; Mulet, J.M. Physiological and molecular characterization of the differential response of broccoli (Brassica oleracea var. Italica) cultivars reveals limiting factors for broccoli tolerance to drought stress. J. Agric. Food Chem. 2021, 69, 10394–10404. [Google Scholar] [CrossRef]
- Joshi, H.; Bisht, N.; Mishra, S.K.; Prasad, V.; Chauhan, P.S. Bacillus amyloliquefaciens modulate carbohydrate metabolism in rice-PGPR cross-talk under abiotic stress and phytohormone treatments. J. Plant Growth Regul. 2023, 42, 4466–4483. [Google Scholar] [CrossRef]
- Kalozoumis, P.; Savvas, D.; Aliferis, K.; Ntatsi, G.; Marakis, G.; Simou, E.; Tampakaki, A.; Karapanos, I. Impact of plant growth-promoting rhizobacteria inoculation and grafting on tolerance of tomato to combined water and nutrient stress assessed via metabolomics analysis. Front. Plant Sci. 2021, 12, 670236. [Google Scholar] [CrossRef]
- Ali, Q.; Haider, M.Z.; Shahid, S.; Aslam, N.; Shehzad, F.; Naseem, J.; Ashraf, R.; Ali, A.; Hussain, S.M. Role of amino acids in improving abiotic stress tolerance to plants. In Plant Tolerance to Environmental Stress; CRC Press: Florida, FL, USA, 2019; pp. 175–204. [Google Scholar]
- Khan, N.; Bano, A.; Rahman, M.A.; Guo, J.; Kang, Z.; Babar, M.A. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci. Rep. 2019, 9, 2097. [Google Scholar] [CrossRef]
- Hussain, S.; Rao, M.J.; Anjum, M.A.; Ejaz, S.; Zakir, I.; Ali, M.A.; Ahmad, N.; Ahmad, S. Oxidative stress and antioxidant defense in plants under drought conditions. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches; Springer: Cham, Switzerland, 2019; pp. 207–219. [Google Scholar] [CrossRef]
- Lephatsi, M.; Nephali, L.; Meyer, V.; Piater, L.A.; Buthelezi, N.; Dubery, I.A.; Opperman, H.; Brand, M.; Huyser, J.; Tugizimana, F. Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming and drought stress tolerance in maize plants. Sci. Rep. 2022, 12, 10450. [Google Scholar] [CrossRef] [PubMed]
- Borzoo, S.; Mohsenzadeh, S.; Moradshahi, A.; Kahrizi, D.; Zamani, H.; Zarei, M. Characterization of physiological responses and fatty acid compositions of Camelina sativa genotypes under water deficit stress and symbiosis with Micrococcus yunnanensis. Symbiosis 2021, 83, 79–90. [Google Scholar] [CrossRef]
- Suguiyama, V.F.; Silva, E.A.; Meirelles, S.T.; Centeno, D.C.; Braga, M.R. Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae) shows two time-dependent responses during desiccation and recovering. Front. Plant Sci. 2014, 5, 96. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Xu, J.; Zhang, L.; Liu, D.; Zhang, C.; Liu, T.; Wang, S.; Deng, X. Altered fatty acid composition confers improved drought acclimation in maize. Plant Physiol. Biochem. 2024, 206, 108274. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Metabolite Name | Fold Change (Drought/ Control) | log2 (Fold Change) | Raw. p Val | Class |
---|---|---|---|---|---|
RH-725 Leaves | Trehalose | 42.662 | 5.4149 | 0.004255 | Sugar |
Valine | 38.036 | 5.2493 | 0.023404 | Amino acid | |
Proline | 35.548 | 5.1517 | 0.008511 | Amino acid | |
Glucose | 9.143 | 3.1927 | 0.025532 | Sugar | |
Arabinose | 7.8261 | 2.9683 | 0.014894 | Sugar | |
Diethyl Phthalate | 4.3586 | 2.1239 | 0.029787 | others | |
6,7-DIHYDROXYCOUMARIN | 4.2442 | 2.0855 | 0.021277 | others | |
Myo-Inositol | 2.885 | 1.5286 | 0.006383 | Sugar alcohol | |
Tromethamine | 2.8011 | 1.4860 | 0.03617 | Amine | |
Sucrose | 2.478 | 1.3092 | 0.034043 | Sugar | |
RH-725 Roots | MELIBIOSE | 40.219 | 5.3298 | 0.006977 | Sugar |
Glucose | 23.863 | 4.5767 | 0.002326 | Sugar | |
Xylose | 9.6007 | 3.2631 | 0.039535 | Sugar | |
Sucrose | 5.1355 | 2.3605 | 0.009302 | Sugar | |
Valine | 4.2142 | 2.0753 | 0.02093 | Amino acid | |
Galactose | 3.5456 | 1.8260 | 0.007442 | Sugar | |
Glycine | 3.3907 | 1.7616 | 0.013953 | Amino acid | |
Proline | 2.9724 | 1.5716 | 0.044186 | Amino acid | |
Trehalose | 2.5821 | 1.3685 | 0.037907 | Sugar | |
Malic acid | 2.2786 | 1.1881 | 0.011628 | Organic acid | |
RH-749 Leaves | Proline | 24.677 | 4.6251 | 0.02963 | Amino acid |
Myo-Inositol | 9.0413 | 3.1765 | 0.014815 | Sugar alcohol | |
Talose | 7.0838 | 2.8245 | 0.022222 | Sugar | |
Glutamic acid | 3.3856 | 1.7594 | 0.048148 | Amino acid | |
RH-749 Roots | Myo-Inositol | 26.531 | 4.7296 | 0.002128 | Sugar alcohol |
Trehalose | 5.9953 | 2.5838 | 0.019149 | Sugar | |
Arabinose | 5.1938 | 2.3768 | 0.03617 | Sugar | |
Oleic acid | 5.0112 | 2.3252 | 0.017021 | Fatty acid | |
BIS(2-ETHYLHEXYL) PHTHALATE | 4.051 | 2.0183 | 0.006383 | Others | |
Glutamic acid | 2.9684 | 1.5697 | 0.034043 | Amino acid | |
Aminobutanoic acid | 2.3799 | 1.2509 | 0.008511 | Organic acid |
Treatment | Metabolite Name | Fold Change (PGPR Treated/ Non-Treated) | log2 (Fold Change) | Raw. p Val | Class |
---|---|---|---|---|---|
RH-725 Control | Glucose | 10.696 | 1.8823 | 0.012069 | Sugar |
Glycero-D-gulo-Heptose | 8.2461 | 1.6636 | 0.027586 | Sugar | |
Galactose | 7.5639 | 1.5160 | 0.006897 | Sugar | |
Trehalose | 5.6212 | 1.2511 | 0.034483 | Sugar | |
Glycine | 5.1178 | 4.0542 | 0.017241 | Amino acid | |
Proline | 4.8089 | 3.6568 | 0.005172 | Amino acid | |
Lyxose | 4.321 | 3.0227 | 0.024138 | Sugar | |
Arabinose | 3.5483 | 2.8626 | 0.005517 | Sugar | |
Pyroglutamic acid | 3.4611 | 2.8371 | 0.022414 | Amino acid | |
Pentenone | 3.3885 | 2.5677 | 0.018966 | Ketone | |
Myo-Inositol | 3.3342 | 2.3368 | 0.010345 | Sugar alcohol | |
Turanose | 3.0421 | 2.2903 | 0.003448 | Sugar | |
Asparagine | 2.8582 | 1.6445 | 0.037936 | Amino acid | |
Cellobiose | 2.6911 | 1.6114 | 0.036207 | Sugar | |
Maltose | 2.3727 | 1.1329 | 0.046552 | Sugar | |
meso-Erythritol | 2.3069 | 1.0086 | 0.032759 | Sugar alcohol | |
Butanoic acid | 2.0422 | 2.9760 | 0.067241 | Organic acid | |
RH-725 Drought | Fructose | 43.887 | 2.3047 | 0.0075 | Sugar |
Stigmast-5-ene | 42.101 | 2.2466 | 0.0125 | Other (Phytosterol) | |
Threitol | 10.74 | 1.9542 | 0.0175 | Sugar alcohol | |
Galacturonic acid | 5.4236 | 1.8852 | 0.02 | Sugar acid | |
Psicose | 4.9125 | 1.7536 | 0.025 | Sugar | |
Glycero-D-gulo-Heptose | 4.5249 | 1.6220 | 0.035 | Sugar | |
Galactose | 4.3622 | 1.1524 | 0.03 | Sugar | |
Oleic Acid | 3.6865 | 1.1276 | 0.0325 | Fatty acid | |
Talose | 3.168 | 1.8823 | 0.04 | Sugar | |
Ribonic acid | 2.86 | 1.6636 | 0.005 | Sugar acid | |
INOSITOL | 2.3803 | 1.5160 | 0.045 | Sugar alcohol | |
RH-749 Control | Proline | 16.613 | 1.2511 | 0.048276 | Amino acid |
Talose | 12.613 | 4.0542 | 0.010345 | Sugar | |
Myo-Inositol | 8.1269 | 3.6568 | 0.013793 | Sugar alcohol | |
Mannobiose | 7.2731 | 3.0227 | 0.003448 | Sugar | |
Trehalose | 7.1458 | 2.8626 | 0.005172 | Sugar | |
Glutamic acid | 5.9287 | 2.8371 | 0.026069 | Amino acid | |
Glycerol | 5.0517 | 2.5677 | 0.02069 | Sugar alcohol | |
Glucose | 4.8915 | 2.3368 | 0.031034 | Sugar | |
Galactose | 3.1265 | 2.2903 | 0.024138 | Sugar | |
Maltose | 3.0554 | 1.6445 | 0.018966 | Sugar | |
Fructose | 2.193 | 1.6114 | 0.027586 | Sugar | |
Ribose | 2.0119 | 1.1329 | 0.005862 | Sugar | |
RH-749 Drought | Arabinose | 7.8678 | 1.0086 | 0.05 | Sugar |
Linoleic acid | 4.9405 | 2.9760 | 0.0475 | Fatty acid | |
Glycero-D-gulo-Heptose | 4.7457 | 2.3047 | 0.0325 | Sugar | |
Ribonic acid | 3.875 | 2.2466 | 0.0275 | Sugar acid | |
Galactose | 3.694 | 1.9542 | 0.0125 | Sugar | |
Acetin | 3.3721 | 1.8852 | 0.0425 | Other (Ester) | |
INOSITOL | 3.078 | 1.7536 | 0.01 | Sugar alcohol | |
Xylose | 2.2229 | 1.6220 | 0.00575 | Sugar | |
Cellobiose | 2.1849 | 1.1524 | 0.045 | Sugar |
Treatment | Metabolite Name | Fold Change (PGPR Treated/ Non-Treated) | log2 (Fold Change) | Raw. p Val | Class |
---|---|---|---|---|---|
RH-725 Control | Fructose | 9.2746 | 6.2716 | 0.015517 | Sugar |
Gluconic acid | 7.612 | 5.2702 | 0.025862 | Sugar acid | |
Quininic acid | 4.1127 | 3.9993 | 0.031034 | Organic acid | |
Glyceryl-glycoside | 3.3472 | 2.4311 | 0.041379 | Sugar | |
ALLONIC ACID | 2.1536 | 2.2174 | 0.005 | Sugar acid | |
Talose | 2.0819 | 1.7494 | 0.02069 | Sugar | |
RH-725 Drought | Quininic acid | 173.71 | 1.4258 | 0.0025 | Organic acid |
Sucrose | 77.258 | 1.3987 | 0.005 | Sugar | |
Malic acid | 38.591 | 6.7995 | 0.01 | Organic acid | |
Myo-Inositol | 15.992 | 6.7230 | 0.015 | Sugar alcohol | |
Tromethamine | 5.3932 | 4.2091 | 0.0225 | Amine | |
Aspartic acid | 4.6507 | 1.6929 | 0.0275 | Amino acid | |
Threonic acid | 3.3621 | 1.3812 | 0.0425 | Amino acid | |
6,7-DIHYDROXYCOUMARIN | 2.6866 | 5.9800 | 0.0475 | Others | |
Threonine | 2.6367 | 4.6330 | 0.0425 | Amino acid | |
RH-749 Control | meso-Erythritol | 111.39 | 3.1161 | 0.015724 | Sugar alcohol |
Malic acid | 105.64 | 2.3515 | 0.034483 | Organic acid | |
Butanedioic acid | 18.495 | 2.2662 | 0.006897 | Organic acid | |
Scyllo-Inositol | 3.2331 | 1.4488 | 0.037931 | Sugar alcohol | |
Linoleic acid | 2.6048 | 1.1748 | 0.017241 | Fatty acid | |
RH-749 Drought | Malic acid | 63.12 | 1.0698 | 0.0075 | Organic acid |
Valine | 24.812 | 6.2716 | 0.0025 | Amino acid | |
Galacturonic acid | 8.6702 | 5.2702 | 0.015 | Sugar acid | |
Gentiobiose | 5.1037 | 3.9993 | 0.04 | Sugar | |
Ribono-1,4-lactone | 4.8105 | 2.4311 | 0.02 | Other (Lactone) | |
Gluconic acid | 2.7299 | 2.2174 | 0.005 | Sugar acid | |
Glyceric acid | 2.2576 | 1.7494 | 0.03 | Sugar acid | |
Butanedioic acid | 2.0991 | 1.4258 | 0.025 | Organic acid |
Treatment | Metabolite Name | Fold Change (PGPR Treated/ Non-Treated) | log2 (Fold Change) | Raw. p Val | Class |
---|---|---|---|---|---|
RH-725 Control | Galactose | 16.956 | 4.0837 | 0.018868 | Sugar |
Uridine | 11.026 | 3.4628 | 0.00566 | Other (Nucleoside) | |
Xylose | 7.6696 | 2.9392 | 0.015094 | Sugar | |
Mannobiose | 6.2892 | 2.6529 | 0.011321 | Sugar | |
Gluconic acid | 4.5833 | 2.1964 | 0.001887 | Sugar acid | |
Talose | 3.3936 | 1.7628 | 0.009434 | Sugar | |
Turanose | 3.3881 | 1.7605 | 0.016981 | Sugar | |
Psicose | 3.3564 | 1.7469 | 0.039623 | Sugar | |
Aminobutanoic acid | 2.052 | 1.0370 | 0.023684 | Organic acid | |
MELIBIOSE | 2.9273 | 1.5496 | 0.037736 | Sugar | |
RH-725 Drought | Psicose | 14.611 | 3.8690 | 0.0075 | Sugar |
Proline | 7.9973 | 3.000 | 0.03 | Amino acid | |
Galactose | 3.2215 | 1.6877 | 0.0375 | Sugar | |
SILANOL | 2.6862 | 1.4256 | 0.015 | Other | |
Xylose | 2.427 | 1.2792 | 0.025 | Sugar | |
Gluconic acid | 2.1935 | 1.1332 | 0.035 | Sugar acid | |
Lanthionine | 2.1349 | 1.0942 | 0.0325 | Amino acid | |
Trehalose | 1.7185 | 0.7811 | 0.0275 | Sugar | |
RH-749 Control | Myo-Inositol | 28.927 | 4.8543 | 0.001887 | Sugar alcohol |
Tagatose | 7.7416 | 2.9526 | 0.009434 | Sugar | |
Oleic acid | 5.3344 | 2.4153 | 0.032075 | Fatty acid | |
Trehalose | 3.5169 | 1.8143 | 0.016981 | Sugar | |
Threonic acid | 2.2776 | 1.1875 | 0.00566 | Sugar acid | |
Tromethamine | 2.014 | 1.0101 | 0.020755 | Amine | |
Ribose | 2.005 | 1.0036 | 0.007547 | Sugar | |
RH-749 Drought | Turanose | 3.7283 | 1.8985 | 0.014583 | Sugar |
Ribono-1,4-lactone | 3.1041 | 1.6342 | 0.029167 | Other (Lactone) | |
Sucrose | 2.9929 | 1.5815 | 0.016667 | Sugar | |
6,7-DIHYDROXYCOUMARIN | 2.8567 | 1.5143 | 0.008333 | Other | |
Proline | 2.7094 | 1.4380 | 0.027083 | Amino acid | |
Arabinose | 2.091 | 1.0642 | 0.025 | Sugar |
Treatment | Metabolite Name | Fold Change (PGPR Treated/ Non-Treated) | log2 (Fold Change) | Raw. p Val | Class |
---|---|---|---|---|---|
RH-725 Control | Tyrosine | 49.825 | 5.6388 | 0.007547 | Amino acid |
Threonine | 9.1645 | 3.1961 | 0.003774 | Amino acid | |
Isoleucine | 3.7534 | 1.9082 | 0.020755 | Amino acid | |
Valine | 3.3961 | 1.7639 | 0.022642 | Amino acid | |
Dihydroxybutanoic acid- | 3.2488 | 1.6999 | 0.035849 | Organic acid | |
Pentanedioic acid | 2.8147 | 1.4930 | 0.033962 | Organic acid | |
INOSITOL | 2.5141 | 1.3300 | 0.030189 | Sugar alcohol | |
SILANOL | 2.4293 | 1.2805 | 0.013208 | Other | |
Propanedioic acid | 2.0537 | 1.0382 | 0.050943 | Organic acid | |
RH-725 Drought | Malic acid | 390.29 | 8.6084 | 0.01 | Organic acid |
Valine | 25.54 | 4.6747 | 0.0225 | Amino acid | |
Threonine | 14.752 | 3.8828 | 0.0025 | Amino acid | |
ARABINONIC ACID | 9.0235 | 3.1737 | 0.0125 | Sugar acid | |
Sucrose | 8.1024 | 3.0183 | 0.005 | Sugar | |
Butenedioic acid | 4.505 | 2.1715 | 0.0175 | Organic acid | |
INOSITOL | 4.0204 | 2.0073 | 0.02 | Sugar alcohol | |
RH-749 Control | Gluconic acid | 8.6145 | 3.1068 | 0.026415 | Sugar acid |
Glycine | 3.6734 | 1.8771 | 0.015094 | Amino acid | |
SILANOL | 2.6054 | 1.3815 | 0.003774 | Other | |
Pentanedioic acid | 2.0644 | 1.0457 | 0.030189 | Organic acid | |
RH-749 Drought | Thymol-.beta.-d-glucopyranoside | 14.275 | 3.8354 | 0.004167 | Sugar |
Stearic acid | 9.5412 | 3.2542 | 0.0125 | Organic acid | |
BIS(2-ETHYLHEXYL) PHTHALATE | 3.9508 | 1.9821 | 0.002083 | Other | |
Ribonic acid | 3.7041 | 1.8891 | 0.00625 | Sugar acid | |
Glutamic acid | 3.5792 | 1.8396 | 0.020833 | Amino acid | |
ARABINONIC ACID | 2.5778 | 1.3661 | 0.039583 | Sugar acid | |
INOSITOL | 2.5033 | 1.3238 | 0.022917 | Sugar alcohol | |
Aminobutanoic acid | 2.1473 | 1.1025 | 0.010417 | Organic acid |
Genotype | Pathway Name | Match Status (Coverage) | p Value | FDR | Impact |
---|---|---|---|---|---|
RH-725 | Galactose metabolism | 6/27 | 6.18 × 10−07 | 5.62 × 10−05 | 0.39463 |
Starch and sucrose metabolism | 4/22 | 1.44 × 10−04 | 0.0065739 | 0.41467 | |
Glyoxylate and dicarboxylate metabolism | 4/29 | 4.42 × 10−04 | 0.013396 | 0.17703 | |
Sulfur metabolism | 2/15 | 0.015989 | 0.36374 | 0.03315 | |
Citrate cycle (TCA cycle) | 2/20 | 0.027801 | 0.44795 | 0.07318 | |
Amino sugar and nucleotide sugar metabolism | 3/52 | 0.029535 | 0.44795 | 0.00927 | |
Glutathione metabolism | 2/26 | 0.045338 | 0.58939 | 0.08316 | |
RH-749 | Alanine, aspartate, and glutamate metabolism | 2/22 | 0.01453 | 0.18889 | 0.45324 |
Starch and sucrose metabolism | 4/22 | 2.28 × 10−05 | 0.002076 | 0.32579 | |
Butanoate metabolism | 2/17 | 0.008767 | 0.18889 | 0.13636 | |
Arginine and proline metabolism | 3/32 | 0.002184 | 0.066235 | 0.01637 | |
Galactose metabolism | 3/27 | 0.001321 | 0.060087 | 0.00553 |
Genotype | Pathway Name | Match Status (Coverage) | p | FDR | Impact |
---|---|---|---|---|---|
RH-725 | Starch and sucrose metabolism | 6/22 | 1.46 × 10−06 | 1.33 × 10−04 | 0.51465 |
Galactose metabolism | 6/27 | 5.45 × 10−06 | 2.48 × 10−04 | 0.39463 | |
Glycine, serine, and threonine metabolism | 3/33 | 0.021857 | 0.24862 | 0.34675 | |
Alanine, aspartate and glutamate metabolism | 3/22 | 0.0070782 | 0.10735 | 0.2554 | |
Carbon fixation in photosynthetic organisms | 2/21 | 0.046713 | 0.47343 | 0.05879 | |
Amino sugar and nucleotide sugar metabolism | 5/52 | 0.0022101 | 0.067041 | 0.00927 | |
RH-749 | Starch and sucrose metabolism | 6/22 | 7.08 × 10−07 | 6.44 × 10−05 | 0.51465 |
Alanine, aspartate and glutamate metabolism | 3/22 | 0.0051136 | 0.077557 | 0.45324 | |
Galactose metabolism | 6/27 | 2.66 × 10−06 | 1.21 × 10−04 | 0.34966 | |
Glyoxylate and dicarboxylate metabolism | 5/29 | 7.66 × 10−05 | 0.0023246 | 0.25709 | |
Glycerolipid metabolism | 2/21 | 0.046154 | 0.35 | 0.15804 | |
Butanoate metabolism | 3/17 | 0.0023861 | 0.054284 | 0.13636 | |
Citrate cycle (TCA cycle) | 2/20 | 0.042184 | 0.34898 | 0.07318 | |
Arginine and proline metabolism | 3/32 | 0.014752 | 0.1678 | 0.01637 | |
Amino sugar and nucleotide sugar metabolism | 4/52 | 0.009473 | 0.12315 | 0.00927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheoran, A.R.; Lakra, N.; Saharan, B.S.; Luhach, A.; Ahlawat, Y.K.; Porcel, R.; Mulet, J.M.; Singh, P. Metabolomic Profiling Reveals PGPR-Driven Drought Tolerance in Contrasting Brassica juncea Genotypes. Metabolites 2025, 15, 416. https://doi.org/10.3390/metabo15060416
Sheoran AR, Lakra N, Saharan BS, Luhach A, Ahlawat YK, Porcel R, Mulet JM, Singh P. Metabolomic Profiling Reveals PGPR-Driven Drought Tolerance in Contrasting Brassica juncea Genotypes. Metabolites. 2025; 15(6):416. https://doi.org/10.3390/metabo15060416
Chicago/Turabian StyleSheoran, Asha Rani, Nita Lakra, Baljeet Singh Saharan, Annu Luhach, Yogesh K. Ahlawat, Rosa Porcel, Jose M. Mulet, and Prabhakar Singh. 2025. "Metabolomic Profiling Reveals PGPR-Driven Drought Tolerance in Contrasting Brassica juncea Genotypes" Metabolites 15, no. 6: 416. https://doi.org/10.3390/metabo15060416
APA StyleSheoran, A. R., Lakra, N., Saharan, B. S., Luhach, A., Ahlawat, Y. K., Porcel, R., Mulet, J. M., & Singh, P. (2025). Metabolomic Profiling Reveals PGPR-Driven Drought Tolerance in Contrasting Brassica juncea Genotypes. Metabolites, 15(6), 416. https://doi.org/10.3390/metabo15060416