Integrated Analysis of Volatile Metabolites in Rose Varieties: Effects of Cultivar Differences and Drying Temperatures on Flavor Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Methods
2.2.1. Flower Drying Method
2.2.2. Total Flavonoid Determination
2.2.3. Total Anthocyanins Determination
2.2.4. Sensory Evaluation
2.2.5. Volatile Metabolomics Determination
2.3. Data Analysis
3. Results and Analysis
3.1. Analysis of Volatile Metabolites in Different Varieties of Fresh Flowers and After Drying
3.2. Changes in the Color and Related Substances in the Roses in Different Drying Conditions
3.3. Analysis of the Metabolites in the Hetian Roses in Different Drying Conditions
3.4. Machine Learning-Driven Analysis of Clustering Patterns in Volatile Metabolites from Hetian Roses
3.5. Variety–Process Synergy Analysis Based on Metabolic Pathways
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zang, F.; Yan, M.; Wu, Q.; Tu, X.; Xie, X.; Huang, P.; Tong, B.; Zheng, Y.; Zang, D. Resequencing of Rosa rugosa accessions revealed the history of population dynamics, breed origin, and domestication pathways. BMC Plant Biol. 2023, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Andersson, U.; Berger, K.; Högberg, A.; Landin-Olsson, M.; Holm, C. Effects of rose hip intake on risk markers of type 2 diabetes and cardiovascular disease: A randomized, double-blind, cross-over investigation in obese persons. Eur. J. Clin. Nutr. 2011, 66, 585–590. [Google Scholar] [CrossRef]
- Jaydipsinh, B.R.; Mahendrasinh, T.K.; Divya, V. Drying characteristics of rose flowers. J. Agric. Eng. 2024, 50, 39–46. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Mohammed, A.A.; Khizar, H.; Fohad, M.H.; Shaista, A.; Abdulhakeem, A.; Asdaf, A.; Heba, K.A.; Syed, R.A. Different drying techniques effect on the bioactive properties of rose petals. J. King Saud Univ. Sci. 2024, 36, 103025. [Google Scholar]
- Selvi, K.Ç.; Kabutey, A.; Gürdil, G.A.K.; Herak, D.; Kurhan, Ş.; Klouček, P. The effect of infrared drying on color, projected area, drying time, and total phenolic content of rose (Rose electron) petals. Plants 2020, 9, 236. [Google Scholar] [CrossRef]
- Titisari, J.; Amy, A. Chemical properties of red rose (Rosa indica L.) herbal tea with variations of temperature and drying time chemical. Jurnal Teknik Kimia 2022, 9, 33. [Google Scholar]
- Dilta, B.S.; Tushar, B.B.; Gupta, Y.C.; Rajesh, B.; Sharma, B.P. Effect of embedding media, temperature and durations on hot air oven drying of Rose (Rosa hybrida L.) cv. ‘First Red’. Indian J. Appl. Res. 2011, 4, 233–239. [Google Scholar] [CrossRef]
- Hnin, K.K.; Zhang, M.; Wang, B.; Devahastin, S. Different drying methods effect on quality attributes of restructured rose powder-yam snack chips. Food Biosci. 2019, 32, 100486. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, L.; Han, Q.; Dong, G.Z.; Wang, B.; Zhang, J.; Lei, S.M.; Liu, Y.G. Quality assessment of rose tea with different drying methods based on physicochemical properties, HS–SPME–GC–MS, and GC–IMS. J. Food Sci. 2023, 88, 1378–1391. [Google Scholar] [CrossRef]
- Matłok, N.; Lachowicz, S.; Gorzelany, J.; Balawejder, M. Influence of Drying Method on Some Bioactive Compounds and the Composition of Volatile Components in Dried Pink Rock Rose (Cistus creticus L.). Molecules 2020, 25, 2596. [Google Scholar] [CrossRef]
- Bao, T.; Karim, N.; Mo, J.; Chen, W. Ultrasound-assisted ascorbic acid solution pretreated hot-air drying improves drying characteristics and quality of jujube slices. J. Sci. Food Agric. 2023, 103, 4803–4812. [Google Scholar] [CrossRef]
- Zhao, Y.; Chong, Y.; Hou, Z.-H. Effect of different drying techniques on rose (Rosa rugosa cv. Plena) proteome based on label-free quantitative proteomics. Heliyon 2023, 9, e13158. [Google Scholar]
- Qu, F.; Zhu, X.; Ai, Z.; Ai, Y.; Qiu, F.; Ni, D. Effect of different drying methods on the sensory quality and chemical components of black tea. LWT 2019, 99, 112–118. [Google Scholar] [CrossRef]
- Wang, S.; Du, Z.; Yang, X.; Wang, L.; Xia, K.; Chen, Z. An Integrated Analysis of Metabolomics and Transcriptomics Reveals Significant Differences in Floral Scents and Related Gene Expression between Two Varieties of Dendrobium loddigesii. Appl. Sci. 2022, 12, 1262. [Google Scholar] [CrossRef]
- Zhao, J.; Song, Z.; Joshi, V.S.; Khan, I.A. Metabolomics Approach for Understanding the Processing of Honeysuckle Flower (Lonicera japonica) in Traditional Chinese. Med. Planta Medica 2010, 1, 76. [Google Scholar] [CrossRef]
- Zou, H.; Zhou, L.; Han, L.; Lv, J.; Jia, Y.; Wang, Y. Transcriptome profiling reveals the roles of pigment formation mechanisms in yellow Paeonia delavayi flowers. Mol. Genet. Genom. 2022, 298, 375–387. [Google Scholar] [CrossRef]
- Mehran, K.; Esmaeil, C.; Ali, A.S.; Mousa, T.G. Plant secondary metabolism and flower color changes in damask rose at different flowering development stages. Acta Physiol. Plant. 2021, 43, 55. [Google Scholar]
- Zhou, X.; Wu, Q.; Wang, X.; Wei, H.; Zhang, H.; Wang, Y. Integrative analysis of transcriptome and target metabolites uncovering flavonoid biosynthesis regulation of changing petal colors in Nymphaea ‘Feitian 2’. BMC Plant Biol 2024, 24, 370. [Google Scholar] [CrossRef]
- ISO 8586-2012; Sensory Analysis. General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Specialized Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2023.
- GB/T 19648-2016; Determination of 500 Pesticide and Related Chemical Residues in Fruits and Vegetables by Gas Chromatography-Mass Spectrometry. China Standard Publishing House: Beijing, China, 2016.
- Nickolay, T.T.; Michele, G. Principal component analysis (PCA). In Multivariate Data Analysis on Matrix Manifolds (with Manopt); Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 89–139. [Google Scholar]
- Jin, J.; Mi, J.K.; Savitha, D.; Jessica, G.T.; Yin, J.L.; Wong, L.; Rajani, S.; Chua, N.H.; Cheol, J. The floral transcriptome of ylang ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase. J. Exp. Bot. 2015, 66, 3959–3975. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Zhang, R.; Lin, Y.; Xiong, A.; Tan, G.; Luo, Y.; Zhang, Y.; Chen, Q.; Wang, Y.; et al. Combined Analysis of the Metabolome and Transcriptome to Explore Heat Stress Responses and Adaptation Mechanisms in Celery (Apium graveolens L.). Int. J. Mol. Sci. 2022, 23, 3367. [Google Scholar] [CrossRef]
- Antonova, D.V.; Medarska, Y.N.; Stoyanova, A.S.; Nenov, N.S.; Slavov, A.M.; Antonov, L.M. Chemical profile and sensory evaluation of Bulgarian rose (Rosa damascena Mill.) aroma products, isolated by different techniques. J. Essent. Oil Res. 2020, 33, 171–181. [Google Scholar] [CrossRef]
- Faroogh, S.; Zahra, R.G.; Abolfazl, A.Y.; Mohammad, K. Infrared and hot drying of saffron petal (Crocus sativus L.): Effect on drying, energy, color, and rehydration. J. Food Process Eng. 2023, 3, e14342. [Google Scholar]
- Tatsuzawa, F. Flower colors and flavonoids in the cultivars of Lobelia erinus L. (Campanulaceae). Dye. Pigment. 2020, 180, 108500. [Google Scholar] [CrossRef]
- Zhan, S.; Han, X.; Wang, G.; Qiu, J.; Zhou, L.; Chen, S.; Fang, W.; Chen, F.; Jiang, J. Transcriptome analysis reveals chrysanthemum flower discoloration under high-temperature stress. Front. Plant Sci. 2022, 14, 13. [Google Scholar]
- Zhang, X.; Li, L.; He, Y.; Lang, Z.; Zhao, Y.; Han, T.; Li, Q.; Hong, G. The CsHSFA-CsJAZ6 module-mediated high temperature regulates flavonoid metabolism in Camellia sinensis. Plant Cell Environ. 2023, 46, 2401–2418. [Google Scholar] [CrossRef]
- Winda, N. Anthocyanin as natural colorant: A review. Food Sci. J. 2019, 1, 1–7. [Google Scholar]
- Mahbuba, K.; Nuhu, M.; Mahci, A.B.; Manal, A.M.; Ronok, Z.; Shahnaj, P.; Most, A.A. Evaluation of anti-inflammatory potential and GC-MS profiling of leaf extracts from Clerodendrum infortunatum L. J. Ethnopharmacol. 2024, 320, 117366. [Google Scholar]
- Api, A.M.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; et al. RIFM fragrance ingredient safety assessment, benzaldehyde, CAS Registry Number 100-52-7. Food Chem. Toxicol. 2019, 134, 110878. [Google Scholar] [CrossRef]
- YoSup, P.; Han, C.L.; Kim, Y.K.; Kang, S.S.; Kang, S.H.; Byulhana, L. Quality characteristics and antioxidant activites of ‘Chuwhangbae’ (P. pyrifolia Nakai) dried with different methods. Food Sci. Preserv. 2020, 27, 25–31. [Google Scholar]
- Li, C.; Ké, L.; Huitai, C.; Zongjun, L. Reviewing the Source, Physiological Characteristics, and Aroma Production Mechanisms of Aroma-Producing Yeasts. Foods 2023, 12, 3501. [Google Scholar] [CrossRef]
- Ahmed, I.F.; Mohammed, H.A.; Aftab, A.; Mohammad, A.S.; Ahmed, E.; Hasan, S.Y. Evaluation of the composition and in vitro antimicrobial, antioxidant, and anti-inflammatory activities of Cilantro (Coriandrum sativum L. leaves) cultivated in Saudi Arabia (Al-Kharj) Saudi. J. Biol. Sci. 2021, 28, 3461–3468. [Google Scholar]
- Api, A.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.; Cancellieri, M.; Chon, H.; Dagli, M.; Date, M.; Dekant, W.; et al. RIFM fragrance ingredient safety assessment, phenylacetic acid, CAS Registry Number 103-82-2. Food Chem. Toxicol. 2022, 167, 113240. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Sun, M.; Ren, X.; Yang, J.; Zhang, Y.; Hui, J.; Li, P.; Tao, J.; Liu, T.; Lin, G. Integrated Analysis of Volatile Metabolites in Rose Varieties: Effects of Cultivar Differences and Drying Temperatures on Flavor Profiles. Metabolites 2025, 15, 325. https://doi.org/10.3390/metabo15050325
Zhang J, Sun M, Ren X, Yang J, Zhang Y, Hui J, Li P, Tao J, Liu T, Lin G. Integrated Analysis of Volatile Metabolites in Rose Varieties: Effects of Cultivar Differences and Drying Temperatures on Flavor Profiles. Metabolites. 2025; 15(5):325. https://doi.org/10.3390/metabo15050325
Chicago/Turabian StyleZhang, Jun, Meile Sun, Xiangrong Ren, Jing Yang, Yijie Zhang, Jingtao Hui, Pengbing Li, Jianfei Tao, Tianzhi Liu, and Guocang Lin. 2025. "Integrated Analysis of Volatile Metabolites in Rose Varieties: Effects of Cultivar Differences and Drying Temperatures on Flavor Profiles" Metabolites 15, no. 5: 325. https://doi.org/10.3390/metabo15050325
APA StyleZhang, J., Sun, M., Ren, X., Yang, J., Zhang, Y., Hui, J., Li, P., Tao, J., Liu, T., & Lin, G. (2025). Integrated Analysis of Volatile Metabolites in Rose Varieties: Effects of Cultivar Differences and Drying Temperatures on Flavor Profiles. Metabolites, 15(5), 325. https://doi.org/10.3390/metabo15050325