Causal Effects of Plasma Metabolites on Leukemia: A Mendelian Randomization Study
Abstract
1. Introduction
2. Method
2.1. Data Sources and Study Design
2.2. Instrument Selection and Data Harmonization
2.3. MR Estimation, Pleiotropy Control, and Statistical Inference
3. Results
3.1. Metabolite-Associated SNVs
3.2. Relationship Between Metabolites and Leukemia
3.3. Metabolites and Drugs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.D.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, J.; Wang, Q.; Liang, Y.; Li, X.; Chen, G.; Ma, L.; Liu, X.; Zhou, F. Global Burden of Hematologic Malignancies and Evolution Patterns over the Past 30 Years. Blood Cancer J. 2023, 13, 82. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.-M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Davey Smith, G.; Hemani, G. Mendelian Randomization: Genetic Anchors for Causal Inference in Epidemiological Studies. Hum. Mol. Genet. 2014, 23, R89–R98. [Google Scholar] [CrossRef]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.T.; Timpson, N.J.; Dimou, N.; et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA 2021, 326, 1614. [Google Scholar] [CrossRef]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Timpson, N.J.; Higgins, J.P.T.; Dimou, N.; Langenberg, C. Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomisation (STROBE-MR): Explanation and Elaboration. BMJ 2021, 375, n2233. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, T.; Pettersson-Kymmer, U.; Stewart, I.D.; Butler-Laporte, G.; Nakanishi, T.; Cerani, A.; Liang, K.Y.H.; Yoshiji, S.; Willett, J.D.S.; et al. Genomic Atlas of the Plasma Metabolome Prioritizes Metabolites Implicated in Human Diseases. Nat. Genet. 2023, 55, 44–53. [Google Scholar] [CrossRef]
- Shin, S.-Y.; Fauman, E.B.; Petersen, A.-K.; Krumsiek, J.; Santos, R.; Huang, J.; Arnold, M.; Erte, I.; Forgetta, V.; Yang, T.-P.; et al. An Atlas of Genetic Influences on Human Blood Metabolites. Nat. Genet. 2014, 46, 543–550. [Google Scholar] [CrossRef]
- Kurki, M.I.; Karjalainen, J.; Palta, P.; Sipilä, T.P.; Kristiansson, K.; Donner, K.M.; Reeve, M.P.; Laivuori, H.; Aavikko, M.; Kaunisto, M.A.; et al. FinnGen Provides Genetic Insights from a Well-Phenotyped Isolated Population. Nature 2023, 613, 508–518. [Google Scholar] [CrossRef]
- Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for Clinicians. BMJ 2018, 362, k601. [Google Scholar] [CrossRef]
- Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; et al. Cancer-Associated IDH1 Mutations Produce 2-Hydroxyglutarate. Nature 2009, 462, 739–744. [Google Scholar] [CrossRef]
- Wishart, D.S. Is Cancer a Genetic Disease or a Metabolic Disease? EBioMedicine 2015, 2, 478–479. [Google Scholar] [CrossRef]
- Sutandyo, N.; Mulyasari, R.; Kosasih, A.; Rinaldi, I.; Louisa, M.; Kevinsyah, A.; Winston, K. Association of Somatic Gene Mutations with Risk of Transformation into Acute Myeloid Leukemia in Patients with Myelodysplastic Syndrome: A Systematic Review and Meta-Analysis. Asian Pac. J. Cancer Prev. 2022, 23, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Li, Y.; Lv, N.; Jing, Y.; Xu, Y.; Li, Y.; Li, W.; Yao, Z.; Chen, X.; Huang, S.; et al. Correlation Between Isocitrate Dehydrogenase Gene Aberrations and Prognosis of Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Clin. Cancer Res. 2017, 23, 4511–4522. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Li, M.; Tan, L.; Liu, Z.; Zhu, Y.; Jonathan, T.; Zhou, J.; Feng, M.; Kageyama, Y.; Samee, H.; et al. Purine Metabolism Modulates Leukemia Stem Cell Maintenance in MLL-Rearranged Acute Leukemia. Blood 2023, 142, 582. [Google Scholar] [CrossRef]
- Guo, H.-Z.; Feng, R.-X.; Zhang, Y.-J.; Yu, Y.-H.; Lu, W.; Liu, J.-J.; Yang, S.-X.; Zhao, C.; Zhang, Z.-L.; Yu, S.-H.; et al. A CD36-Dependent Non-Canonical Lipid Metabolism Program Promotes Immune Escape and Resistance to Hypomethylating Agent Therapy in AML. Cell Rep. Med. 2024, 5, 101592. [Google Scholar] [CrossRef]
- Yang, B.; Wang, C.; Xie, Y.; Xu, L.; Wu, X.; Wu, D. Monitoring Tyrosine Kinase Inhibitor Therapeutic Responses with a Panel of Metabolic Biomarkers in Chronic Myeloid Leukemia Patients. Cancer Sci. 2018, 109, 777–784. [Google Scholar] [CrossRef]
- Nakada, D. Venetolax with Azacitidine Drains Fuel from AML Stem Cells. Cell Stem Cell 2019, 24, 7–8. [Google Scholar] [CrossRef]
- Pollyea, D.A.; Stevens, B.M.; Jones, C.L.; Winters, A.; Pei, S.; Minhajuddin, M.; D’Alessandro, A.; Culp-Hill, R.; Riemondy, K.A.; Gillen, A.E.; et al. Venetoclax with Azacitidine Disrupts Energy Metabolism and Targets Leukemia Stem Cells in Patients with Acute Myeloid Leukemia. Nat. Med. 2018, 24, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Samudio, I.; Harmancey, R.; Fiegl, M.; Kantarjian, H.; Konopleva, M.; Korchin, B.; Kaluarachchi, K.; Bornmann, W.; Duvvuri, S.; Taegtmeyer, H.; et al. Pharmacologic Inhibition of Fatty Acid Oxidation Sensitizes Human Leukemia Cells to Apoptosis Induction. J. Clin. Investig. 2010, 120, 142–156. [Google Scholar] [CrossRef]
- Stevens, B.M.; Jones, C.L.; Pollyea, D.A.; Culp-Hill, R.; D’Alessandro, A.; Winters, A.; Krug, A.; Abbott, D.; Goosman, M.; Pei, S.; et al. Fatty Acid Metabolism Underlies Venetoclax Resistance in Acute Myeloid Leukemia Stem Cells. Nat. Cancer 2020, 1, 1176–1187. [Google Scholar] [CrossRef]
- Sykes, D.B.; Kfoury, Y.S.; Mercier, F.E.; Wawer, M.J.; Law, J.M.; Haynes, M.K.; Lewis, T.A.; Schajnovitz, A.; Jain, E.; Lee, D.; et al. Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia. Cell 2016, 167, 171–186.e15. [Google Scholar] [CrossRef]
- Bonagas, N.; Gustafsson, N.M.S.; Henriksson, M.; Marttila, P.; Gustafsson, R.; Wiita, E.; Borhade, S.; Green, A.C.; Vallin, K.S.A.; Sarno, A.; et al. Pharmacological Targeting of MTHFD2 Suppresses Acute Myeloid Leukemia by Inducing Thymidine Depletion and Replication Stress. Nat. Cancer 2022, 3, 156–172. [Google Scholar] [CrossRef]
- Pardo-Lorente, N.; Sdelci, S. MTHFD2 in Healthy and Cancer Cells: Canonical and Non-Canonical Functions. npj Metab. Health Dis. 2024, 2, 3. [Google Scholar] [CrossRef]
- Liang, L.; Bi, J.; Liu, J.; He, Q.; Chen, Y.; Yin, M. Studies on the Genotoxicity and Inhibitory Effect on Gap Junction Intercellular Communication of Bile Acid. Carcinog. Teratog. Mutagen. 1998, 10, 76–81. [Google Scholar]
- Wei, H.; Suo, C.; Gu, X.; Shen, S.; Lin, K.; Zhu, C.; Yan, K.; Bian, Z.; Chen, L.; Zhang, T.; et al. AKR1D1 Suppresses Liver Cancer Progression by Promoting Bile Acid Metabolism-Mediated NK Cell Cytotoxicity. Cell Metab. 2025, 37, 1103–1118.e7. [Google Scholar] [CrossRef]
- Ogawa, A.; Murate, T.; Suzuki, M.; Nimura, Y.; Yoshida, S. Lithocholic Acid, a Putative Tumor Promoter, Inhibits Mammalian DNA Polymerase β. Jpn. J. Cancer Res. 1998, 89, 1154–1159. [Google Scholar] [CrossRef]
- Kovács, P.; Csonka, T.; Kovács, T.; Sári, Z.; Ujlaki, G.; Sipos, A.; Karányi, Z.; Szeőcs, D.; Hegedűs, C.; Uray, K.; et al. Lithocholic Acid, a Metabolite of the Microbiome, Increases Oxidative Stress in Breast Cancer. Cancers 2019, 11, 1255. [Google Scholar] [CrossRef]
- Li, W.; Hang, S.; Fang, Y.; Bae, S.; Zhang, Y.; Zhang, M.; Wang, G.; McCurry, M.D.; Bae, M.; Paik, D.; et al. A Bacterial Bile Acid Metabolite Modulates Treg Activity through the Nuclear Hormone Receptor NR4A1. Cell Host Microbe 2021, 29, 1366–1377.e9. [Google Scholar] [CrossRef]
- Thibaut, M.M.; Bindels, L.B. Crosstalk between Bile Acid-Activated Receptors and Microbiome in Entero-Hepatic Inflammation. Trends Mol. Med. 2022, 28, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Hang, S.; Paik, D.; Yao, L.; Kim, E.; Trinath, J.; Lu, J.; Ha, S.; Nelson, B.N.; Kelly, S.P.; Wu, L.; et al. Bile Acid Metabolites Control TH17 and Treg Cell Differentiation. Nature 2019, 576, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Squirewell, E.J.; Qin, X.; Duffel, M.W. Endoxifen and Other Metabolites of Tamoxifen Inhibit Human Hydroxysteroid Sulfotransferase 2A1 (hSULT2A1). Drug Metab. Dispos. 2014, 42, 1843–1850. [Google Scholar] [CrossRef] [PubMed]
- Alnouti, Y. Bile Acid Sulfation: A Pathway of Bile Acid Elimination and Detoxification. Toxicol. Sci. 2009, 108, 225–246. [Google Scholar] [CrossRef]
- Staley, C.; Weingarden, A.R.; Khoruts, A.; Sadowsky, M.J. Interaction of Gut Microbiota with Bile Acid Metabolism and Its Influence on Disease States. Appl. Microbiol. Biotechnol. 2017, 101, 47–64. [Google Scholar] [CrossRef]
- Funabashi, M.; Grove, T.L.; Wang, M.; Varma, Y.; McFadden, M.E.; Brown, L.C.; Guo, C.; Higginbottom, S.; Almo, S.C.; Fischbach, M.A. A Metabolic Pathway for Bile Acid Dehydroxylation by the Gut Microbiome. Nature 2020, 582, 566–570. [Google Scholar] [CrossRef]
- Dickinson, M.; Cherif, H.; Fenaux, P.; Mittelman, M.; Verma, A.; Portella, M.S.O.; Burgess, P.; Ramos, P.M.; Choi, J.; Platzbecker, U. Azacitidine with or without Eltrombopag for First-Line Treatment of Intermediate- or High-Risk MDS with Thrombocytopenia. Blood 2018, 132, 2629–2638. [Google Scholar] [CrossRef]
- Gottlicher, M. Valproic Acid Defines a Novel Class of HDAC Inhibitors Inducing Differentiation of Transformed Cells. EMBO J. 2001, 20, 6969–6978. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Lin, H.; Huang, M.-J.; Chow, J.-M.; Lin, S.; Liu, H.E. Downregulation of C-Myc Is Critical for Valproic Acid-Induced Growth Arrest and Myeloid Differentiation of Acute Myeloid Leukemia. Leuk. Res. 2007, 31, 1403–1411. [Google Scholar] [CrossRef]
- Rücker, F.G.; Lang, K.M.; Fütterer, M.; Komarica, V.; Schmid, M.; Döhner, H.; Schlenk, R.F.; Döhner, K.; Knudsen, S.; Bullinger, L. Molecular Dissection of Valproic Acid Effects in Acute Myeloid Leukemia Identifies Predictive Networks. Epigenetics 2016, 11, 517–525. [Google Scholar] [CrossRef]
- Bug, G.; Gül, H.; Schwarz, K.; Pfeifer, H.; Kampfmann, M.; Zheng, X.; Beissert, T.; Boehrer, S.; Hoelzer, D.; Ottmann, O.G.; et al. Valproic Acid Stimulates Proliferation and Self-Renewal of Hematopoietic Stem Cells. Cancer Res. 2005, 65, 2537–2541. [Google Scholar] [CrossRef]
- Bug, G.; Schwarz, K.; Schoch, C.; Kampfmann, M.; Henschler, R.; Hoelzer, D.; Ottmann, O.G.; Ruthardt, M. Effect of Histone Deacetylase Inhibitor Valproic Acid on Progenitor Cells of Acute Myeloid Leukemia. Haematologica 2007, 92, 542–545. [Google Scholar] [CrossRef]
- Di Antonio, M.; McLuckie, K.I.E.; Balasubramanian, S. Reprogramming the Mechanism of Action of Chlorambucil by Coupling to a G-Quadruplex Ligand. J. Am. Chem. Soc. 2014, 136, 5860–5863. [Google Scholar] [CrossRef]
- Takahashi, K.; Nakada, D.; Goodell, M. Distinct Landscape and Clinical Implications of Therapy-Related Clonal Hematopoiesis. J. Clin. Investig. 2024, 134, e180069. [Google Scholar] [CrossRef]
- Krassnig, S.C.; Mäser, M.; Probst, N.A.; Werner, J.; Schlett, C.; Schumann, N.; Von Scheven, G.; Mangerich, A.; Bürkle, A. Comparative Analysis of Chlorambucil-Induced DNA Lesion Formation and Repair in a Spectrum of Different Human Cell Systems. Toxicol. Rep. 2023, 10, 171–189. [Google Scholar] [CrossRef]





| Metabolite or Metabolite Ratios | Effector Genes | Protein Type | DrugBank_ID | Drug_Name | Relation | Antagonist | Agonist | Substrate | Inhibitor | Inducer |
|---|---|---|---|---|---|---|---|---|---|---|
| lithocholate sulfate (1) | SULT2A1 | Enzyme | DB05812 | Abiraterone | EnzymeBond | 0 | 0 | 1 | 0 | 0 |
| lithocholate sulfate (1) | SULT2A1 | Enzyme | DB12471 | Ibrexafungerp | EnzymeBond | 0 | 0 | 1 | 0 | 0 |
| lithocholate sulfate (1) | SULT2A1 | Enzyme | DB00968 | Methyldopa | EnzymeBond | 0 | 0 | 1 | 0 | 0 |
| lithocholate sulfate (1) | SULT2A1 | Enzyme | DB09073 | Palbociclib | EnzymeBond | 0 | 0 | 1 | 0 | 0 |
| lithocholate sulfate (1) | SULT2A1 | Enzyme | DB00960 | Pindolol | EnzymeBond | 0 | 0 | 1 | 0 | 0 |
| lithocholate sulfate (1) | SULT2A1 | Enzyme | DB01708 | Prasterone | EnzymeBond | 0 | 0 | 1 | 0 | 0 |
| lithocholate sulfate (1) | SULT2A1 | Enzyme | DB00675 | Tamoxifen | EnzymeBond | 0 | 0 | 1 | 0 | 0 |
| lithocholate sulfate (1) | SULT2A1 | Enzyme | DB00871 | Terbutaline | EnzymeBond | 0 | 0 | 1 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Li, Y.; Li, M.; Ye, X.; Wang, T.; Liu, N.; Meng, X.; Gao, Y.; Wang, X. Causal Effects of Plasma Metabolites on Leukemia: A Mendelian Randomization Study. Metabolites 2025, 15, 719. https://doi.org/10.3390/metabo15110719
Huang C, Li Y, Li M, Ye X, Wang T, Liu N, Meng X, Gao Y, Wang X. Causal Effects of Plasma Metabolites on Leukemia: A Mendelian Randomization Study. Metabolites. 2025; 15(11):719. https://doi.org/10.3390/metabo15110719
Chicago/Turabian StyleHuang, Chang, Yuchen Li, Mengjie Li, Xu Ye, Tong Wang, Nannan Liu, Xinyi Meng, Yu Gao, and Xinhui Wang. 2025. "Causal Effects of Plasma Metabolites on Leukemia: A Mendelian Randomization Study" Metabolites 15, no. 11: 719. https://doi.org/10.3390/metabo15110719
APA StyleHuang, C., Li, Y., Li, M., Ye, X., Wang, T., Liu, N., Meng, X., Gao, Y., & Wang, X. (2025). Causal Effects of Plasma Metabolites on Leukemia: A Mendelian Randomization Study. Metabolites, 15(11), 719. https://doi.org/10.3390/metabo15110719

