Ergosterol Protects Canine MDCK Cells from Gentamicin-Induced Damage by Modulating Autophagy and Apoptosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ergosterol
2.2. Cell Model Establishment and Drug Treatment
2.3. Live/Dead Staining
2.4. Inflammatory Cytokine Release Assay
2.5. Antioxidant Factor Assay
2.6. ROS Staining
2.7. Kidney Function Assay
2.8. Western Blot
2.9. Statistical Analysis
3. Results
3.1. Optimal GM Concentration for Cell Model Establishment
3.2. Optimal Erg Concentration for MDCK Cell Protection
3.3. Erg Protects Cells from GM-Induced Damage
3.4. Erg Mitigates GM-Induced Inflammatory Responses and Oxidative Damage
3.5. Erg’s Antioxidative Effect on GM-Induced ROS Production
3.6. Erg Protects Against GM-Induced Nephrotoxicity
3.7. Erg Reverses GM-Induced Inhibition of Autophagy and Mitochondrial Apoptosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baritugo, K.A.; Bakhsh, A.; Kim, B.; Park, S. Perspectives on functional foods for improvement of canine health and treatment of diseases. J. Funct. Foods 2023, 109, 105744. [Google Scholar] [CrossRef]
- Osei-Owusu, P.; Collyer, E.; Dahlen, S.A.; Adams, R.E.; Tom, V.J. Maladaptation of renal hemodynamics contributes to kidney dysfunction resulting from thoracic spinal cord injury in mice. Am. J. Physiol. Ren. Physiol. 2022, 323, F120–F140. [Google Scholar] [CrossRef] [PubMed]
- Varshney, A.S.; Palazzolo, M.G.; Barnett, C.F.; Bohula, E.A.; Burke, J.A.; Chaudhry, S.P.; Chonde, M.D.; Ghafghazi, S.; Gerber, D.A.; Kenigsberg, B.; et al. Epidemiology and Prognostic Significance of Acute Non-Cardiac Organ Dysfunction across Cardiogenic Shock Subtypes: Varshney et al.; Non-Cardiac Organ Dysfunction in CS. J. Card. Fail. 2025, 25, 00097–00091. [Google Scholar]
- Cruz, P.; Sosoniuk-Roche, E.; Maldonado, I.; Torres, C.G.; Ferreira, A. Trypanosoma cruzi calreticulin: In vitro modulation of key immunogenic markers of both canine tumors and relevant immune competent cells. Immunobiology 2020, 225, 151892. [Google Scholar] [CrossRef]
- O23 | Anti-tumor effect of trametinib in canine primary lung cancer organoids as a novel therapeutic agent. J. Vet. Pharmacol. Ther. 2023, 46, 39. [CrossRef]
- Yang, Z.; Li, Z.; Guo, Z.; Ren, Y.; Zhou, T.; Xiao, Z.; Duan, J.; Han, C.; Cheng, Y.; Xu, F. Antitumor Effect of Fluoxetine on Chronic Stress-Promoted Lung Cancer Growth via Suppressing Kynurenine Pathway and Enhancing Cellular Immunity. Front. Pharmacol. 2021, 12, 685898. [Google Scholar] [CrossRef]
- Rauf, A.; Joshi, P.B.; Ahmad, Z.; Hemeg, H.A.; Olatunde, A.; Naz, S.; Hafeez, N.; Simal-Gandara, J. Edible mushrooms as potential functional foods in amelioration of hypertension. Phytother. Res. 2023, 37, 2644–2660. [Google Scholar] [CrossRef]
- Rangsinth, P.; Sharika, R.; Pattarachotanant, N.; Duangjan, C.; Wongwan, C.; Sillapachaiyaporn, C.; Nilkhet, S.; Wongsirojkul, N.; Prasansuklab, A.; Tencomnao, T.; et al. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023, 12, 2529. [Google Scholar] [CrossRef]
- Mei, R.-Q.; Zuo, F.-J.; Duan, X.-Y.; Wang, Y.-N.; Li, J.-R.; Qian, C.-Z.; Xiao, J.-P. Ergosterols from Ganoderma sinense and their anti-inflammatory activities by inhibiting NO production. Phytochem. Lett. 2019, 32, 177–180. [Google Scholar] [CrossRef]
- Dupont, S.; Fleurat-Lessard, P.; Cruz, R.G.; Lafarge, C.; Grangeteau, C.; Yahou, F.; Gerbeau-Pissot, P.; Abrahão Júnior, O.; Gervais, P.; Simon-Plas, F.; et al. Antioxidant Properties of Ergosterol and Its Role in Yeast Resistance to Oxidation. Antioxidants 2021, 10, 1024. [Google Scholar] [CrossRef]
- Joo, J.-H.; Kwon, H.-S.; Lee, J.-E.; Yu, K.H. Synthesis and In Vivo Evalution of Decursinol Derivatives as Antidiabetics. Bull. Korean Chem. Soc. 2017, 38, 1075–1079. [Google Scholar] [CrossRef]
- Sillapachaiyaporn, C.; Mongkolpobsin, K.; Chuchawankul, S.; Tencomnao, T.; Baek, S.J. Neuroprotective effects of ergosterol against TNF-α-induced HT-22 hippocampal cell injury. Biomed. Pharmacother. 2022, 154, 113596. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Nowacka-Jechalke, N.; Pietrzak, W.; Gawlik-Dziki, U. A new look at edible and medicinal mushrooms as a source of ergosterol and ergosterol peroxide—UHPLC-MS/MS analysis. Food Chem. 2022, 369, 130927. [Google Scholar] [CrossRef]
- Zhu, Z.-Y.; Wang, Z.-q.; Liu, F.; Liu, X.-C.; Chen, L.-J.; Ge, X.-R.; Liu, A.-J.; Zhang, Y.-M. Synthesis and Antitumor Activity of a New Ergosterol Derivative. Chem. Nat. Compd. 2016, 52, 252–255. [Google Scholar] [CrossRef]
- Sun, B.; Zhou, X.; Qu, Z.; Sun, L.; Cheng, G.; Yang, Y.; Miao, Y.; Chen, X.; Li, B. Urinary biomarker evaluation for early detection of gentamycin-induced acute kidney injury. Toxicol. Lett. 2019, 300, 73–80. [Google Scholar] [CrossRef]
- Kang, S.; Chen, T.; Hao, Z.; Yang, X.; Wang, M.; Zhang, Z.; Hao, S.; Lang, F.; Hao, H. Oxymatrine Alleviates Gentamicin-Induced Renal Injury in Rats. Molecules 2022, 27, 6209. [Google Scholar] [CrossRef]
- Albino, A.H.; Zambom, F.F.F.; Foresto-Neto, O.; Oliveira, K.C.; Ávila, V.F.; Arias, S.C.A.; Seguro, A.C.; Malheiros, D.; Camara, N.O.S.; Fujihara, C.K.; et al. Renal Inflammation and Innate Immune Activation Underlie the Transition From Gentamicin-Induced Acute Kidney Injury to Renal Fibrosis. Front. Physiol. 2021, 12, 606392. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.U.; Akbar, A.; Ashraf, A.; Alkahtani, S.; AlKahtane, A.A.; Riaz, M.N. Antioxidant, anti-inflammatory and anti-apoptotic effects of amentoflavone on gentamicin-induced kidney damage in rats. J. King Saud Univ.—Sci. 2023, 35, 102791. [Google Scholar] [CrossRef]
- Abukhalil, M.H.; Al-Alami, Z.; Altaie, H.A.A.; Aladaileh, S.H.; Othman, S.I.; Althunibat, O.Y.; Alfwuaires, M.A.; Almuqati, A.F.; Alsuwayt, B.; Rudayni, H.A.; et al. Galangin prevents gentamicin-induced nephrotoxicity by modulating oxidative damage, inflammation and apoptosis in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 3717–3729. [Google Scholar] [CrossRef]
- Gong, L.; Pan, Q.; Yang, N. Autophagy and Inflammation Regulation in Acute Kidney Injury. Front. Physiol. 2020, 11, 576463. [Google Scholar] [CrossRef]
- Priego, A.R.; Parra, E.G.; Mas, S.; Morgado-Pascual, J.L.; Ruiz-Ortega, M.; Rayego-Mateos, S. Bisphenol A Modulates Autophagy and Exacerbates Chronic Kidney Damage in Mice. Int. J. Mol. Sci. 2021, 22, 7189. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xiao, J.; Fu, C.; Zhang, Z.; Ye, Z.; Zhang, X. Ischemic Preconditioning Promotes Autophagy and Alleviates Renal Ischemia/Reperfusion Injury. Biomed. Res. Int. 2018, 2018, 8353987. [Google Scholar] [CrossRef]
- Abdoli, A.; Soleimanjahi, H.; Jamali, A.; Mehrbod, P.; Gholami, S.; Kianmehr, Z.; Feizi, N.; Saleh, M.; Bahrami, F.; Mokhtari-Azad, T.; et al. Comparison between MDCK and MDCK-SIAT1 cell lines as preferred host for cell culture-based influenza vaccine production. Biotechnol. Lett. 2016, 38, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Guru, A.; Sudhakaran, G.; Velayutham, M.; Murugan, R.; Pachaiappan, R.; Mothana, R.A.; Noman, O.M.; Juliet, A.; Arockiaraj, J. Daidzein normalized gentamicin-induced nephrotoxicity and associated pro-inflammatory cytokines in MDCK and zebrafish: Possible mechanism of nephroprotection. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022, 258, 109364. [Google Scholar] [CrossRef]
- Li, H.; Malyar, R.M.; Zhai, N.; Wang, H.; Liu, K.; Liu, D.; Pan, C.; Gan, F.; Huang, K.; Miao, J.; et al. Zinc supplementation alleviates OTA-induced oxidative stress and apoptosis in MDCK cells by up-regulating metallothioneins. Life Sci. 2019, 234, 116735. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Y.T.; Fu, S.Z.; Peng, B.; Bao, L.L.; Zhang, Y.L.; Hu, J.H.; Zeng, Z.P.; Geng, D.H.; Gao, Z.P. Anti-Influenza Virus (H5N1) Activity Screening on the Phloroglucinols from Rhizomes of Dryopteris crassirhizoma. Molecules 2017, 22, 431. [Google Scholar] [CrossRef] [PubMed]
- Sali, N.; Nagy, S.; Poór, M.; Kőszegi, T. Multiparametric luminescent cell viability assay in toxicology models: A critical evaluation. J. Pharmacol. Toxicol. Methods 2016, 79, 45–54. [Google Scholar] [CrossRef]
- Konno, T.; Nakano, R.; Mamiya, R.; Tsuchiya, H.; Kitanaka, T.; Namba, S.; Kitanaka, N.; Okabayashi, K.; Narita, T.; Sugiya, H. Expression and Function of Interleukin-1β-Induced Neutrophil Gelatinase-Associated Lipocalin in Renal Tubular Cells. PLoS ONE 2016, 11, e0166707. [Google Scholar] [CrossRef]
- Liu, J.; Xie, L.; Zhai, H.; Wang, D.; Li, X.; Wang, Y.; Song, M.; Xu, C. Exploration of the protective mechanisms of Icariin against cisplatin-induced renal cell damage in canines. Front. Vet. Sci. 2024, 11, 1331409. [Google Scholar] [CrossRef]
- Liu, X.; Chen, D.; Su, J.; Zheng, R.; Ning, Z.; Zhao, M.; Zhu, B.; Li, Y. Selenium nanoparticles inhibited H1N1 influenza virus-induced apoptosis by ROS-mediated signaling pathways. RSC Adv. 2022, 12, 3862–3870. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, H.J.; Choi, W.C.; Yoon, S.W.; Ko, S.G.; Ahn, K.S.; Choi, S.H.; Lieske, J.C.; Kim, S.H. Rhus verniciflua Stokes prevents cisplatin-induced cytotoxicity and reactive oxygen species production in MDCK-I renal cells and intact mice. Phytomedicine 2009, 16, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, Q.; Luo, L.; Ning, B.; Fang, Y. β-asarone inhibited cell growth and promoted autophagy via P53/Bcl-2/Bclin-1 and P53/AMPK/mTOR pathways in Human Glioma U251 cells. J. Cell Physiol. 2018, 233, 2434–2443. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, H.; Zhang, L.; Yao, P.; Wang, S.; Yang, Q. Nanosystems for oxidative stress regulation in the anti-inflammatory therapy of acute kidney injury. Front. Bioeng. Biotechnol. 2023, 11, 1120148. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, H.; Aydin Acar, C.; Pehlivanoglu, S.; Yesilot, S. Yerba Mate Attenuates Oxidative Stress Induced Renal Cell Damage. J. Herb. Med. 2023, 42, 100793. [Google Scholar] [CrossRef]
- Luo, Q.H.; Chen, M.L.; Chen, Z.L.; Huang, C.; Cheng, A.C.; Fang, J.; Tang, L.; Geng, Y. Evaluation of KIM-1 and NGAL as Early Indicators for Assessment of Gentamycin-Induced Nephrotoxicity In Vivo and In Vitro. Kidney Blood Press. Res. 2016, 41, 911–918. [Google Scholar] [CrossRef]
- Carver, M.P.; Shy-Modjeska, J.S.; Brown, T.T.; Rogers, R.A.; Riviere, J.E. Dose-response studies of gentamicin nephrotoxicity in rats with experimental renal dysfunction. I. Subtotal surgical nephrectomy. Toxicol. Appl. Pharmacol. 1985, 80, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Carver, M.P.; Monteiro-Riviere, N.A.; Brown, T.T.; Riviere, J.E. Dose-response studies of gentamicin nephrotoxicity in rats with experimental renal dysfunction. II. Polyvinyl alcohol glomerulopathy. Toxicol. Appl. Pharmacol. 1985, 80, 264–273. [Google Scholar] [CrossRef]
- Elliott, W.C.; Parker, R.A.; Houghton, D.C.; Gilbert, D.N.; Porter, G.A.; DeFehr, J.; Bennett, W.M. Effect of sodium bicarbonate and ammonium chloride ingestion in experimental gentamicin nephrotoxicity in rats. Res. Commun. Chem. Pathol. Pharmacol. 1980, 28, 483–495. [Google Scholar]
- Vaishnu Devi, D.; Viswanathan, P. Sulphated polysaccharide from Sargassum myriocystum confers protection against gentamicin-induced nephrotoxicity in adult zebrafish. Env. Toxicol. Pharmacol. 2019, 72, 103269. [Google Scholar] [CrossRef]
- Baliga, R.; Ueda, N.; Walker, P.D.; Shah, S.V. Oxidant mechanisms in toxic acute renal failure. Drug Metab. Rev. 1999, 31, 971–997. [Google Scholar] [CrossRef]
- Elliott, W.C.; Parker, R.A.; Houghton, D.C.; Gilbert, D.N.; Bennett, W.M. Comparative nephrotoxicity of dibekacin and gentamicin in rats. Res. Commun. Chem. Pathol. Pharmacol. 1981, 33, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Heleno, S.A.; Rudke, A.R.; Calhelha, R.C.; Carocho, M.; Barros, L.; Gonçalves, O.H.; Barreiro, M.F.; Ferreira, I.C. Development of dairy beverages functionalized with pure ergosterol and mycosterol extracts: An alternative to phytosterol-based beverages. Food Funct. 2017, 8, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Gąsecka, M.; Magdziak, Z.; Siwulski, M.; Mleczek, M. Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus. Eur. Food Res. Technol. 2018, 244, 259–268. [Google Scholar] [CrossRef]
- Shao, S.; Hernandez, M.; Kramer, J.K.; Rinker, D.L.; Tsao, R. Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. J. Agric. Food Chem. 2010, 58, 11616–11625. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.; Feng, X.; Li, C.; Li, S.; Zhao, Z. The key role of macrophage depolarization in the treatment of COPD with ergosterol both in vitro and in vivo. Int. Immunopharmacol. 2020, 79, 106086. [Google Scholar] [CrossRef]
- Sillapachaiyaporn, C.; Chuchawankul, S.; Nilkhet, S.; Moungkote, N.; Sarachana, T.; Ung, A.T.; Baek, S.J.; Tencomnao, T. Ergosterol isolated from cloud ear mushroom (Auricularia polytricha) attenuates bisphenol A-induced BV2 microglial cell inflammation. Food Res. Int. 2022, 157, 111433. [Google Scholar] [CrossRef]
- Su, L.; Zhang, J.; Gomez, H.; Kellum, J.A.; Peng, Z. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 2023, 19, 401–414. [Google Scholar] [CrossRef]
- Lim, S.W.; Shin, Y.J.; Luo, K.; Quan, Y.; Ko, E.J.; Chung, B.H.; Yang, C.W. Effect of Klotho on autophagy clearance in tacrolimus-induced renal injury. Faseb J. 2019, 33, 2694–2706. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Cai, Y.; Xu, K.; Ren, X.; Sun, J.; Lu, S.; Chen, J.; Xu, P. Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagy-dependent pathway in human synovial sarcoma cells. Oncol. Rep. 2018, 40, 1927–1936. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Meng, L.; Cao, G.K.; Zhao, Y.L.; Zhang, Y. Biological effects of autophagy in mice with sepsis-induced acute kidney injury. Exp. Ther. Med. 2019, 17, 316–322. [Google Scholar] [CrossRef]
- Bai, H.; Ding, Y.; Li, X.; Kong, D.; Xin, C.; Yang, X.; Zhang, C.; Rong, Z.; Yao, C.; Lu, S.; et al. Polydatin protects SH-SY5Y in models of Parkinson’s disease by promoting Atg5-mediated but parkin-independent autophagy. Neurochem. Int. 2020, 134, 104671. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak-Skorupa, J.; Milewska, M.J. Ergosterol and Lanosterol Derivatives: Synthesis and Possible Biomedical Applications. ChemMedChem 2025, 9, e202400948. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Z.; Xie, L.; Wang, Y.; Zhang, N.; Bi, H.; Song, M.; Xu, C. Ergosterol Protects Canine MDCK Cells from Gentamicin-Induced Damage by Modulating Autophagy and Apoptosis. Metabolites 2025, 15, 373. https://doi.org/10.3390/metabo15060373
Qin Z, Xie L, Wang Y, Zhang N, Bi H, Song M, Xu C. Ergosterol Protects Canine MDCK Cells from Gentamicin-Induced Damage by Modulating Autophagy and Apoptosis. Metabolites. 2025; 15(6):373. https://doi.org/10.3390/metabo15060373
Chicago/Turabian StyleQin, Zhipeng, Liuwei Xie, Yao Wang, Na Zhang, Hailong Bi, Mingqiang Song, and Chao Xu. 2025. "Ergosterol Protects Canine MDCK Cells from Gentamicin-Induced Damage by Modulating Autophagy and Apoptosis" Metabolites 15, no. 6: 373. https://doi.org/10.3390/metabo15060373
APA StyleQin, Z., Xie, L., Wang, Y., Zhang, N., Bi, H., Song, M., & Xu, C. (2025). Ergosterol Protects Canine MDCK Cells from Gentamicin-Induced Damage by Modulating Autophagy and Apoptosis. Metabolites, 15(6), 373. https://doi.org/10.3390/metabo15060373