Fatty Liver and Hyperuricemia in Workers: Combined Effects on Metabolic Dysfunction and the Role of Lifestyle Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Design and Participants
2.3. Assessment of Lifestyle Habits
2.4. Evaluation of FL
2.5. Liver Function Analysis
2.6. Anthropometric and Biochemical Measurements
2.7. Detection of Inflammatory Markers
2.8. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Participants by Gender
3.2. Differences in Health-Related Lifestyle Habits and Metabolic Risk Factors by Hyperuricemia and FL Status
3.3. Differences in Lifestyle Habits, Metabolic Risk Factors, WBC Count, and Liver Function Indicators Among Groups from Combining Hyperuricemia with FL Status
3.4. Odds Ratio of Metabolic Risk Factors, High WBC, and Liver Dysfunction Predicted by Combining Hyperuricemia with FL Status
4. Discussion
4.1. Relationship Between Hyperuricemia, FL, and Gender
4.2. Lifestyle Habits According to Hyperuricemia and FL Status
4.3. Metabolic Risk Factors, Inflammatory Markers, and Liver Function in Hyperuricemia and FL
4.4. Relationship Between Combined Hyperuricemia and Fatty Liver and Health Risk Profiles
4.5. Achievements and Implications
4.6. Limitations and Prospective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DBP | Diastolic blood pressure |
FBG | Fasting blood glucose |
FL | Fatty liver |
GOT | Glutamate oxaloacetate transaminase |
GPT | Glutamate pyruvate transaminase |
HDL-C | High-density lipoprotein cholesterol |
MS | Metabolic syndrome |
SBP | Systolic blood pressure |
UA | Uric acid |
WC | Waist circumference |
WBC | White blood cell |
References
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zong, Y.; Li, H.; Wang, Q.; Xie, L.; Yang, B.; Pang, Y.; Zhang, C.; Zhong, Z.; Gao, J. Hyperuricemia and its related diseases: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 212. [Google Scholar] [CrossRef]
- Pettinelli, P.; Fernandez, T.; Aguirre, C.; Barrera, F.; Riquelme, A.; Fernandez-Verdejo, R. Prevalence of non-alcoholic fatty liver disease and its association with lifestyle habits in adults in Chile: A cross-sectional study from the National Health Survey 2016–2017. Br. J. Nutr. 2023, 130, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Han, K.; Jung, J.; Eun, Y.; Kim, I.Y.; Koh, E.M.; Lee, S.; Cha, H.S.; Kim, H.; Lee, J. Women with Metabolic Syndrome and Unhealthy Lifestyle Factors Are at a Higher Risk for Hyperuricemia. J. Clin. Med. 2023, 12, 7159. [Google Scholar] [CrossRef]
- Zhang, X.; Goh, G.B.; Chan, W.K.; Wong, G.L.; Fan, J.G.; Seto, W.K.; Huang, Y.H.; Lin, H.C.; Lee, I.C.; Lee, H.W.; et al. Unhealthy lifestyle habits and physical inactivity among Asian patients with non-alcoholic fatty liver disease. Liver Int. 2020, 40, 2719–2731. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, M.; Kubota, N. Obesity, Metabolic Syndrome, and Fatty Liver Disease. No Shinkei Geka 2024, 52, 1179–1186. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, B.; Ke, W.; Cai, Y.; Zhang, L.; Huang, W.; Yan, X.; Chen, H. Correlation analysis between occupational stress and metabolic syndrome in workers of a petrochemical enterprise: Based on two assessment models of occupational stress. BMC Public Health 2024, 24, 802. [Google Scholar] [CrossRef]
- Fan, J.; Ding, C.; Gong, W.; Yuan, F.; Ma, Y.; Feng, G.; Song, C.; Liu, A. The Relationship between Leisure-Time Sedentary Behaviors and Metabolic Risks in Middle-Aged Chinese Women. Int. J. Environ. Res. Public Health 2020, 17, 7171. [Google Scholar] [CrossRef]
- Wei, H.; Qu, H.; Wang, H.; Deng, H. Associations between sitting time and non-alcoholic fatty liver diseases in Chinese male workers: A cross-sectional study. BMJ Open 2016, 6, e011939. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, Y.; Wang, J.; Liu, Y.; Qi, D.; Yao, W.; Jiang, H.; Li, T.; Huang, K.; Zhang, W.; et al. Prevalence and risk factor analysis for the nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Medicine 2021, 100, e24940. [Google Scholar] [CrossRef]
- Laucyte-Cibulskiene, A.; Smaliukaite, M.; Dadoniene, J.; Cypiene, A.; Mikolaityte, J.; Ryliskyte, L.; Laucevicius, A.; Badariene, J. Inflammaging and Vascular Function in Metabolic Syndrome: The Role of Hyperuricemia. Medicina 2022, 58, 373. [Google Scholar] [CrossRef]
- Banik, S.D.; Avila-Nava, A.; Lugo, R.; Chim Ake, R.; Gutierrez Solis, A.L. Association Between Low-Grade Inflammation and Hyperuricemia in Adults With Metabolic Syndrome in Yucatan, Mexico. Can. J. Diabetes 2022, 46, 369–374. [Google Scholar] [CrossRef]
- Petta, S.; Camma, C.; Cabibi, D.; Di Marco, V.; Craxi, A. Hyperuricemia is associated with histological liver damage in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2011, 34, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Ballestri, S.; Nascimbeni, F.; Romagnoli, D.; Lonardo, A. The independent predictors of non-alcoholic steatohepatitis and its individual histological features.: Insulin resistance, serum uric acid, metabolic syndrome, alanine aminotransferase and serum total cholesterol are a clue to pathogenesis and candidate targets for treatment. Hepatol. Res. 2016, 46, 1074–1087. [Google Scholar] [CrossRef] [PubMed]
- Yen, P.C.; Chou, Y.T.; Li, C.H.; Sun, Z.J.; Wu, C.H.; Chang, Y.F.; Lu, F.H.; Yang, Y.C.; Chang, C.J.; Wu, J.S. Hyperuricemia Is Associated with Significant Liver Fibrosis in Subjects with Nonalcoholic Fatty Liver Disease, but Not in Subjects without It. J. Clin. Med. 2022, 11, 1445. [Google Scholar] [CrossRef] [PubMed]
- Basnet, T.B.; Du, S.; Feng, R.; Gao, J.; Gong, J.; Ye, W. Fatty liver mediates the association of hyperuricemia with prediabetes and diabetes: A weighting-based mediation analysis. Front. Endocrinol. 2023, 14, 1133515. [Google Scholar] [CrossRef]
- Walker, S.N.; Sechrist, K.R.; Pender, N.J. Health Promotion Model—Instruments to Measure Health Promoting Lifestyle: Health-Promoting Lifestyle Profile [HPLP II] (Adult Version). 1995. Available online: https://deepblue.lib.umich.edu/handle/2027.42/85349 (accessed on 3 May 2025).
- Walker, S.N.; Sechrist, K.R.; Pender, N.J. The Health-Promoting Lifestyle Profile: Development and psychometric characteristics. Nurs. Res. 1987, 36, 1976–1981. [Google Scholar] [CrossRef]
- Yang, K.C.; Liao, Y.Y.; Tsui, P.H.; Yeh, C.K. Ultrasound imaging in nonalcoholic liver disease: Current applications and future developments. Quant. Imaging Med. Surg. 2019, 9, 546–551. [Google Scholar] [CrossRef]
- Ferraioli, G.; Soares Monteiro, L.B. Ultrasound-based techniques for the diagnosis of liver steatosis. World J. Gastroenterol. 2019, 25, 6053–6062. [Google Scholar] [CrossRef]
- Ballestri, S.; Mantovani, A.; Byrne, C.D.; Lonardo, A.; Targher, G. Diagnostic accuracy of ultrasonography for the detection of hepatic steatosis: An updated metaanalysis of observational studies. Metab. Target. Organ. Damage 2021, 1, 7. [Google Scholar] [CrossRef]
- Health Promotion Administration, Ministry of Health and Welfare in Taiwan. Metabolic Symdrome. Available online: https://www.hpa.gov.tw/pages/list.aspx?nodeid=221 (accessed on 26 November 2022).
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., 3rd; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390. [Google Scholar] [CrossRef]
- Health Promotion Administration, Ministry of Health and Welfare in Taiwan. Nutrition and Health Survey (NAHSIT Report 2017–2020). Available online: https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1077&pid=6201 (accessed on 29 January 2025).
- Teng, M.L.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.; Lim, W.H.; Yang, J.D.; Tan, E.; Muthiah, M.D. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S32–S42. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zou, B.; Yeo, Y.H.; Feng, Y.; Xie, X.; Lee, D.H.; Fujii, H.; Wu, Y.; Kam, L.Y.; Ji, F.; et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2019, 4, 389–398. [Google Scholar] [CrossRef]
- Tung, T.; Chiu, W.; Lin, T.; Shih, H.; Hsu, C. An exploration of prevalence and associated factors of nonalcoholic Fatty liver disease in the taiwanese police service. Iran. J. Public Health 2011, 40, 54–62. [Google Scholar]
- Nagral, A.; Bangar, M.; Menezes, S.; Bhatia, S.; Butt, N.; Ghosh, J.; Manchanayake, J.H.; Mahtab, M.A.; Singh, S.P. Gender Differences in Nonalcoholic Fatty Liver Disease. Euroasian J. Hepatogastroenterol. 2022, 12, S19–S25. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.N.; Chen, W.J.; Hou, C.J.; Lin, C.L.; Chang, M.L.; Wang, C.C.; Chang, W.T.; Wang, C.Y.; Lin, C.Y.; Hung, C.L.; et al. Taiwan Association for the Study of the Liver-Taiwan Society of Cardiology Taiwan position statement for the management of metabolic dysfunction- associated fatty liver disease and cardiovascular diseases. Clin. Mol. Hepatol. 2024, 30, 16–36. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhao, X.; Fu, X.; Xu, K.; Li, Z.; Miao, L.; Li, Y.; Cai, Z.; Qiao, L.; Bao, J. Gender effect of hyperuricemia on the development of nonalcoholic fatty liver disease (NAFLD): A clinical analysis and mechanistic study. Biomed. Pharmacother. 2019, 117, 109158. [Google Scholar] [CrossRef]
- Fotakis, C.; Amanatidou, A.I.; Kafyra, M.; Andreou, V.; Kalafati, I.P.; Zervou, M.; Dedoussis, G.V. Circulatory Metabolite Ratios as Indicators of Lifestyle Risk Factors Based on a Greek NAFLD Case-Control Study. Nutrients 2024, 16, 1235. [Google Scholar] [CrossRef]
- Ma, Q.; Ye, J.; Shao, C.; Lin, Y.; Wu, T.; Zhong, B. Metabolic benefits of changing sedentary lifestyles in nonalcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Ther. Adv. Endocrinol. Metab. 2022, 13, 20420188221122426. [Google Scholar] [CrossRef]
- Sugie, T.; Imatou, T.; Miyazaki, M.; Une, H. The effect of alcoholic beverage type on hyperuricemia in Japanese male office workers. J. Epidemiol. 2005, 15, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Sautner, J.; Eichbauer-Sturm, G.; Gruber, J.; Lunzer, R.; Puchner, R. 2022 Update of the Austrian Society for Rheumatology and Rehabilitation Nutrition and Lifestyle Recommendations for Patients with Gout and Hyperuricemia. Z. Rheumatol. 2023, 82, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Hallsworth, K.; Adams, L.A. Lifestyle modification in NAFLD/NASH: Facts and figures. JHEP Rep. 2019, 1, 468–479. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- von Loeffelholz, C.; Roth, J.; Coldewey, S.M.; Birkenfeld, A.L. The Role of Physical Activity in Nonalcoholic and Metabolic Dysfunction Associated Fatty Liver Disease. Biomedicines 2021, 9, 1853. [Google Scholar] [CrossRef]
- Kwak, M.S.; Kim, D. Non-alcoholic fatty liver disease and lifestyle modifications, focusing on physical activity. Korean J. Intern. Med. 2018, 33, 64–74. [Google Scholar] [CrossRef]
- Faller, J.; Fox, I.H. Ethanol-induced hyperuricemia: Evidence for increased urate production by activation of adenine nucleotide turnover. N. Engl. J. Med. 1982, 307, 1598–1602. [Google Scholar] [CrossRef]
- Kono, S.; Shinchi, K.; Imanishi, K.; Honjo, S.; Todoroki, I. Behavioural and biological correlates of serum uric acid: A study of self-defence officials in Japan. Int. J. Epidemiol. 1994, 23, 517–522. [Google Scholar] [CrossRef]
- Facchini, F.; Chen, Y.D.; Hollenbeck, C.B.; Reaven, G.M. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 1991, 266, 3008–3011. [Google Scholar] [CrossRef]
- Puig, J.G.; Fox, I.H. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate. J. Clin. Investig. 1984, 74, 936–941. [Google Scholar] [CrossRef]
- Cao, G.; Yi, T.; Liu, Q.; Wang, M.; Tang, S. Alcohol consumption and risk of fatty liver disease: A meta-analysis. PeerJ 2016, 4, e2633. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.Y.; Son, M.; Kang, Y.W.; Koh, M.; Lee, J.Y.; Baek, Y.H. Alcohol consumption and the risk of liver disease: A nationwide, population-based study. Front. Med. 2023, 10, 1290266. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Ballestri, S.; Marchesini, G.; Angulo, P.; Loria, P. Nonalcoholic fatty liver disease: A precursor of the metabolic syndrome. Dig. Liver Dis. 2015, 47, 181–190. [Google Scholar] [CrossRef]
- Januario, E.; Barakat, A.; Rajsundar, A.; Fatima, Z.; Nanda Palienkar, V.; Bullapur, A.V.; Singh Brar, S.; Kharel, P.; Koyappathodi Machingal, M.M.; Backosh, A. A Comprehensive Review of Pathophysiological Link Between Non-alcoholic Fatty Liver Disease, Insulin Resistance, and Metabolic Syndrome. Cureus 2024, 16, e75677. [Google Scholar] [CrossRef] [PubMed]
- Mondal, E.; Karim, M.R.; Begum, A.; Hassan, K.; Noor, S.M.; Khan, M.M.; Khan, K.H.; Ashrafuzzaman, S.M. Clinical and Liver Enzymes among the Patients with Metabolic Syndrome with or without Non Alcoholic Fatty Liver Disease attending a Tertiary Care Hospital. Mymensingh Med. J. 2023, 32, 338–347. [Google Scholar]
- Lee, J.W.; Cho, Y.K.; Ryan, M.; Kim, H.; Lee, S.W.; Chang, E.; Joo, K.J.; Kim, J.T.; Kim, B.S.; Sung, K.C. Serum uric Acid as a predictor for the development of nonalcoholic Fatty liver disease in apparently healthy subjects: A 5-year retrospective cohort study. Gut Liver 2010, 4, 378–383. [Google Scholar] [CrossRef]
- Zheng, J.; Li, X.; Zhang, Y.; Miao, Y.; Zhang, Q. Hyperuricemia as an effect modifier of the association between metabolic phenotypes and nonalcoholic fatty liver disease in Chinese population. J. Transl. Med. 2023, 21, 39. [Google Scholar] [CrossRef]
- Yang, C.; He, Q.; Chen, Z.; Qin, J.J.; Lei, F.; Liu, Y.M.; Liu, W.; Chen, M.M.; Sun, T.; Zhu, Q.; et al. A Bidirectional Relationship Between Hyperuricemia and Metabolic Dysfunction-Associated Fatty Liver Disease. Front. Endocrinol. 2022, 13, 821689. [Google Scholar] [CrossRef]
Variables | Total (N = 3089) | Gender | p | |
---|---|---|---|---|
Male (n = 2571) | Female (n = 518) | |||
Age (year) | 42.3 ± 10.0 | 41.6 ± 10.2 | 45.3 ± 7.8 | <0.001 |
Lifestyle habits | ||||
Exercise health behavior | 1.95 ± 0.56 | 1.95 ± 0.56 | 1.98 ± 0.55 | 0.228 |
Nutritional health behavior | 2.45 ± 0.44 | 2.42 ± 0.43 | 2.65 ± 0.43 | <0.001 |
Smoking | ||||
With | 706 (22.9) | 701 (27.3) | 5 (1.0) | <0.001 |
Without | 2383 (77.1) | 1870 (72.7) | 513 (99.0) | |
Alcohol consumption | ||||
With | 1399 (45.3) | 1299 (50.5) | 100 (19.3) | <0.001 |
Without | 1690 (54.7) | 1272 (49.5) | 418 (80.7) | |
Hyperuricemia | ||||
With | 787 (25.5) | 726 (28.2) | 61 (11.8) | <0.001 |
Without | 2302 (74.5) | 1845 (71.8) | 457 (88.2) | |
FL | ||||
With | 1335 (43.2) | 1198 (46.6) | 137 (26.4) | <0.001 |
Without | 1754 (56.8) | 1373 (53.4) | 381 (73.6) |
Variables | Hyperuricemia | p | FL | p | ||
---|---|---|---|---|---|---|
With (n = 787) | Without (n = 2302) | With (n = 1335) | Without (n = 1754) | |||
Age (year) | 42.5 ± 10.1 | 42.2 ± 9.9 | 0.468 | 43.0 ± 9.7 | 41.7 ± 10.2 | 0.001 |
Lifestyle habits | ||||||
Exercise health behavior | 1.95 ± 0.54 | 1.95 ± 0.57 | 0.773 | 1.91 ± 0.52 | 1.98 ± 0.59 | <0.001 |
Nutritional health behavior | 2.45 ± 0.44 | 2.45 ± 0.44 | 0.997 | 2.44 ± 0.42 | 2.47 ± 0.45 | 0.098 |
Smoking | ||||||
With | 190 (24.1) | 519 (22.4) | 0.319 | 327 (24.5) | 379 (21.6) | 0.058 |
Without | 597 (75.9) | 1786 (77.6) | 1008 (75.5) | 1375 (78.4) | ||
Alcohol consumption | ||||||
With | 403 (51.2) | 996 (43.3) | <0.001 | 642 (48.1) | 757 (43.2) | 0.006 |
Without | 384 (48.8) | 1306 (56.7) | 693 (51.9) | 997 (56.8) | ||
Metabolic risk factors | ||||||
WC (cm) | 86.2 ± 9.1 | 80.3 ± 9.0 | <0.001 | 87.1 ± 8.3 | 77.8 ± 8.1 | <0.001 |
FBG (g/dL) | 93.9 ± 14.3 | 93.2 ± 20.2 | 0.405 | 96.7 ± 22.0 | 90.9 ± 15.6 | <0.001 |
SBP (mmHg) | 127.0 ± 15.2 | 121.2 ± 14.9 | <0.001 | 125.9 ± 15.3 | 120.2 ± 14.7 | <0.001 |
DBP (mmHg) | 81.6 ± 11.4 | 77.2 ± 10.9 | <0.001 | 80.6 ± 11.5 | 76.6 ± 10.6 | <0.001 |
Triglycerides (mg/dL) | 167.2 ± 119.1 | 122.9 ± 97.2 | <0.001 | 163.3 ± 119.2 | 112.0 ± 86.4 | <0.001 |
HDL-C (mg/dL) | 49.4 ± 11.94 | 53.7 ± 12.7 | <0.001 | 48.2 ± 11.1 | 56.0 ± 12.7 | <0.001 |
Inflammatory marker | ||||||
WBC count (109/L) | 7.1 ± 2.1 | 6.6 ± 1.7 | <0.001 | 7.0 ± 1.6 | 6.4 ± 1.9 | <0.001 |
Liver function indicators | ||||||
GPT (U/L) | 33.2 ± 29.6 | 24.2 ± 21.7 | <0.001 | 32.8 ± 25.4 | 21.7 ± 22.2 | <0.001 |
GOT (U/L) | 23.8 ± 15.4 | 20.3 ± 19.4 | <0.001 | 22.4 ± 11.0 | 20.2 ± 22.5 | 0.001 |
Metabolic syndrome | ||||||
With | 179 (22.7) | 234 (10.2) | <0.001 | 324 (24.3) | 89 (5.1) | <0.001 |
Without | 608 (77.3) | 2068 (89.8) | 1011 (75.7) | 1665 (94.9) | ||
Inflammatory marker | ||||||
WBC (109 cells/L) | ||||||
Low ≤ 5.87 | 184 (23.4) | 851 (37.0) | <0.001 | 300 (22.5) | 735 (41.9) | <0.001 |
Med. 5.88–7.16 | 272 (34.6) | 759 (33.3) | 495 (37.1) | 536 (30.6) | ||
High ≥ 7.17 | 331 (42.1) | 692 (30.1) | 540 (40.4) | 483 (27.5) | ||
FL | ||||||
With | 457 (58.1) | 878 (38.1) | <0.001 | |||
Without | 330 (41.9) | 1424 (61.9) | ||||
Hyperuricemia | ||||||
With | 457 (34.2) | 330 (18.8) | <0.001 | |||
Without | 878 (65.8) | 1424 (81.2) |
Variables | Group A | Group B | Group C | Group D | p for ANOVA or Chi-Square | p for Linear Trend |
---|---|---|---|---|---|---|
(Without Hyperuricemia/Without FL) (n = 1424) | (With Hyperuricemia/ Without FL) (n = 330) | (Without Hyperuricemia/ with FL) (n = 878) | (With Hyperuricemia/ with FL) (n = 457) | |||
Percent (%) | 46.1 | 10.7 | 28.4 | 14.8 | ||
Age (year) b | 41.7 ± 10.0 | 41.7 ± 10.7 | 42.9 ± 9.7 | 43.0 ± 9.7 | 0.009 | 0.003 |
Gender | ||||||
Male | 1076 (75.6) | 297 (90.0) | 769 (87.6) | 429 (93.9) | <0.001 | <0.001 |
Female | 348 (24.4) | 33 (10.0) | 109 (12.4) | 28 (6.1) | ||
Lifestyle habits | ||||||
Exercise health behavior b | 1.98 ± 0.59 | 2.00 ± 0.55 | 1.91 ± 0.52 | 1.91 ± 0.53 | 0.007 | 0.003 |
Nutritional health behavior | 2.47 ± 0.45 | 2.46 ± 0.45 | 2.43 ± 0.41 | 2.45 ± 0.42 | 0.329 | 0.843 |
Smoking | ||||||
With | 297 (20.9) | 82 (24.8) | 219 (24.9) | 108 (23.6) | 0.098 | 0.045 |
Without | 1127 (79.1) | 248 (75.2) | 659 (75.1) | 349 (76.4) | ||
Alcohol consumption | ||||||
With | 602 (42.3) | 155 (47.0) | 394 (44.9) | 248 (54.3) | <0.001 | <0.001 |
Without | 822 (57.7) | 175 (53.0) | 484 (55.1) | 209 (45.7) | ||
Metabolic risk factors | ||||||
WC (cm) a,b,c,d,e,f | 76.9 ± 7.9 | 81.6 ± 8.0 | 85.8 ± 8.0 | 89.5 ± 8.4 | <0.001 | <0.001 |
FBG (g/dL) b,c,d,e | 90.9 ± 16.4 | 90.6 ± 11.4 | 96.9 ± 24.7 | 96.2 ± 15.7 | <0.001 | <0.001 |
SBP (mmHg) a,b,c,e,f | 119.2 ± 14.5 | 124.6 ± 14.6 | 124.3 ± 15.0 | 128.8 ± 15.4 | <0.001 | <0.001 |
DBP (mmHg) a,b,c,e,f | 75.8 ± 10.3 | 80.0 ± 11.3 | 79.4 ± 11.3 | 82.8 ± 11.4 | <0.001 | <0.001 |
Triglycerides (mg/dL) a,b,c,e,f | 105.1 ± 76.4 | 141.9 ± 115.8 | 151.7 ± 118.1 | 185.5 ± 118.2 | <0.001 | <0.001 |
HDL-C (mg/dL) a,b,c,d,e | 56.8 ± 12.7 | 52.6 ± 12.1 | 48.8 ± 11.0 | 47.2 ± 11.3 | <0.001 | <0.001 |
Inflammatory marker | ||||||
WBC count (109/L) a,b,c,e,f | 6.4 ± 1.7 | 6.8 ± 2.6 | 6.9 ± 1.6 | 7.3 ± 1.6 | <0.001 | <0.001 |
Liver function indicators | ||||||
GPT (U/L) a,b,c,e,f | 20.7 ± 20.1 | 26.1 ± 29.1 | 29.9 ± 23.0 | 38.2 ± 28.9 | <0.001 | <0.001 |
GOT (U/L) c,f | 19.7 ± 23.3 | 22.5 ± 18.9 | 21.2 ± 10.1 | 24.7 ± 12.2 | <0.001 | <0.001 |
MS | ||||||
With | 55 (3.9) | 34 (10.3) | 179 (20.4) | 145 (31.7) | <0.001 | <0.001 |
Without | 1369 (96.1) | 296 (89.7) | 699 (79.6) | 312 (68.3) | ||
High WBC ≥ 7.17 (109 cells/L) | ||||||
With | 377 (26.5) | 106 (32.1) | 315 (35.9) | 225 (49.2) | <0.001 | <0.001 |
Without | 1047 (73.5) | 224 (67.9) | 563 (64.1) | 232 (50.8) |
Variables | Group A | Group B | Group C | Group D | Odds Ratio Comparison Between Four Groups |
---|---|---|---|---|---|
(Without Hyperuricemia /Without FL) (n = 1424) | (With Hyperuricemia /Without FL) (n = 330) | (Without Hyperuricemia /with FL) (n = 878) | (With Hyperuricemia /with FL) (n = 457) | ||
Metabolic risk factors | |||||
WC (cm) ≥90 for men or ≥80 for women (central obesity) | 1.00 | 1.98 (1.35–2.91) | 6.87 (5.35–8.82) | 12.39 (9.35–16.41) | A < B < C < D |
p | 0.001 | <0.001 | <0.001 | ||
FPG ≥ 100 mg/dL | 1.00 | 0.96 (0.67–1.35) | 1.72 (1.38–2.15) | 2.24 (1.73–2.90) | A ≒ B < C < D |
p | 0.795 | <0.001 | <0.001 | ||
Triglycerides ≥ 150 mg/dL | 1.00 | 2.42 (1.82–3.20) | 2.95 (2.41–3.63) | 5.69 (4.47–7.24) | A < B ≒ C < D |
p | <0.001 | <0.001 | <0.001 | ||
HDL-C (mg/dL) <40 for men or <50 for women | 1.00 | 1.80 (1.24–2.61) | 3.35 (2.61–4.30) | 4.30 (3.20–5.77) | A < B < C ≤ D |
p | 0.002 | <0.001 | <0.001 | ||
SBP ≥ 130 and DBP ≥ 85 | 1.00 | 1.77 (1.37–2.29) | 1.98 (1.65–2.38) | 3.06 (2.44–3.85) | A < B ≒ C < D |
p | <0.001 | <0.001 | <0.001 | ||
Metabolic syndrome | 1.00 | 2.90 (1.85–4.56) | 6.15 (4.46–8.46) | 11.52 (8.17–16.23) | A < B < C < D |
p | <0.001 | <0.001 | <0.001 | ||
Inflammatory marker | |||||
High WBC ≥ 7.17 109 cells/L | 1.00 | 1.29 (0.98–1.69) | 1.58 (1.31–1.91) | 2.91 (2.31–3.67) | A ≤ B ≒ C < D |
p | 0.067 | <0.001 | <0.001 | ||
Liver dysfunction | |||||
GPT > 35 U/L | 1.00 | 1.67 (1.18–2.37) | 3.16 (2.48–4.03) | 5.45 (4.15–7.18) | A < B < C < D |
p | 0.004 | <0.001 | <0.001 | ||
GOT > 40 U/L | 1.00 | 1.65 (0.85–3.19) | 1.65 (1.01–2.69) | 3.14 (1.89–5.20) | A ≒ B ≒ C < D |
p | 0.137 | 0.047 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.-H.; Li, R.-H.; Sia, H.-K.; Tang, F.-C. Fatty Liver and Hyperuricemia in Workers: Combined Effects on Metabolic Dysfunction and the Role of Lifestyle Factors. Metabolites 2025, 15, 318. https://doi.org/10.3390/metabo15050318
Huang J-H, Li R-H, Sia H-K, Tang F-C. Fatty Liver and Hyperuricemia in Workers: Combined Effects on Metabolic Dysfunction and the Role of Lifestyle Factors. Metabolites. 2025; 15(5):318. https://doi.org/10.3390/metabo15050318
Chicago/Turabian StyleHuang, Jui-Hua, Ren-Hau Li, Hon-Ke Sia, and Feng-Cheng Tang. 2025. "Fatty Liver and Hyperuricemia in Workers: Combined Effects on Metabolic Dysfunction and the Role of Lifestyle Factors" Metabolites 15, no. 5: 318. https://doi.org/10.3390/metabo15050318
APA StyleHuang, J.-H., Li, R.-H., Sia, H.-K., & Tang, F.-C. (2025). Fatty Liver and Hyperuricemia in Workers: Combined Effects on Metabolic Dysfunction and the Role of Lifestyle Factors. Metabolites, 15(5), 318. https://doi.org/10.3390/metabo15050318