Assessment of Biochemical Composition of Fruits of Hippophae rhamnoides (Elaeagnaceae juss.), Viburnum opulus (Viburnaceae raf.) and Lonicera caerulea subsp. altaica (Caprifoliaceae juss.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Material
2.2. Assessment of Biochemical Composition
2.3. Statistics
3. Results
3.1. Biochemical Composition of Varieties and Forms of H. rhamnoides
3.2. Varieties and Forms of H. rhamnoides Distinguished by Their Biochemical Composition
3.3. Biochemical Composition of Varieties and Forms of V. opulus
3.4. Biochemical Composition of Varieties and Forms of L. caerulea subsp. altaica
3.5. Comparison of the Biochemical Composition of Fruits Among Three Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABG | Altai Botanical Garden |
BAS | Biologically active substances |
HPLC | High-performance liquid chromatography |
SAI | Sugar–Acid index |
TLC | Thin-layer chromatography |
References
- Aaby, K.; Martinsen, B.K.; Borge, G.I.A.; Røen, D. Bioactive compounds and color of sea buckthorn (Hippophae rhamnoides L.) purees as affected by heat treatment and high-pressure homogenization. Int. J. Food Prop. 2020, 23, 651–664. [Google Scholar] [CrossRef]
- Ahani, H.; Attaran, S. Therapeutic potential of seabuckthorn (Hippophae rhamnoides L.) in medical sciences. Cell Mol. Biomed. Rep. 2022, 2, 22–32. [Google Scholar] [CrossRef]
- Aimenova, Z.E.; Matchanov, A.D.; Esanov, R.S.; Sumbembayev, A.A.; Duissebayev, S.E.; Dzhumanov, S.D.; Smailov, B.M. Phytochemical profile of Eranthis longistipitata Regel from three study sites in the Kazakhstan part of the Western Tien Shan. Biodiversitas J. Biol. Divers. 2023, 24, 6031–6038. [Google Scholar] [CrossRef]
- Capar, T.D.; Dedebas, T.; Yalcin, H.; Ekici, L. Extraction method affects seed oil yield, composition, and antioxidant properties of European cranberrybush (Viburnum opulus). Ind. Crop. Prod. 2021, 168, 113632. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, L.; Panovská, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef]
- Çolak, A.M.; Mertoğlu, K.; Alan, F.; Esatbeyoglu, T.; Bulduk, İ.; Akbel, E.; Kahramanoğlu, I. Screening of naturally grown European cranberrybush (Viburnum opulus L.) genotypes based on physicochemical characteristics. Foods 2022, 11, 1614. [Google Scholar] [CrossRef]
- Danilova, A.; Sumbembayev, A. The status of the Dactylorhiza incarnata populations in the Kalba Altai, Kazakhstan. Biodiversitas J. Biol. Divers. 2021, 22, 3180–3195. [Google Scholar] [CrossRef]
- Jimenez-Garcia, S.N.; Guevara-Gonzalez, R.G.; Miranda-Lopez, R.; Feregrino-Perez, A.A.; Torres-Pacheco, I.; Vazquez-Cruz, M.A. Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, and genomics. Food Res. Int. 2013, 54, 1195–1207. [Google Scholar] [CrossRef]
- UNDP. Forests of Kazakhstan: A Natural Treasure to Safeguard and Nurture for Future Generations. Available online: https://www.undp.org/kazakhstan/stories/forests-kazakhstan-natural-treasure-safeguard-and-nurture-future-generations (accessed on 12 March 2025).
- Vdovina, T.A.; Lagus, O.A. To the Methodology for the Study of Intraspecific Variability and Selection of Wild Forms of Viburnum opulus L. Bull. Karaganda Univ. Biol. Med. Geogr. Ser. 2023, 4, 138–145. [Google Scholar] [CrossRef]
- Criste, A.; Urcan, A.C.; Bunea, A.; Furtuna, F.R.P.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical composition and biological activity of berries and leaves from four Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef]
- He, N.; Wang, Q.; Huang, H.; Chen, J.; Wu, G.; Zhu, M.; Feng, S.; Yan, Z.; Sang, Z.; Cao, L.; et al. A comprehensive review on extraction, structure, detection, bioactivity, and metabolism of flavonoids from sea buckthorn (Hippophae rhamnoides L.). J. Food Biochem. 2023, 2023, 4839124. [Google Scholar] [CrossRef]
- Hou, D.; Wang, D.; Ma, X.; Chen, W.; Guo, S.; Guan, H. Effects of total flavonoids of sea buckthorn (Hippophae rhamnoides L.) on cytotoxicity of NK92-MI cells. Int. J. Immunopathol. Pharmacol. 2017, 30, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Ivanišová, E.; Blašková, M.; Terentjeva, M.; Grygorieva, O.; Vergun, O.; Brindza, J.; Kačániová, M. Biological properties of sea buckthorn (Hippophae rhamnoides L.) derived products. Acta Sci. Pol. Technol. Aliment. 2020, 19, 195–205. [Google Scholar] [PubMed]
- Jaśniewska, A.; Diowksz, A. Wide spectrum of active compounds in sea buckthorn (Hippophae rhamnoides) for disease prevention and food production. Antioxidants 2021, 10, 1279. [Google Scholar] [CrossRef]
- Hussain, A.; Abidi, S.H.; Syed, Q.; Saeed, A.; Alim-Un-Nisa; Naib, N.; Bano, A.; Sunaina; Malik, M.; Nadeem, A.A. A supernatural multipurpose plant Sea buckthorn (Hippophae rhamnoides L.): An updated overview of its folk traditional uses, phytochemical profile and biological activities. J. Berry Res. 2023, 13, 21–66. [Google Scholar] [CrossRef]
- Konarska, A.; Domaciuk, M. Differences in the Fruit Structure and the Location and Content of Bioactive Substances in Viburnum opulus and Viburnum lantana Fruits. Protoplasma 2018, 255, 25–41. [Google Scholar]
- Makarova, N.V.; Eremeeva, N.B. The Influence of Extraction Technology on the Antioxidant Activity of Extracts of Fruits of Cranberry, Sea Buckthorn, Blackberry, Honeysuckle, Viburnum, Rowan, and Juniper. Innov. Food Secur. 2019, 3, 91–99. [Google Scholar] [CrossRef]
- Daubaras, R.; Česonienė, L.; Viškelis, P. Changes in Fruit Size and Biochemical Composition of Viburnum opulus Fruits during Ripening. In Proceedings of the XII International Scientific Agriculture Symposium, Jahorina, Bosnia and Herzegovina, 7–10 October 2021; p. 1446. [Google Scholar]
- Dubtsova, G.N.; Lomakin, A.A.; Azimkova, E.M.; Kosareva, K.V.; Dubtsov, G.G.; Kusova, I.U. Lipid Composition of Viburnum and Barberry Fruits. In Proceedings of the International Conference on Production and Processing of Agricultural Raw Materials, Voronezh, Russia, 26–29 February 2020; p. 042002. [Google Scholar]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef]
- Kodikara, C.; Bandara, N.; Netticadan, T.; Wijekoon, C. Canadian Prairie Berries: Bioactive Compounds and Their Potential Health Benefits. Food Rev. Int. 2024, 40, 2486–2513. [Google Scholar] [CrossRef]
- Goławska, S.; Łukasik, I.; Chojnacki, A.A.; Chrzanowski, G. Flavonoids and Phenolic Acids Content in Cultivation and Wild Collection of European Cranberrybush Viburnum opulus L. Molecules 2023, 28, 2285. [Google Scholar] [PubMed]
- Hamm, T.P.; Nowicki, M.; Boggess, S.L.; Ranney, T.G.; Trigiano, R.N. A Set of SSR Markers to Characterize Genetic Diversity in All Viburnum Species. Sci. Rep. 2023, 13, 5343. [Google Scholar]
- Hernández, Á. Birds and Guelder Rose Viburnum opulus: Selective Consumption and Dispersal via Regurgitation of Small-Sized Fruits and Seeds. Plant Ecol. 2009, 203, 111–122. [Google Scholar]
- Gazdik, Z.; Reznicek, V.; Adam, V.; Zitka, O.; Jurikova, T.; Krska, B.; Matuskovic, J.; Plsek, J.; Saloun, J.; Horna, A.; et al. Use of Liquid Chromatography with Electrochemical Detection for the Determination of Antioxidants in Less Common Fruits. Molecules 2008, 13, 2823–2836. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł.; Nowicka, P. Antioxidant and Anti-Enzymatic Activities of Sea Buckthorn (Hippophae rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants 2019, 8, 618. [Google Scholar] [CrossRef]
- Li, H.; Ruan, C.; Ding, J.; Li, J.; Wang, L.; Tian, X. Diversity in Sea Buckthorn (Hippophae rhamnoides L.) Accessions with Different Origins Based on Morphological Characteristics, Oil Traits, and Microsatellite Markers. PLoS ONE 2020, 15, e0230356. [Google Scholar]
- Lee, Y.H.; Jang, H.J.; Park, K.H.; Kim, S.-H.; Kim, J.K.; Kim, J.-C.; Jang, T.S.; Kim, K.H. Phytochemical Analysis of the Fruits of Sea Buckthorn (Hippophaë rhamnoides): Identification of Organic Acid Derivatives. Plants 2021, 10, 860. [Google Scholar] [CrossRef]
- Kuhkheil, A.; Naghdi Badi, H.; Mehrafarin, A.; Abdossi, V. Chemical Constituents of Sea Buckthorn (Hippophae rhamnoides L.) Fruit in Populations of Central Alborz Mountains in Iran. Res. J. Pharmacogn. 2017, 4, 1–12. [Google Scholar]
- Gelvonauskis, B.; Labokas, J.; Zilinskaitė, S.; Gelvonauskienė, D.; Česonienė, L. Conservation and Use of Fruit Genetic Resources in Lithuania. In Proceedings of the XIII Eucarpia Symposium on Fruit Breeding and Genetics, Warsaw, Poland, 11–15 September 2011; pp. 191–197. [Google Scholar]
- Luginina, E.A.; Egoshina, T.L. Biochemical Composition of Fruits of Wild-Growing Berry Plants. In Temperate Horticulture for Sustainable Development and Environment; Apple Academic Press: Waretown, NJ, USA, 2018; pp. 1–20. [Google Scholar]
- Vasiliev, A.A.; Gasyimov, F.M.; Ilyin, V.S. Results of Sea Buckthorn Breeding in the Southern Urals. Trudy Prikl. Bot. Genet. Sel. 2022, 183, 24–31. [Google Scholar]
- Zenkova, M.; Pinchykova, J. Chemical Composition of Sea-Buckthorn and Highbush Blueberry Fruits Grown in the Republic of Belarus. Food Sci. Appl. Biotechnol. 2019, 2, 121–129. [Google Scholar]
- Vdovina, T.A.; Isakova, E.A.; Lagus, O.A.; Sumbembayev, A.A. Selection assessment of promising forms of natural Hippophae rhamnoides (Elaeagnaceae) populations and their offspring in the Kazakhstan Altai Mountains. Biodiversitas J. Biol. Divers. 2024, 25, 4. [Google Scholar] [CrossRef]
- Dospekhov, B.A. Methodology of Field Experiment, 3rd ed.; Agropromizdat: Moscow, Russia, 1968; pp. 1–351. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 10 March 2025).
- Maloletkina, T.S.; Anikina, I.N.; Antipova, E.A.; Kukharenko, A.E. Determination of Water-Soluble Vitamins and Quantitative Assessment of Vitamin C in Sea Buckthorn Fruits. In Proceedings of the 4th International Conference “Sea Buckthorn on the Way to Uniting Science and Production”, Barnaul, Russia, 1–6 September 2009; p. 138. [Google Scholar]
- Güney, M.; Gündeşli, M.A. The Necessities of Cranberrybush (Viburnum opulus) Evaluation for Horticultural Cultivation. MAS J. Appl. Sci. 2022, 7, 1033–1041. [Google Scholar]
- Zubarev, Y.A.; Gunin, A.V.; Panteleeva, E.I.; Vorobyeva, A.V. New Varieties of Sea Buckthorn for Industrial Horticulture. Vestn. Altai State Agric. Univ. 2019, 8, 35–40. [Google Scholar]
- Naumova, N.L. Chemical Composition of Sea Buckthorn (Hippophae rhamnoides L.) Berry Grown in the Chelyabinsk Region. Vestn. MSTU 2021, 24, 306–312. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, F.; Wei, P.; Chai, X.; Hou, G.; Meng, Q. Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review. Front. Nutr. 2022, 9, 1036295. [Google Scholar] [CrossRef]
- Mamedova, S.M.; Novruzov, E.N. Content and Qualitative Composition of Carotenoids in the Fruits of Some Hippophae rhamnoides L. Forms Growing in Northern Azerbaijan. Geogr. Environ. Living Syst. 2016, 3, 33–41. [Google Scholar]
- Trineeva, O.V.; Rudaya, M.A.; Slivkin, A.I. Study of the Carotenoid Composition of Hippophae rhamnoides Fruits of Different Varieties by Thin-Layer Chromatography. Chem. Plant Raw Mater. 2020, 1, 223–228. [Google Scholar] [CrossRef]
- Pop, R.M.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.P.; Gruppen, H. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chem. 2014, 147, 1–9. [Google Scholar] [CrossRef]
- Kajszczak, D.; Zakłos-Szyda, M.; Podsędek, A. Viburnum opulus L.—A Review of Phytochemistry and Biological Effects. Nutrients 2020, 12, 3398. [Google Scholar] [CrossRef]
- Kraujalytė, V.; Venskutonis, P.R.; Pukalskas, A.; Česonienė, L.; Daubaras, R. Antioxidant Properties and Polyphenolic Compositions of Fruits from Different European Cranberrybush (Viburnum opulus L.) Genotypes. Food Chem. 2013, 141, 3695–3702. [Google Scholar] [CrossRef]
- Moldovan, B.; David, L.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Baldea, I.; Clichici, S.; Filip, G.A. In Vitro and In Vivo Anti-Inflammatory Properties of Green Synthesized Silver Nanoparticles Using Viburnum opulus L. Fruits Extract. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 720–727. [Google Scholar] [PubMed]
- Danilova, A.N.; Vdovina, T.A.; Isakova, E.A.; Kotukhov, Y.A.; Sumbembayev, A.A. Ecological Conditions of Growth and Breeding Analysis of Viburnum opulus L. Populations in the Kazakhstan Part of the Altai Mountains. Biodiversitas J. Biol. Divers. 2024, 25, 9. [Google Scholar]
- Ozrenk, K.; Ilhan, G.; Sagbas, H.I.; Karatas, N.; Ercisli, S.; Colak, A.M. Characterization of European Cranberrybush (Viburnum opulus L.) Genetic Resources in Turkey. Sci. Hortic. 2020, 273, 109611. [Google Scholar]
- Yaman, M. Determination of Genetic Diversity in European Cranberrybush (Viburnum opulus L.) Genotypes Based on Morphological, Phytochemical, and ISSR Markers. Genet. Resour. Crop Evol. 2022, 69, 1889–1899. [Google Scholar]
- Zakłos-Szyda, M.; Kowalska-Baron, A.; Pietrzyk, N.; Drzazga, A.; Podsędek, A. Evaluation of Viburnum opulus L. Fruit Phenolics Cytoprotective Potential on Insulinoma MIN6 Cells Relevant for Diabetes Mellitus and Obesity. Antioxidants 2020, 9, 433. [Google Scholar] [CrossRef]
- Zarifikhosroshahi, M.; Murathan, Z.T.; Kafkas, E.; Okatan, V. Variation in Volatile and Fatty Acid Contents Among Viburnum opulus L. Fruits Growing in Different Locations. Sci. Hortic. 2020, 264, 109160. [Google Scholar]
Variety, Form | Vitamin C, mg/% | Total Sugar, % | Titratable Acidity, % | Sugar–Acid Index (SAI) | Dry Matter, % | Carotenoids, mg/100 g | Phenolic Compounds, mg/100 g |
---|---|---|---|---|---|---|---|
Vitaminka T-14-86 (3-20) III | 26.00 | 4.61 | 1.35 | 3.41 | 10.0 | 39.13 | 63.6 |
Roskosh (3-5) III | 52.04 | 3.68 | 2.38 | 1.54 | 9.8 | 25.0 | 51.0 |
Krasnoplodnaya K-14-81 (4-27) III | 38.16 | 3.56 | 2.79 | 1.27 | 8.4 | 55.30 | 52.8 |
Plakuchaya T-2-82 (2-32) III | 41.60 | 3.54 | 2.02 | 1.75 | 8.2 | 20.38 | 51.0 |
Kan 2-86 (2-4) II | 34.32 | 4.20 | 1.74 | 2.41 | 8.6 | 16.62 | 76.5 |
Fakel K-14-81 (3-17) III | 57.20 | 4.13 | 1.67 | 2.47 | 9.2 | 31.43 | 59.0 |
Dolgozhdannaya No. 5 (3-24) III | 146.64 | 3.96 | 1.85 | 2.14 | 10.0 | 8.40 | 92.0 |
Feyerverk K-14-81 (3-4) II | 26.00 | 4.08 | 1.65 | 2.47 | 10.0 | 19.57 | 58.3 |
Lyubimaya T-2-82 (3-14) II | 60.50 | 3.62 | 2.58 | 1.40 | 10.0 | 15.80 | 87.7 |
Pamyati Baytulina | 156.00 | 3.68 | 1.94 | 1.89 | 10.4 | 25.04 | 105.8 |
Sh-9-81 (4-6) II | 23.40 | 3.54 | 2.56 | 1.38 | 9.4 | 13.39 | 52.2 |
Yuubileinaya Kotuhova T-2-82 (2-22) III | 140.92 | 3.45 | 2.86 | 1.20 | 10.2 | 21.70 | 100.46 |
Solnyshko (1-18) III | 120.38 | 4.35 | 1.63 | 2.58 | 10.0 | 8.39 | 77.5 |
Shetlastinka No. 7 (2-24) III | 33.80 | 3.64 | 1.95 | 1.78 | 10.5 | 24.17 | 53.3 |
Yantarnaya (2-1) III | 31.20 | 3.51 | 2.36 | 1.75 | 10.4 | 23.11 | 41.9 |
Asem Sh-9-81 (3-27) III | 78.00 | 3.72 | 2.13 | 1.74 | 11.8 | 22.30 | 71.5 |
Mean value | 66.64 ± 24.60 | 3.83 ± 0.18 | 2.09 ± 0.24 | 1.95 ± 0.69 | 9.8 ± 0.47 | 23.11 ± 6.06 | 68.41 ± 10.25 |
Variety, Form | Flavonoid Content, mg/100 g | ||||
---|---|---|---|---|---|
Robinin | Rutin | Gallic Acid | Hypolaetin | Hyperoside | |
Yubileinaya Kotuhova T-2-82 (2-22) III | 3.612 | 1.191 | 0.218 | 0 | 0 |
Dolgozhdannaya No. 5 (3-24) III | 4.809 | 1.637 | 0.726 | 0.189 | 1.284 |
Krasnoplodnaya K-14-81 (4-27) III | 2.719 | 3.694 | 0.411 | 0 | 0 |
Vitaminka T-14-86 (3-20) III | 1.314 | 2.965 | 0.229 | 0 | 0 |
Asem Sh-9-81 | 7.524 | 2.589 | 0.363 | 0 | 0 |
(3-27) III | 4.721 | 1.878 | 0.242 | 0 | 0 |
Shetlastinka No. 7 (2-24) III | 4.524 | 4.767 | 0.291 | 0 | 0 |
Mean value | 4.17 ± 1.54 | 2.67 ± 0.99 | 0.35 ± 0.14 | – | – |
Form | Vitamin C, mg/% | Total Sugar, % | Titratable Acidity, % | Sugar–Acid Index (SAI) | Dry Matter, % | Vitamin B9, mg/100 g | Vitamin B2, mg/100 g | Vitamin B12, mg/100 g |
---|---|---|---|---|---|---|---|---|
Blestyashhaya (45-7) | 125.36 | 9.4 | 1.88 | 5.00 | 17.2 | 122.48 | 0.15 | 0.41 |
Shtambovaya (45-1) | 346.85 | 9.6 | 2.77 | 3.47 | 17.7 | 193.24 | 1.13 | 11.52 |
K (34-5) | 205.31 | 8.1 | 2.46 | 3.29 | 15.1 | 84.32 | 0.26 | 7.77 |
K (31-4) | 116.18 | 7.7 | 2.21 | 3.48 | 14.4 | 75.72 | 1.43 | 8.44 |
Luchistaya (28-6) | 211.53 | 7.8 | 2.04 | 3.82 | 14.4 | 110.07 | 1.29 | 6.89 |
K (27-4) | 209.64 | 8.7 | 1.89 | 4.60 | 16.1 | 118.00 | 1.00 | 6.00 |
Nezhenka (42-1) | 137.87 | 9.6 | 2.17 | 4.42 | 18.0 | 120.94 | 1.60 | 5.90 |
K (45-2) | 145.85 | 7.7 | 2.14 | 3.60 | 14.3 | 64.96 | 1.68 | 5.06 |
Businka (24-7) | 139.40 | 8.1 | 2.43 | 3.33 | 15.0 | 88.50 | 1.15 | 10.72 |
K (28-2) | 209.14 | 8.2 | 2.16 | 3.80 | 15.2 | 73.96 | 1.20 | 9.84 |
K (22-5) | 215.17 | 7.4 | 1.87 | 3.96 | 13.7 | 114.50 | 1.30 | 9.00 |
K (23-6) | 127.90 | 8.7 | 1.99 | 4.37 | 16.1 | 82.03 | 1.29 | 8.74 |
K (27-5) | 140.87 | 7.7 | 1.76 | 4.38 | 13.9 | 116.78 | 1.37 | 6.90 |
K (23-8) | 146.68 | 8.7 | 2.23 | 3.90 | 16.1 | 105.41 | 0.99 | 8.43 |
K (35-4) | 243.47 | 7.9 | 2.34 | 3.38 | 14.5 | 194.16 | 1.26 | 6.75 |
Mean value | 185.42 ± 34.67 | 8.35 ± 0.39 | 2.16 ± 0.15 | 3.92 ± 0.28 | 15.45 ± 0.74 | 111.00 ± 20.82 | 1.21 ± 0.19 | 7.99 ± 1.05 |
Form | Flavonoid Content, mg/100 g | |||||
---|---|---|---|---|---|---|
Hypolaetin | Rutin | Apigenin | Hyperoside | Gallic Acid | Robinin | |
K (31-6) | 0 | 5.244 | 0 | 0 | 0.183 | 0.918 |
K (38-7) | 0.369 | 19.421 | 0 | 0 | 0.191 | 5.429 |
Nezhenka (42-1) | 0.441 | 5.326 | 0.246 | 0.075 | 0.241 | 6.334 |
Luchistaya (28-6) | 0.476 | 8.581 | 0 | 0 | 0 | 3.393 |
K (39-1) | 0.357 | 7.124 | 0 | 0 | 0.249 | 7.854 |
(30-5) | 0.226 | 19.321 | 0 | 0.143 | 0.419 | 4.171 |
(46-8) | 0.334 | 8.374 | 0 | 0 | 0.266 | 2.443 |
Dyhanie oseni (23-6) | 0.227 | 4.298 | 0 | 0 | 0.182 | 4.124 |
Zhemchuzhnoe Ozherel’e (32-8) | 0.252 | 18.478 | 0 | 0.225 | 1.254 | 9.874 |
Shtambovaya (45-1) | 0.334 | 15.852 | 0 | 0 | 0.508 | 8.524 |
K (28-6) | 0 | 1.957 | 0 | 0.251 | 0.652 | 5.421 |
K (46-1) | 0.148 | 17.759 | 0.135 | 0 | 1.137 | 10.215 |
K (37-2) | 0 | 7.985 | 0.087 | 0 | 0.119 | 9.867 |
Mean values * | 0.316 ± 0.07 | 10.748 ± 3.72 | 0.156 ± 0.05 | 0.174 ± 0.06 | 0.450 ± 0.23 | 6.044 ± 1.76 |
Form | Vitamin C, mg/% | Total Sugar, % | Titratable Acidity, % | Sugar–Acid Index (SAI) | Dry Matter, % | Phenolic Compounds, mg/100 g |
---|---|---|---|---|---|---|
No. 17 | 53.12 | 8.5 | 2.46 | 3.45 | 11.6 | 750 |
No. 18 | 54.80 | 9.4 | 2.42 | 3.88 | 12.8 | 780 |
No. 19 | 45.58 | 7.2 | 3.20 | 2.25 | 15.8 | 820 |
No. 21 | 40.18 | 9.3 | 3.61 | 2.57 | 9.8 | 805 |
No. 22 | 38.14 | 7.8 | 3.31 | 2.35 | 10.0 | 775 |
No. 23 | 35.52 | 8.1 | 3.49 | 2.32 | 11.6 | 790 |
Golubaya Volna | 44.09 | 6.8 | 3.80 | 1.78 | 13.2 | 788 |
No. 1 | 52.30 | 7.8 | 2.56 | 3.04 | 14.5 | 815 |
No. 2 | 41.98 | 7.6 | 2.41 | 3.15 | 14.3 | 801 |
No. 3 | 46.72 | 8.2 | 1.87 | 5.22 | 15.6 | 736 |
No. 4 | 38.49 | 9.3 | 2.33 | 3.99 | 17.0 | 739 |
No. 5 | 55.00 | 9.6 | 2.55 | 3.76 | 17.0 | 796 |
No. 6 | 39.90 | 9.4 | 2.32 | 4.05 | 17.1 | 791 |
No. 7 | 44.53 | 9.7 | 2.70 | 3.59 | 16.9 | 820 |
No. 8 | 43.27 | 9.7 | 2.58 | 3.75 | 17.6 | 792 |
No. 9 | 50.93 | 8.2 | 2.41 | 3.40 | 15.2 | 789 |
Mean values | 42.76 ± 3.29 | 8.54 ± 0.50 | 2.75 ± 0.29 | 3.28 ± 0.46 | 14.37 ± 1.36 | 786.69 ± 13.56 |
Form | Flavonoid Content, mg/100 g | |||||||
---|---|---|---|---|---|---|---|---|
Myricetin | Hypoelastin | Rutin | Kaempferol | Isoramenthin | Luteolin | Gallic Acid | Hyperoside | |
No. 1 | 2.585 | 0 | 0 | 0 | 4.709 | 3.428 | 0 | 61.499 |
No. 2 | 0.924 | 0 | 1.668 | 15.217 | 4.108 | 0 | 0 | 28.782 |
No. 3 | 1.664 | 0 | 0 | 0 | 4.591 | 0 | 0 | 56.638 |
No. 4 | 9.659 | 51.456 | 0 | 46.256 | 7.214 | 0 | 0 | 73.335 |
No. 5 | 0.112 | 64.974 | 0 | 21.325 | 9.417 | 3.654 | 0 | 0 |
No. 6 | 1.109 | 59.322 | 0 | 9.131 | 7.312 | 0 | 0 | 49.211 |
No. 7 | 5.734 | 0 | 28.605 | 13.266 | 7.515 | 4.005 | 29.048 | 116.995 |
No. 8 | 3.699 | 58.231 | 0 | 10.896 | 7.012 | 0 | 36.311 | 129.991 |
No. 9 | 2.778 | 88.983 | 0 | 48.321 | 4.308 | 0 | 0 | 110.141 |
Golubaya Volna | 2.514 | 77.854 | 14.302 | 51.254 | 1.703 | 0 | 0 | 64.995 |
Mean value * | 3.000 ± 1.85 | 66.800 ± 10.11 | 14.850 ± 8.69 | 26.950 ± 15.11 | 5.740 ± 1.49 | 3.680 ± 0.19 | 32.67 ± 2.34 | 76.830 ± 21.38 |
Fruit Component | H. rhamnoides | V. opulus | L. caerulea subsp. altaica | ||||||
---|---|---|---|---|---|---|---|---|---|
M ± SD Min–Max | C% | P% | M ± SD Min–Max | C% | P% | M ± SD Min–Max | C% | P% | |
Vitamin C, mg/% | 66.64 ± 24.60 23.40–156.00 | 45.40 | 9.21 | 185.42 | 33.44 | 8.9 | 42.76 ± 6.01 35.52–55.0 | 26.89 | 6.72 |
Total sugar, % | 3.83 ± 0.18 3.51–4.61 | 9.07 | 2.27 | 8.35 ± 0.41 7.40–9.60 | 8.71 | 2.33 | 8.54 ± 0.50 6.8–9.7 | 11.18 | 2.79 |
Titratable acidity, % | 2.09 ± 0.27 1.35–2.86 | 21.71 | 5.43 | 2.16 ± 0.15 1.76–2.77 | 13.48 | 3.34 | 2.75 ± 0.29 1.87–3.80 | 20.07 | 5.02 |
Sugar–acid index (SAI) | 1.89 ± 0.35 1.20–3.41 | 35.24 | 8.81 | 3.92 ± 0.28 3.29–5.00 | 13.38 | 3.46 | 3.28 ± 0.46 1.78–4.05 | 26.64 | 6.66 |
Dry matter, % | 9.81 ± 0.47 8.20–11.80 | 9.13 | 2.28 | 15.45 ± 0.76 13.7–18.00 | 8.85 | 2.37 | 14.37 ± 1.36 9.8–17.6 | 10.72 | 3.05 |
Phenolic compounds, mg/100 g | 68.41 ± 10.25 41.09–105.80 | 28.67 | 7.17 | – | – | - | 786.69 ± 13.55 739–820 | 3.29 | 3.82 |
Carotenoids, mg/100 g | 23.11 ± 6.06 8.39–55.30 | 38.71 | 8.40 | – | – | - | - | - | - |
Tocopherols, mg/100 g | 2.48 ± 0.23 2.10–3.40 | 16.98 | 4.39 | – | – | - | - | - | - |
Robinin, mg/100 g | 4.18 ± 1.54 1.31–7.52 | 32.12 | 9.84 | 6.04 ± 1.76 0.92–10.22 | 41.34 | 9.07 | - | - | - |
Rutin, mg/100 g | 2.67 ± 0.99 1.19–4.77 | 30.96 | 10.20 | 10.74 ± 3.72 1.96–19.42 | 42.42 | 10.20 | 14.85 1.67–28.61 | - | - |
Gallic acid, mg/100 g | 0.35 ± 0.14 0.21–0.72 | 41.03 | 10.3 | 0.45 ± 0.23 0.12–1.25 | 41.00 | 12.24 | 32.67 29.05–36.31 | - | - |
Hypolaethin, mg/100 g | 0.189 | – | – | 0.32 ± 0.07 0.45–0.48 | 29.70 | 8.4 | 66.54 ± 10.12 51.46–88.98 | 19.26 | 7.28 |
Hyperoside, mg/100 g | 1.284 | – | – | 0.174 0.08–0.25 | – | - | 76.83 ± 21.38 28.78–129.99 | 38.70 | 9.31 |
Apigenin, mg/100 g | – | – | – | 0.156 0.09–0.25 | – | - | - | - | - |
Myricetin, mg/100 g | - | - | - | - | - | - | 3.08 ± 1.85 0.11–9.66 | 45.63 | 28.79 |
Kaempferol, mg/100 g | - | - | - | - | - | - | 29.51 ± 14.38 9.13–51.25 | 35.67 | 9.80 |
Isorhamnetin, mg/100 g | - | - | - | - | - | - | 5.79 ± 1.49 1.70–9.42 | 24.51 | 7.09 |
Luteolin, mg/100 g | - | - | - | - | - | - | 3.68 3.42–4.01 | - | - |
Quercetin, mg/100 g | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vdovina, T.; Lagus, O.; Vinokurov, A.; Aimenova, Z.; Sumbembayev, A. Assessment of Biochemical Composition of Fruits of Hippophae rhamnoides (Elaeagnaceae juss.), Viburnum opulus (Viburnaceae raf.) and Lonicera caerulea subsp. altaica (Caprifoliaceae juss.). Metabolites 2025, 15, 256. https://doi.org/10.3390/metabo15040256
Vdovina T, Lagus O, Vinokurov A, Aimenova Z, Sumbembayev A. Assessment of Biochemical Composition of Fruits of Hippophae rhamnoides (Elaeagnaceae juss.), Viburnum opulus (Viburnaceae raf.) and Lonicera caerulea subsp. altaica (Caprifoliaceae juss.). Metabolites. 2025; 15(4):256. https://doi.org/10.3390/metabo15040256
Chicago/Turabian StyleVdovina, Tatiana, Olga Lagus, Andrei Vinokurov, Zhanar Aimenova, and Aidar Sumbembayev. 2025. "Assessment of Biochemical Composition of Fruits of Hippophae rhamnoides (Elaeagnaceae juss.), Viburnum opulus (Viburnaceae raf.) and Lonicera caerulea subsp. altaica (Caprifoliaceae juss.)" Metabolites 15, no. 4: 256. https://doi.org/10.3390/metabo15040256
APA StyleVdovina, T., Lagus, O., Vinokurov, A., Aimenova, Z., & Sumbembayev, A. (2025). Assessment of Biochemical Composition of Fruits of Hippophae rhamnoides (Elaeagnaceae juss.), Viburnum opulus (Viburnaceae raf.) and Lonicera caerulea subsp. altaica (Caprifoliaceae juss.). Metabolites, 15(4), 256. https://doi.org/10.3390/metabo15040256