Metabolic Changes in Patients with Premature Ovarian Insufficiency: Adipose Tissue Focus—A Narrative Review
Abstract
1. Introduction
2. Methods
3. Estrogen and Estrogen Receptors
4. Regulation of Adipogenesis and Fat Distribution by Estrogens
5. Effect of Estrogen on Metabolism from Its Focus Action on Adipose Tissue
6. Premature Ovarian Insufficiency
7. Metabolic Alterations in Premature Ovarian Insufficiency
- (a)
- Insulin Sensitivity and Resistance Mechanism in POI
- (b)
- Adipose Tissue and Lipid Metabolism in POI
- (c)
- Steroidogenesis and Lipid Dysregulation in POI
8. Cardiovascular Disease in POI
- (a)
- Hormone replacement therapy effects in POI
- (b)
- Mortality in woman with POI
9. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TC | Total cholesterol |
LDL | Low-density lipoprotein |
HDL | High-density lipoprotein |
LPL | Lipoprotein lipase |
E1 | Estrone |
E2 | Estradiol |
E3 | Estriol |
E4 | Estetrol |
DHEA | Dehydroepiandrosterone |
DHEA-S | Dehydroepiandrosterone sulfate |
A4 | Androstenedione |
LH | Luteinizing hormone |
FSH | Follicle-stimulating hormone |
SHBG | Sex hormone-binding globulin |
DRD | Dimerization and regulatory domain |
GLUT4 | Glucose transporter type 4 |
GPER | G-protein coupled estrogen receptor |
ERα (ESR1 o ER1) | Estrogen receptor alpha (type 1) |
ERβ (ESR2 o ER2) | Estrogen receptor beta (type 2) |
ERs | Estrogen receptors |
EREs | Estrogen response elements |
SRC | Steroid receptor coactivator |
AKT | Protein kinase B |
AMPK | Adenine monophosphate-activated protein kinase |
ERαKO | ER alpha knockout |
ArKO | Aromatase knockout |
CYP | Cytochrome P450 |
UDP | Uridine diphosphate |
COMT | Catechol-O-methyltransferase |
CYP19A1 | Cytochrome P450 family 19 subfamily A member 1 (Aromatase gene) |
11β-HSD1 | 11β-hydroxysteroid dehydrogenase type 1 |
SNP | Single nucleotide polymorphism |
cAMP | Cyclic adenine monophosphate |
APC | Adipose progenitor cells |
CREB | cAMP response element binding protein |
CBP | CREB-binding protein |
WAT | White adipose tissue |
SAT | Subcutaneous adipose tissue |
LPIN1 | Lipin 1 |
FAS | Fatty acid synthase |
VMN | Ventromedial nucleus |
DNA | Deoxyribonucleic acid |
ESHRE | European Society of Human Reproduction and Embryology |
EM | Early menopause |
ERK1/2 | Extracellular signal-regulated kinase |
QUICKI | Quantitative insulin sensitivity check index |
HOMA | Homeostatic model assessment |
McA | McAuley index |
FGIR | Fasting Glucose to Insulin Ratio |
HR | Hazard ratio |
HRT | Hormone replacement therapy |
ISR-1 | Insulin receptor substrate 1 |
PPARγ | Peroxisome proliferator-activated receptor gamma |
POI | Premature ovarian insufficiency |
CVD | Cardiovascular disease |
T2D | Type 2 diabetes |
ADKIs | Cyclin-dependent kinase inhibitors |
References
- Eyster, K.M. The Estrogen Receptors: An Overview from Different Perspectives. Methods Mol. Biol. 2016, 1366, 1–10. [Google Scholar] [CrossRef]
- Vrtacnik, P.; Ostanek, B.; Mencej-Bedrac, S.; Marc, J. The many faces of estrogen signaling. Biochem. Med. 2014, 24, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Rettberg, J.R.; Yao, J.; Brinton, R.D. Estrogen: A master regulator of bioenergetic systems in the brain and body. Front. Neuroendocrinol. 2014, 35, 8–30. [Google Scholar] [CrossRef]
- Steiner, B.M.; Berry, D.C. The Regulation of Adipose Tissue Health by Estrogens. Front. Endocrinol. 2022, 13, 889923. [Google Scholar] [CrossRef]
- Faulds, M.H.; Zhao, C.; Dahlman-Wright, K.; Gustafsson, J.A. The diversity of sex steroid action: Regulation of metabolism by estrogen signaling. J. Endocrinol. 2012, 212, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Gupte, A.A.; Pownall, H.J.; Hamilton, D.J. Estrogen: An emerging regulator of insulin action and mitochondrial function. J. Diabetes Res. 2015, 2015, 916585. [Google Scholar] [CrossRef]
- Khalil, R.A. Potential approaches to enhance the effects of estrogen on senescent blood vessels and postmenopausal cardiovascular disease. Cardiovasc. Hematol. Agents Med. Chem. 2010, 8, 29–46. [Google Scholar] [CrossRef]
- Kurylowicz, A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023, 11, 690. [Google Scholar] [CrossRef]
- Alemany, M. Estrogens and the regulation of glucose metabolism. World J. Diabetes 2021, 12, 1622–1654. [Google Scholar] [CrossRef]
- Frederiksen, H.; Johannsen, T.H.; Andersen, S.E.; Albrethsen, J.; Landersoe, S.K.; Petersen, J.H.; Andersen, A.N.; Vestergaard, E.T.; Schorring, M.E.; Linneberg, A.; et al. Sex-specific Estrogen Levels and Reference Intervals from Infancy to Late Adulthood Determined by LC-MS/MS. J. Clin. Endocrinol. Metab. 2020, 105, 754–768. [Google Scholar] [CrossRef]
- Falah, N.; Torday, J.; Quinney, S.; Haas, D. Estriol review: Clinical applications and potential biomedical importance. Clin. Res. Trials 2015, 1, 29–33. [Google Scholar] [CrossRef]
- Buscato, M.; Davezac, M.; Zahreddine, R.; Adlanmerini, M.; Metivier, R.; Fillet, M.; Cobraiville, G.; Moro, C.; Foidart, J.M.; Lenfant, F.; et al. Estetrol prevents Western diet-induced obesity and atheroma independently of hepatic estrogen receptor α. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E19–E29. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.R. Plasma membrane estrogen receptors. Trends Endocrinol. Metab. 2009, 20, 477–482. [Google Scholar] [CrossRef]
- Hewitt, S.C.; Korach, K.S. Estrogen Receptors: New Directions in the New Millennium. Endocr. Rev. 2018, 39, 664–675. [Google Scholar] [CrossRef]
- Couse, J.F.; Curtis, S.W.; Washburn, T.F.; Lindzey, J.; Golding, T.S.; Lubahn, D.B.; Smithies, O.; Korach, K.S. Analysis of transcription and estrogen insensitivity in the female mouse after targeted disruption of the estrogen receptor gene. Mol. Endocrinol. 1995, 9, 1441–1454. [Google Scholar] [CrossRef]
- Hamilton, K.J.; Arao, Y.; Korach, K.S. Estrogen hormone physiology: Reproductive findings from estrogen receptor mutant mice. Reprod. Biol. 2014, 14, 3–8. [Google Scholar] [CrossRef]
- Bryzgalova, G.; Gao, H.; Ahren, B.; Zierath, J.R.; Galuska, D.; Steiler, T.L.; Dahlman-Wright, K.; Nilsson, S.; Gustafsson, J.A.; Efendic, S.; et al. Evidence that oestrogen receptor-α plays an important role in the regulation of glucose homeostasis in mice: Insulin sensitivity in the liver. Diabetologia 2006, 49, 588–597. [Google Scholar] [CrossRef]
- Hodgin, J.B.; Krege, J.H.; Reddick, R.L.; Korach, K.S.; Smithies, O.; Maeda, N. Estrogen receptor α is a major mediator of 17β-estradiol’s atheroprotective effects on lesion size in Apoe−/− mice. J. Clin. Investig. 2001, 107, 333–340. [Google Scholar] [CrossRef]
- Svenson, J.L.; EuDaly, J.; Ruiz, P.; Korach, K.S.; Gilkeson, G.S. Impact of estrogen receptor deficiency on disease expression in the NZM2410 lupus prone mouse. Clin. Immunol. 2008, 128, 259–268. [Google Scholar] [CrossRef]
- Le May, C.; Chu, K.; Hu, M.; Ortega, C.S.; Simpson, E.R.; Korach, K.S.; Tsai, M.J.; Mauvais-Jarvis, F. Estrogens protect pancreatic β-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc. Natl. Acad. Sci. USA 2006, 103, 9232–9237. [Google Scholar] [CrossRef]
- Sims, N.A.; Dupont, S.; Krust, A.; Clement-Lacroix, P.; Minet, D.; Resche-Rigon, M.; Gaillard-Kelly, M.; Baron, R. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-β in bone remodeling in females but not in males. Bone 2002, 30, 18–25. [Google Scholar] [CrossRef]
- Prossnitz, E.R.; Hathaway, H.J. What have we learned about GPER function in physiology and disease from knockout mice? J. Steroid Biochem. Mol. Biol. 2015, 153, 114–126. [Google Scholar] [CrossRef]
- Bjune, J.I.; Stromland, P.P.; Jersin, R.A.; Mellgren, G.; Dankel, S.N. Metabolic and Epigenetic Regulation by Estrogen in Adipocytes. Front. Endocrinol. 2022, 13, 828780. [Google Scholar] [CrossRef]
- Saavedra-Peña, R.D.M.; Taylor, N.; Flannery, C.; Rodeheffer, M.S. Estradiol cycling drives female obesogenic adipocyte hyperplasia. Cell Rep. 2023, 42, 112390. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar] [CrossRef] [PubMed]
- Heine, P.A.; Taylor, J.A.; Iwamoto, G.A.; Lubahn, D.B.; Cooke, P.S. Increased adipose tissue in male and female estrogen receptor-α knockout mice. Proc. Natl. Acad. Sci. USA 2000, 97, 12729–12734. [Google Scholar] [CrossRef]
- Jones, M.E.; Thorburn, A.W.; Britt, K.L.; Hewitt, K.N.; Wreford, N.G.; Proietto, J.; Oz, O.K.; Leury, B.J.; Robertson, K.M.; Yao, S.; et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc. Natl. Acad. Sci. USA 2000, 97, 12735–12740. [Google Scholar] [CrossRef]
- Jeong, S.; Yoon, M. 17β-Estradiol inhibition of PPARγ-induced adipogenesis and adipocyte-specific gene expression. Acta Pharmacol. Sin. 2011, 32, 230–238. [Google Scholar] [CrossRef]
- Naaz, A.; Holsberger, D.R.; Iwamoto, G.A.; Nelson, A.; Kiyokawa, H.; Cooke, P.S. Loss of cyclin-dependent kinase inhibitors produces adipocyte hyperplasia and obesity. FASEB J. 2004, 18, 1925–1927. [Google Scholar] [CrossRef]
- Pedersen, S.B.; Kristensen, K.; Hermann, P.A.; Katzenellenbogen, J.A.; Richelsen, B. Estrogen controls lipolysis by up-regulating α2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor α. Implications for the female fat distribution. J. Clin. Endocrinol. Metab. 2004, 89, 1869–1878. [Google Scholar] [CrossRef]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef]
- Pallottini, V.; Bulzomi, P.; Galluzzo, P.; Martini, C.; Marino, M. Estrogen regulation of adipose tissue functions: Involvement of estrogen receptor isoforms. Infect. Disord.-Drug Targets 2008, 8, 52–60. [Google Scholar] [CrossRef]
- Misso, M.L.; Jang, C.; Adams, J.; Tran, J.; Murata, Y.; Bell, R.; Boon, W.C.; Simpson, E.R.; Davis, S.R. Differential expression of factors involved in fat metabolism with age and the menopause transition. Maturitas 2005, 51, 299–306. [Google Scholar] [CrossRef]
- Koh, S.J.; Hyun, Y.J.; Choi, S.Y.; Chae, J.S.; Kim, J.Y.; Park, S.; Ahn, C.M.; Jang, Y.; Lee, J.H. Influence of age and visceral fat area on plasma adiponectin concentrations in women with normal glucose tolerance. Clin. Chim. Acta 2008, 389, 45–50. [Google Scholar] [CrossRef]
- Sieminska, L.; Cichon-Lenart, A.; Kajdaniuk, D.; Kos-Kudla, B.; Marek, B.; Lenart, J.; Nowak, M. Sex hormones and adipocytokines in postmenopausal women. Polski Merkur. Lek. 2006, 20, 727–730. [Google Scholar]
- Ritland, L.M.; Alekel, D.L.; Matvienko, O.A.; Hanson, K.B.; Stewart, J.W.; Hanson, L.N.; Reddy, M.B.; Van Loan, M.D.; Genschel, U. Centrally located body fat is related to appetitive hormones in healthy postmenopausal women. Eur. J. Endocrinol. 2008, 158, 889–897. [Google Scholar] [CrossRef]
- De Paoli, M.; Zakharia, A.; Werstuck, G.H. The Role of Estrogen in Insulin Resistance: A Review of Clinical and Preclinical Data. Am. J. Pathol. 2021, 191, 1490–1498. [Google Scholar] [CrossRef]
- Lizcano, F. Roles of estrogens, estrogen-like compounds, and endocrine disruptors in adipocytes. Front. Endocrinol. 2022, 13, 921504. [Google Scholar] [CrossRef]
- Chon, S.J.; Umair, Z.; Yoon, M.S. Premature Ovarian Insufficiency: Past, Present, and Future. Front. Cell Dev. Biol. 2021, 9, 672890. [Google Scholar] [CrossRef]
- Wesevich, V.; Kellen, A.N.; Pal, L. Recent advances in understanding primary ovarian insufficiency. F1000Research 2020, 9, 1101. [Google Scholar] [CrossRef]
- Rudnicka, E.; Kruszewska, J.; Klicka, K.; Kowalczyk, J.; Grymowicz, M.; Skorska, J.; Pieta, W.; Smolarczyk, R. Premature ovarian insufficiency—Aetiopathology, epidemiology, and diagnostic evaluation. Prz. Menopauzalny 2018, 17, 105–108. [Google Scholar] [CrossRef]
- Ishizuka, B. Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI). Front. Endocrinol. 2021, 12, 626924. [Google Scholar] [CrossRef]
- Stevenson, J.C.; Collins, P.; Hamoda, H.; Lambrinoudaki, I.; Maas, A.H.E.M.; Maclaran, K.; Panay, N. Cardiometabolic health in premature ovarian insufficiency. Climacteric 2021, 24, 474–480. [Google Scholar] [CrossRef]
- Podfigurna, A.; Stellmach, A.; Szeliga, A.; Czyzyk, A.; Meczekalski, B. Metabolic Profile of Patients with Premature Ovarian Insufficiency. J. Clin. Med. 2018, 7, 374. [Google Scholar] [CrossRef]
- Anagnostis, P.; Christou, K.; Artzouchaltzi, A.M.; Gkekas, N.K.; Kosmidou, N.; Siolos, P.; Paschou, S.A.; Potoupnis, M.; Kenanidis, E.; Tsiridis, E.; et al. Early menopause and premature ovarian insufficiency are associated with increased risk of type 2 diabetes: A systematic review and meta-analysis. Eur. J. Endocrinol. 2019, 180, 41–50. [Google Scholar] [CrossRef]
- Cai, W.Y.; Luo, X.; Wu, W.; Song, J.; Xie, N.N.; Duan, C.; Wu, X.K.; Xu, J. Metabolic differences in women with premature ovarian insufficiency: A systematic review and meta-analysis. J. Ovarian Res. 2022, 15, 109. [Google Scholar] [CrossRef]
- Kunicki, M.; Rudnicka, E.; Skórska, J.; Calik-Ksepka, A.I.; Smolarczyk, R. Insulin resistance indexes in women with premature ovarian insufficiency—A pilot study. Ginekol. Polska 2018, 89, 364–369. [Google Scholar] [CrossRef]
- Huang, L.; Wang, H.; Shi, M.; Kong, W.; Jiang, M. Lipid Profile in Patients With Primary Ovarian Insufficiency: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2022, 13, 876775. [Google Scholar] [CrossRef]
- Wellons, M. Cardiovascular disease and primary ovarian insufficiency. Semin. Reprod. Med. 2011, 29, 328–341. [Google Scholar] [CrossRef]
- Lambrinoudaki, I.; Armeni, E. Understanding of and clinical approach to cardiometabolic transition at the menopause. Climacteric 2024, 27, 68–74. [Google Scholar] [CrossRef]
- Daan, N.M.P.; Muka, T.; Koster, M.P.H.; van Lennep, J.E.R.; Lambalk, C.B.; Laven, J.S.E.; Fauser, C.G.K.M.; Meun, C.; de Rijke, Y.B.; Boersma, E.; et al. Cardiovascular Risk in Women With Premature Ovarian Insufficiency Compared to Premenopausal Women at Middle Age. J. Clin. Endocrinol. Metab. 2016, 101, 3306–3315. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, L.; Wu, Z.; Li, Y.; Jia, Q.; Cheng, J.C.; Sun, Y.P. A meta-analysis of serum lipid profiles in premature ovarian insufficiency. Reprod. Biomed. Online 2022, 44, 539–547. [Google Scholar] [CrossRef]
- Sarac, F.; Oztekin, K.; Celebi, G. Early menopause association with employment, smoking, divorced marital status and low leptin levels. Gynecol. Endocrinol. 2011, 27, 273–278. [Google Scholar] [CrossRef]
- Benetti-Pinto, C.L.; Castro, N.; da Rocha Grassiotto, O.; Garmes, H.M. Leptin and adiponectin blood levels in women with premature ovarian failure and age- and weight-matched women with normal menstrual cycles. Menopause 2010, 17, 174–177. [Google Scholar] [CrossRef]
- Quinn, M.M.; Cedars, M.I. Cardiovascular health and ovarian aging. Fertil. Steril. 2018, 110, 790–793. [Google Scholar] [CrossRef]
- Schipper, I.; Louwers, Y.V. Premature and Early Menopause in Relation to Cardiovascular Disease. Semin. Reprod. Med. 2020, 38, 270–276. [Google Scholar] [CrossRef]
- Gunning, M.N.; Meun, C.; van Rijn, B.B.; Daan, N.M.P.; van Lennep, J.E.R.; Appelman, Y.; Boersma, E.; Hofstra, L.; Fauser, C.G.K.M.; Rueda-Ochoa, O.L.; et al. The cardiovascular risk profile of middle age women previously diagnosed with premature ovarian insufficiency: A case-control study. PLoS ONE 2020, 15, e0229576. [Google Scholar] [CrossRef]
- Gunning, M.N.; Meun, C.; van Rijn, B.B.; Maas, A.H.E.M.; Benschop, L.; Franx, A.; Boersma, E.; Budde, R.P.J.; Appelman, Y.; Lambalk, C.B.; et al. Coronary artery calcification in middle-aged women with premature ovarian insufficiency. Clin. Endocrinol. 2019, 91, 314–322. [Google Scholar] [CrossRef]
- Podfigurna, A.; Meczekalski, B. Cardiovascular health in patients with premature ovarian insufficiency. Management of long-term consequences. Prz. Menopauzalny 2018, 17, 109–111. [Google Scholar] [CrossRef]
- Christ, J.P.; Gunning, M.N.; Palla, G.; Eijkemans, M.J.C.; Lambalk, C.B.; Laven, J.S.E.; Fauser, B. Estrogen deprivation and cardiovascular disease risk in primary ovarian insufficiency. Fertil. Steril. 2018, 109, 594–600.e1. [Google Scholar] [CrossRef]
- Wu, B.; Fan, B.; Qu, Y.; Li, C.; Chen, J.; Liu, Y.; Wang, J.; Zhang, T.; Chen, Y. Trajectories of Blood Lipids Profile in Midlife Women: Does Menopause Matter? J. Am. Heart Assoc. 2023, 12, e030388. [Google Scholar] [CrossRef]
- Lou, Z.; Huang, Y.; Lan, Y.; Li, C.; Chu, K.; Chen, P.; Xu, W.; Ma, L.; Zhou, J. Relationship between years since menopause and lipid variation in postmenopausal women: A cross-sectional study. Medicine 2023, 102, e32684. [Google Scholar] [CrossRef]
- Chu, M.C.; Rath, K.M.; Huie, J.; Taylor, H.S. Elevated basal FSH in normal cycling women is associated with unfavourable lipid levels and increased cardiovascular risk. Hum. Reprod. 2003, 18, 1570–1573. [Google Scholar] [CrossRef]
- Podfigurna-Stopa, A.; Czyzyk, A.; Grymowicz, M.; Smolarczyk, R.; Katulski, K.; Czajkowski, K.; Meczekalski, B. Premature ovarian insufficiency: The context of long-term effects. J. Endocrinol. Investig. 2016, 39, 983–990. [Google Scholar] [CrossRef]
- Jacobsen, B.K.; Knutsen, S.F.; Fraser, G.E. Age at natural menopause and total mortality and mortality from ischemic heart disease: The Adventist Health Study. J. Clin. Epidemiol. 1999, 52, 303–307. [Google Scholar] [CrossRef]
- Ates, S.; Yesil, G.; Sevket, O.; Molla, T.; Yildiz, S. Comparison of metabolic profile and abdominal fat distribution between karyotypically normal women with premature ovarian insufficiency and age matched controls. Maturitas 2014, 79, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lv, Y.; Qi, T.; Luo, Z.; Meng, X.; Ying, Q.; Li, D.; Li, C.; Lan, Y.; Chu, K.; et al. Metabolic profile of women with premature ovarian insufficiency compared with that of age-matched healthy controls. Maturitas 2021, 148, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, E.C.; Nelson, L.M.; Bakalov, V.K.; Yanovski, J.A.; Vanderhoof, V.H.; Yanoff, L.B.; Bondy, C.A. Effects of ovarian failure and X-chromosome deletion on body composition and insulin sensitivity in young women. Menopause 2006, 13, 911–916. [Google Scholar] [CrossRef]
- Jin, J.; Ruan, X.; Hua, L.; Mueck, A.O. Prevalence of metabolic syndrome and its components in Chinese women with premature ovarian insufficiency. Gynecol. Endocrinol. 2023, 39, 2254847. [Google Scholar] [CrossRef]
- Petzel, M.; Stejskal, D.; Jedelsky, L.; Kadalova, L.; Safarcik, K. The influence of estradiole and tibolone administration on leptin levels in women with surgically induced menopause. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2008, 152, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Burgos, N.; Cintron, D.; Latortue-Albino, P.; Serrano, V.; Rodriguez Gutierrez, R.; Faubion, S.; Spencer-Bonilla, G.; Erwin, P.J.; Murad, M.H. Estrogen-based hormone therapy in women with primary ovarian insufficiency: A systematic review. Endocrine 2017, 58, 413–425. [Google Scholar] [CrossRef]
- Crofton, P.M.; Evans, N.; Bath, L.E.; Warner, P.; Whitehead, T.J.; Critchley, H.O.; Kelnar, C.J.; Wallace, W.H. Physiological versus standard sex steroid replacement in young women with premature ovarian failure: Effects on bone mass acquisition and turnover. Clin. Endocrinol. 2010, 73, 707–714. [Google Scholar] [CrossRef]
- Lersten, I.; Clain, E.; Santoro, N. Use of Hormone Therapy in Women with Early Menopause and Premature Ovarian Insufficiency. Semin. Reprod. Med. 2020, 38, 302–308. [Google Scholar] [CrossRef]
- Faubion, S.S.; Kuhle, C.L.; Shuster, L.T.; Rocca, W.A. Long-term health consequences of premature or early menopause and considerations for management. Climacteric 2015, 18, 483–491. [Google Scholar] [CrossRef]
- Sullivan, S.D.; Sarrel, P.M.; Nelson, L.M. Hormone replacement therapy in young women with primary ovarian insufficiency and early menopause. Fertil. Steril. 2016, 106, 1588–1599. [Google Scholar] [CrossRef]
- Rezende, G.P.; Dassie, T.; Gomes, D.A.Y.; Benetti-Pinto, C.L. Cardiovascular Risk Factors in Premature Ovarian Insufficiency using Hormonal Therapy. Rev. Bras. Ginecol. Obstet. 2023, 45, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Kalantaridou, S.N.; Naka, K.K.; Papanikolaou, E.; Kazakos, N.; Kravariti, M.; Calis, K.A.; Paraskevaidis, E.A.; Sideris, D.A.; Tsatsoulis, A.; Chrousos, G.P.; et al. Impaired endothelial function in young women with premature ovarian failure: Normalization with hormone therapy. J. Clin. Endocrinol. Metab. 2004, 89, 3907–3913. [Google Scholar] [CrossRef] [PubMed]
- Kalantaridou, S.N.; Naka, K.K.; Bechlioulis, A.; Makrigiannakis, A.; Michalis, L.; Chrousos, G.P. Premature ovarian failure, endothelial dysfunction and estrogen-progestogen replacement. Trends Endocrinol. Metab. 2006, 17, 101–109. [Google Scholar] [CrossRef]
- Goldmeier, S.; De Angelis, K.; Casali, K.R.; Vilodre, C.; Consolim-Colombo, F.; Klein, A.B.; Plentz, R.; Spritzer, P.; Irigoyen, M.C. Cardiovascular autonomic dysfunction in primary ovarian insufficiency: Clinical and experimental evidence. Am. J. Transl. Res. 2013, 6, 91–101. [Google Scholar] [PubMed]
- Yorgun, H.; Gurses, K.M.; Canpolat, U.; Yapici, Z.; Bozdag, G.; Kaya, E.B.; Aytemir, K.; Oto, A.; Kabakci, G.; Tokgozoglu, L. Evaluation of cardiac autonomic function by various indices in patients with primary premature ovarian failure. Clin. Res. Cardiol. 2012, 101, 753–759. [Google Scholar] [CrossRef]
- Langrish, J.P.; Mills, N.L.; Bath, L.E.; Warner, P.; Webb, D.J.; Kelnar, C.J.; Critchley, H.O.; Newby, D.E.; Wallace, W.H. Cardiovascular effects of physiological and standard sex steroid replacement regimens in premature ovarian failure. Hypertension 2009, 53, 805–811. [Google Scholar] [CrossRef]
- Aksoy, M.N.; Akdemir, N.; Kilic, H.; Yilmaz, S.; Akdemir, R.; Gunduz, H. Pulse wave velocity and myocardial performance index in premature ovarian insufficiency. Scand. Cardiovasc. J. 2017, 51, 95–98. [Google Scholar] [CrossRef]
- Blumel, J.E.; Mezones-Holguin, E.; Chedraui, P.; Soto-Becerra, P.; Arteaga, E.; Vallejo, M.S. Is premature ovarian insufficiency associated with mortality? A three-decade follow-up cohort. Maturitas 2022, 163, 82–87. [Google Scholar] [CrossRef]
- Van Lennep, J.E.R.; Heida, K.Y.; Bots, M.L.; Hoek, A.; on behalf of the collaborators of the Dutch Multidisciplinary Guideline Development Group on Cardiovascular Risk Management after Reproductive Disorders. Cardiovascular disease risk in women with premature ovarian insufficiency: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2016, 23, 178–186. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-García, M.; León-Wu, K.; de Miguel-Ibáñez, R.; López-Juárez, N.; Ramírez-Rentería, C.; Espinosa-Cárdenas, E.; Sosa-Eroza, E.; García-Sáenz, M.R. Metabolic Changes in Patients with Premature Ovarian Insufficiency: Adipose Tissue Focus—A Narrative Review. Metabolites 2025, 15, 242. https://doi.org/10.3390/metabo15040242
Sánchez-García M, León-Wu K, de Miguel-Ibáñez R, López-Juárez N, Ramírez-Rentería C, Espinosa-Cárdenas E, Sosa-Eroza E, García-Sáenz MR. Metabolic Changes in Patients with Premature Ovarian Insufficiency: Adipose Tissue Focus—A Narrative Review. Metabolites. 2025; 15(4):242. https://doi.org/10.3390/metabo15040242
Chicago/Turabian StyleSánchez-García, Miriam, Kapy León-Wu, Regina de Miguel-Ibáñez, Nitzia López-Juárez, Claudia Ramírez-Rentería, Etual Espinosa-Cárdenas, Ernesto Sosa-Eroza, and Manuel R. García-Sáenz. 2025. "Metabolic Changes in Patients with Premature Ovarian Insufficiency: Adipose Tissue Focus—A Narrative Review" Metabolites 15, no. 4: 242. https://doi.org/10.3390/metabo15040242
APA StyleSánchez-García, M., León-Wu, K., de Miguel-Ibáñez, R., López-Juárez, N., Ramírez-Rentería, C., Espinosa-Cárdenas, E., Sosa-Eroza, E., & García-Sáenz, M. R. (2025). Metabolic Changes in Patients with Premature Ovarian Insufficiency: Adipose Tissue Focus—A Narrative Review. Metabolites, 15(4), 242. https://doi.org/10.3390/metabo15040242