Metabolome and Essential Element Analyses of Five Underutilized European Crops Reveal Their Nutritional Properties and Potential to Diversify the European Food System
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material Collection
2.2. Metabolomics Analysis
2.3. Metalomic Analysis
3. Results
3.1. Metabolomics Analysis
3.1.1. Primary Metabolite Profiles of the Edible Tissues
3.1.2. Secondary Metabolite Composition
3.2. Metalomics Analysis
4. Discussion
4.1. Species-Specific Levels of Primary and Secondary Metabolites
4.2. Elemental Analysis Reveals Species Rich in Essential Nutrients
4.3. General Limitations of Metabolome and Elemental Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AKG | Alpha-ketoglutaric acid; |
| GPx | Glutathione Peroxidase; |
| HMG | 3-hydroxy-3-methylglutaric acid; |
| MDA | Malondialdehyde. |
References
- Li, X.; Siddique, K.H.M. Future Smart Food: Harnessing the Potential of Neglected and Underutilized Species for Zero Hunger. Matern. Child Nutr. 2020, 16, e13008. [Google Scholar] [CrossRef]
- Mudau, F.N.; Chimonyo, V.G.P.; Modi, A.T.; Mabhaudhi, T. Neglected and Underutilised Crops: A Systematic Review of Their Potential as Food and Herbal Medicinal Crops in South Africa. Front. Pharmacol. 2022, 12, 809866. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Siddique, K.H.M. (Eds.) Neglected and Underutilized Crops: Future Smart Food; Academic Press: London, UK; San Diego, CA, USA, 2023; ISBN 978-0-323-90537-4. [Google Scholar]
- Ercisli, S.; Sengul, M.; Yildiz, H.; Sener, D.; Duralija, B.; Voca, S.; Purgar, D.D. Phytochemical and Antioxidant Characteristics of Medlar Fruits (Mespilus germanica L.). J. Appl. Bot. Food Qual. 2012, 85, 86. [Google Scholar]
- Suh, D.H.; Jung, E.S.; Lee, G.M.; Lee, C.H. Distinguishing Six Edible Berries Based on Metabolic Pathway and Bioactivity Correlations by Non-Targeted Metabolite Profiling. Front. Plant Sci. 2018, 9, 1462. [Google Scholar] [CrossRef]
- Qi, J.; Li, K.; Shi, Y.; Li, Y.; Dong, L.; Liu, L.; Li, M.; Ren, H.; Liu, X.; Fang, C.; et al. Cross-Species Comparison of Metabolomics to Decipher the Metabolic Diversity in Ten Fruits. Metabolites 2021, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Negrel, L.; Baltenweck, R.; Demangeat, G.; Le Bohec-Dorner, F.; Rustenholz, C.; Velt, A.; Gertz, C.; Bieler, E.; Dürrenberger, M.; Gombault, P.; et al. Comparative Metabolomic Analysis of Four Fabaceae and Relationship to In Vitro Nematicidal Activity against Xiphinema Index. Molecules 2022, 27, 3052. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, L.; Shi, Q.; Lin, Y.; Zeng, Z.; Song, C.; Jin, S.; Xiao, L. Comparative Pharmacognosy and Secondary Metabolite Analysis of Balanophorae Herbs from Different Sources. Hereditas 2024, 161, 19. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Feng, L.; Song, L.; Lu, Y.; Li, H.; Li, Y.; Tian, G.; Yang, Y.; Li, H.; et al. Comparative Metabolomics Provides Novel Insights into Correlation between Dominant Habitat Factors and Constituents of Stellaria Radix (Stellaria dichotoma L. var. Lanceolata Bge.). Front. Plant Sci. 2022, 13, 1035712. [Google Scholar] [CrossRef]
- Shabih, S.; Hajdari, A.; Mustafa, B.; Quave, C.L. Medicinal Plants in the Balkans with Antimicrobial Properties. In Medicinal Plants as Anti-Infectives; Elsevier: Amsterdam, The Netherlands, 2022; pp. 103–138. ISBN 978-0-323-90999-0. [Google Scholar]
- Garzoli, S.; Cicaloni, V.; Salvini, L.; Trespidi, G.; Iriti, M.; Vitalini, S. SPME-GC-MS Analysis of the Volatile Profile of Three Fresh Yarrow (Achillea millefolium L.) Morphotypes from Different Regions of Northern Italy. Separations 2023, 10, 51. [Google Scholar] [CrossRef]
- Shah, R.; Peethambaran, B. Anti-Inflammatory and Anti-Microbial Properties of Achillea millefolium in Acne Treatment. In Immunity and Inflammation in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2018; pp. 241–248. ISBN 978-0-12-805417-8. [Google Scholar]
- Jugreet, B.S.; Suroowan, S.; Rengasamy, R.R.K.; Mahomoodally, M.F. Chemistry, Bioactivities, Mode of Action and Industrial Applications of Essential Oils. Trends Food Sci. Technol. 2020, 101, 89–105. [Google Scholar] [CrossRef]
- Hernández-Abreu, O.; Castillo-España, P.; León-Rivera, I.; Ibarra-Barajas, M.; Villalobos-Molina, R.; González-Christen, J.; Vergara-Galicia, J.; Estrada-Soto, S. Antihypertensive and Vasorelaxant Effects of Tilianin Isolated from Agastache mexicana Are Mediated by NO/cGMP Pathway and Potassium Channel Opening. Biochem. Pharmacol. 2009, 78, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Verano, J.; González-Trujano, M.E.; Déciga-Campos, M.; Ventura-Martínez, R.; Pellicer, F. Ursolic Acid from Agastache mexicana Aerial Parts Produces Antinociceptive Activity Involving TRPV1 Receptors, cGMP and a Serotonergic Synergism. Pharmacol. Biochem. Behav. 2013, 110, 255–264. [Google Scholar] [CrossRef]
- Nechita, M.-A.; Toiu, A.; Benedec, D.; Hanganu, D.; Ielciu, I.; Oniga, O.; Nechita, V.-I.; Oniga, I. Agastache Species: A Comprehensive Review on Phytochemical Composition and Therapeutic Properties. Plants 2023, 12, 2937. [Google Scholar] [CrossRef]
- Park, M.-J.; Song, J.-H.; Shon, M.-S.; Kim, H.O.; Kwon, O.J.; Roh, S.-S.; Kim, C.Y.; Kim, G.-N. Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 Cells. Prev. Nutr. Food Sci. 2016, 21, 227–235. [Google Scholar] [CrossRef]
- Kim, M.H.; Chung, W.T.; Kim, Y.K.; Lee, J.H.; Lee, H.Y.; Hwang, B.; Park, Y.S.; Hwang, S.J.; Kim, J.H. The Effect of the Oil of Agastache rugosa O. Kuntze and Three of Its Components on Human Cancer Cell Lines. J. Essent. Oil Res. 2001, 13, 214–218. [Google Scholar] [CrossRef]
- Sun, J.; Sun, P.; Kang, C.; Zhang, L.; Guo, L.; Kou, Y. Chemical Composition and Biological Activities of Essential Oils from Six Lamiaceae Folk Medicinal Plants. Front. Plant Sci. 2022, 13, 919294. [Google Scholar] [CrossRef] [PubMed]
- Ebadollahi, A.; Safaralizadeh, M.; Pourmirza, A.; Gheibi, S. Toxicity of Essential Oil of Agastache foeniculum (Pursh) Kuntze to Oryzaephilus surinamensis L. and Lasioderma serricorne F. J. Plant Prot. Res. 2010, 50, 215–219. [Google Scholar] [CrossRef]
- Pereira, R.F.P.; Rocha, J.; Nunes, P.; Fernandes, T.; Ravishankar, A.P.; Cruz, R.; Fernandes, M.; Anand, S.; Casal, S.; De Zea Bermudez, V.; et al. Vicariance Between Cercis siliquastrum L. and Ceratonia siliqua L. Unveiled by the Physical–Chemical Properties of the Leaves’ Epicuticular Waxes. Front. Plant Sci. 2022, 13, 890647. [Google Scholar] [CrossRef] [PubMed]
- Amer, J.; Jaradat, N.; Hattab, S.; Al-hihi, S.; Juma’a, R. Traditional Palestinian Medicinal Plant Cercis Siliquastrum (Judas Tree) Inhibits the DNA Cell Cycle of Breast Cancer—Antimicrobial and Antioxidant Characteristics. Eur. J. Integr. Med. 2019, 27, 90–96. [Google Scholar] [CrossRef]
- Moghaddam, M.; Stegemann, T.; Zidorn, C. Flavonoids and Volatile Compounds of Cercis siliquastrum (Fabaceae, Cercideae). Biochem. Syst. Ecol. 2025, 120, 104954. [Google Scholar] [CrossRef]
- Babyn, O.; Pinchuk, A.; Derii, A.; Boyko, O.; Likhanov, A. Influence of Urban Environment Factors on Morphometric Parameters and Accumulation of Secondary Metabolites in Cercis canadensis L. and Cercis siliquastrum ‘Alba’. Ukr. J. For. Wood Sci. 2024, 15, 8–24. [Google Scholar] [CrossRef]
- Martins-Noguerol, R.; Matías, L.; Pérez-Ramos, I.M.; Moreira, X.; Francisco, M.; Pedroche, J.; DeAndrés-Gil, C.; Gutiérrez, E.; Salas, J.J.; Moreno-Pérez, A.J.; et al. Soil Physicochemical Properties Associated with the Yield and Phytochemical Composition of the Edible Halophyte Crithmum maritimum. Sci. Total Environ. 2023, 869, 161806. [Google Scholar] [CrossRef] [PubMed]
- Generalić Mekinić, I.; Šimat, V.; Ljubenkov, I.; Burčul, F.; Grga, M.; Mihajlovski, M.; Lončar, R.; Katalinić, V.; Skroza, D. Influence of the Vegetation Period on Sea Fennel, Crithmum maritimum L. (Apiaceae), Phenolic Composition, Antioxidant and Anticholinesterase Activities. Ind. Crops Prod. 2018, 124, 947–953. [Google Scholar] [CrossRef]
- Correia, I.; Antunes, M.; Tecelão, C.; Neves, M.; Pires, C.L.; Cruz, P.F.; Rodrigues, M.; Peralta, C.C.; Pereira, C.D.; Reboredo, F.; et al. Nutritive Value and Bioactivities of a Halophyte Edible Plant: Crithmum maritimum L. (Sea Fennel). Plants 2024, 13, 427. [Google Scholar] [CrossRef]
- Gnocchi, D.; Nikolic, D.; Paparella, R.R.; Sabbà, C.; Mazzocca, A. Crithmum maritimum Extract Restores Lipid Homeostasis and Metabolic Profile of Liver Cancer Cells to a Normal Phenotype. Plant Foods Hum. Nutr. 2024, 79, 417–424. [Google Scholar] [CrossRef]
- Prajapati, D.; Devi, K.A.; Chouhan, P.; Pal, A.; Saharan, V. Plant-Based Nanoemulsions for Agricultural Application. In Bio-Based Nanoemulsions for Agri-Food Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 155–164. ISBN 978-0-323-89846-1. [Google Scholar]
- Ghosh, S.; Sarkar, T.; Chakraborty, R. Underutilized Plant Sources: A Hidden Treasure of Natural Colors. Food Biosci. 2023, 52, 102361. [Google Scholar] [CrossRef]
- Popović-Djordjević, J.; Kostić, A.Ž.; Kamiloglu, S.; Tomas, M.; Mićanović, N.; Capanoglu, E. Chemical Composition, Nutritional and Health Related Properties of the Medlar (Mespilus germanica L.): From Medieval Glory to Underutilized Fruit. Phytochem. Rev. 2023, 22, 1663–1690. [Google Scholar] [CrossRef]
- Cevahir, G.; Bostan, S.Z. Organic Acids, Sugars and Bioactive Compounds of Promising Medlar (Mespilus germanica L.) Genotypes Selected from Turkey. Int. J. Fruit. Sci. 2021, 21, 312–322. [Google Scholar] [CrossRef]
- Nistor, D.I.; Marc, R.A.; Mureșan, C.C. Phytochemistry, Nutritional Composition, Health Benefits and Future Prospects of Mespilus germanica L. (Medlar): A Review. Food Chem. X 2024, 22, 101334. [Google Scholar] [CrossRef]
- Al-Amoudi, R.H.; Taylan, O.; Kutlu, G.; Can, A.M.; Sagdic, O.; Dertli, E.; Yilmaz, M.T. Characterization of Chemical, Molecular, Thermal and Rheological Properties of Medlar Pectin Extracted at Optimum Conditions as Determined by Box-Behnken and ANFIS Models. Food Chem. 2019, 271, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Qasemi, Z.; Jafari, D.; Jafari, K.; Esmaeili, H. Heterogeneous Aluminum Oxide/Calcium Oxide Catalyzed Transesterification of Mespilus germanica Triglyceride for Biodiesel Production. Environ. Prog. Sustain. Energy 2022, 41, e13738. [Google Scholar] [CrossRef]
- Khedri, A.; Jafari, D.; Esfandyari, M. Adsorption of Nickel(II) Ions from Synthetic Wastewater Using Activated Carbon Prepared from Mespilus germanica Leaf. Arab. J. Sci. Eng. 2022, 47, 6155–6166. [Google Scholar] [CrossRef]
- Perez De Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A.R. Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry Variants for Metabolomics Research. Nat. Methods 2021, 18, 733–746. [Google Scholar] [CrossRef]
- Tohge, T.; Borghi, M.; Fernie, A.R. The Natural Variance of the Arabidopsis Floral Secondary Metabolites. Sci. Data 2018, 5, 180051. [Google Scholar] [CrossRef]
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A Public Repository for Sharing Mass Spectral Data for Life Sciences. J. Mass. Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas Chromatography Mass Spectrometry–Based Metabolite Profiling in Plants. Nat. Protoc. 2006, 1, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass Spectral and Retention Index Libraries for Metabolomics Based on Quadrupole and Time-of-Flight Gas Chromatography/Mass Spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a Unified Platform for Metabolomics Data Processing, Analysis and Interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Dalangin, R.; Kim, A.; Campbell, R.E. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. IJMS 2020, 21, 6197. [Google Scholar] [CrossRef]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef]
- Goderska, K. The Antioxidant and Prebiotic Properties of Lactobionic Acid. Appl. Microbiol. Biotechnol. 2019, 103, 3737–3751. [Google Scholar] [CrossRef]
- Baldassarre, M.P.A.; Di Tomo, P.; Centorame, G.; Pandolfi, A.; Di Pietro, N.; Consoli, A.; Formoso, G. Myoinositol Reduces Inflammation and Oxidative Stress in Human Endothelial Cells Exposed In Vivo to Chronic Hyperglycemia. Nutrients 2021, 13, 2210. [Google Scholar] [CrossRef]
- Rolnik, A.; Olas, B.; Szablińska-Piernik, J.; Lahuta, L.B.; Gromadziński, L.; Majewski, M.S. Antioxidant and Anticoagulant Properties of Myo-Inositol Determined in an Ex Vivo Studies and Gas Chromatography Analysis. Sci. Rep. 2024, 14, 25633. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, W.R.; Serain, A.F.; Aranha Netto, L.; Marinho, J.V.N.; Arena, A.C.; Figueiredo De Santana Aquino, D.; Kuraoka-Oliveira, Â.M.; Júnior, A.J.; Bernal, L.P.T.; Kassuya, C.A.L.; et al. Anti-Inflammatory and Antioxidant Properties of the Extract, Tiliroside, and Patuletin 3-O-β-D-Glucopyranoside from Pfaffia townsendii (Amaranthaceae). Evid. Based Complement. Altern. Med. 2018, 2018, 6057579. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Teraminami, A.; Lee, J.-Y.; Ohyama, K.; Funakoshi, K.; Kim, Y.-I.; Hirai, S.; Uemura, T.; Yu, R.; Takahashi, N.; et al. Tiliroside, a Glycosidic Flavonoid, Ameliorates Obesity-Induced Metabolic Disorders via Activation of Adiponectin Signaling Followed by Enhancement of Fatty Acid Oxidation in Liver and Skeletal Muscle in Obese–Diabetic Mice. J. Nutr. Biochem. 2012, 23, 768–776. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, D.; Zhou, E.; Wang, W.; Wang, H.; Li, Q. Hepatoprotective Effect of Tiliroside and Characterization of Its Metabolites in Human Hepatocytes by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry. J. Funct. Foods 2023, 107, 105675. [Google Scholar] [CrossRef]
- Zhong, C.; Yang, J.; Deng, K.; Lang, X.; Zhang, J.; Li, M.; Qiu, L.; Zhong, G.; Yu, J. Tiliroside Attenuates NLRP3 Inflammasome Activation in Macrophages and Protects against Acute Lung Injury in Mice. Molecules 2023, 28, 7527. [Google Scholar] [CrossRef] [PubMed]
- De Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Quantitative Analysis of Flavan-3-Ols in Spanish Foodstuffs and Beverages. J. Agric. Food Chem. 2000, 48, 5331–5337. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Jakljevic, K.; Veberic, R.; Hudina, M.; Rusjan, D. Changes in the Fruit Quality Parameters of Medlar Fruit (Mespilus germanica L.) after Heat Treatment, Storage, Freezing or Hoarfrost. Foods 2023, 12, 3077. [Google Scholar] [CrossRef]
- Friedman, M. Analysis, Nutrition, and Health Benefits of Tryptophan. Int. J. Tryptophan Res. 2018, 11, 1178646918802282. [Google Scholar] [CrossRef]
- Zanchi, D.; Meyer-Gerspach, A.C.; Suenderhauf, C.; Janach, K.; Le Roux, C.W.; Haller, S.; Drewe, J.; Beglinger, C.; Wölnerhanssen, B.K.; Borgwardt, S. Differential Effects of L-Tryptophan and L-Leucine Administration on Brain Resting State Functional Networks and Plasma Hormone Levels. Sci. Rep. 2016, 6, 35727. [Google Scholar] [CrossRef][Green Version]
- Ramos-Jiménez, A.; Hernández-Torres, R.P.; Hernández-Ontiveros, D.A.; Ortiz-Ortiz, M.; López-Fregoso, R.J.; Martínez-Sanz, J.M.; Rodríguez-Uribe, G.; Hernández-Lepe, M.A. An Update of the Promise of Glycine Supplementation for Enhancing Physical Performance and Recovery. Sports 2024, 12, 265. [Google Scholar] [CrossRef]
- Elango, D.; Rajendran, K.; Van Der Laan, L.; Sebastiar, S.; Raigne, J.; Thaiparambil, N.A.; El Haddad, N.; Raja, B.; Wang, W.; Ferela, A.; et al. Raffinose Family Oligosaccharides: Friend or Foe for Human and Plant Health? Front. Plant Sci. 2022, 13, 829118. [Google Scholar] [CrossRef] [PubMed]
- Lupien, P.; Moorjani, S.; Brun, D.; Bielmann, P. Effects of 3-Hydroxy-3-methylglutaric Acid on Plasma and Low-Density Lipoprotein Cholesterol Levels in Familial Hypercholesterolemia. J. Clin. Pharma 1979, 19, 120–126. [Google Scholar] [CrossRef]
- Di Padova, C.; Bosisio, E.; Cighetti, G.; Rovagnati, P.; Mazzocchi, M.; Colombo, C.; Tritapepe, R. 3-Hydroxy-3-Methylglutaric Acid (HMGA) Reduces Dietary Cholesterol Induction of Saturated Bile in Hamster. Life Sci. 1982, 30, 1907–1914. [Google Scholar] [CrossRef]
- Iman, M.N.; Haslam, D.E.; Liang, L.; Guo, K.; Joshipura, K.; Pérez, C.M.; Clish, C.; Tucker, K.L.; Manson, J.E.; Bhupathiraju, S.N.; et al. Multidisciplinary Approach Combining Food Metabolomics and Epidemiology Identifies Meglutol as an Important Bioactive Metabolite in Tempe, an Indonesian Fermented Food. Food Chem. 2024, 446, 138744. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, B.; Wu, R.; Zhou, J.; Williams, C.; Schlackow, I.; Emberson, J.; Reith, C.; Keech, A.; Robson, J.; Parnell, R.; et al. Lifetime Effects and Cost-Effectiveness of Statin Therapy for Older People in the United Kingdom: A Modelling Study. Heart 2024, 110, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Lim, Y.; Kwon, S.W.; Kwon, O. Pinitol Consumption Improves Liver Health Status by Reducing Oxidative Stress and Fatty Acid Accumulation in Subjects with Non-Alcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Nutr. Biochem. 2019, 68, 33–41. [Google Scholar] [CrossRef]
- Azab, A. D-Pinitol—Active Natural Product from Carob with Notable Insulin Regulation. Nutrients 2022, 14, 1453. [Google Scholar] [CrossRef]
- Estevez, A.M.; Estevez, R.J. A Short Overview on the Medicinal Chemistry of (—)-Shikimic Acid. MRMC 2012, 12, 1443–1454. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Vasconcelos, A.B.S.; Antony, P.J.; Montalvão, M.M.; De Franca, M.N.F.; Hillary, V.E.; Ceasar, S.A.; Liu, D. Natural Sources, Biosynthesis, Biological Functions, and Molecular Mechanisms of Shikimic Acid and Its Derivatives. Asian Pac. J. Trop. Biomed. 2023, 13, 139–147. [Google Scholar] [CrossRef]
- AbouAitah, K.; Swiderska-Sroda, A.; Kandeil, A.; Salman, A.M.; Wojnarowicz, J.; Ali, M.A.; Opalinska, A.; Gierlotka, S.; Ciach, T.; Lojkowski, W. Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs. Int. J. Nanomed. 2020, 15, 5181–5202. [Google Scholar] [CrossRef]
- Liu, S.; He, L.; Yao, K. The Antioxidative Function of Alpha-Ketoglutarate and Its Applications. BioMed Res. Int. 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhu, C.; Wang, Y.; Sun, J.; Feng, J.; Ma, Z.; Li, P.; Peng, W.; Yin, C.; Xu, G.; et al. α-Ketoglutaric Acid Ameliorates Hyperglycemia in Diabetes by Inhibiting Hepatic Gluconeogenesis via Serpina1e Signaling. Sci. Adv. 2022, 8, eabn2879. [Google Scholar] [CrossRef] [PubMed]
- Unver, T. A Preliminary Study of Fumaric Acid, Called Allomaleic Acid, as a Pharmaceutical Antimicrobial Compound. Med. Sci. 2024, 13, 383. [Google Scholar] [CrossRef]
- Moharregh-Khiabani, D.; Linker, R.; Gold, R.; Stangel, M. Fumaric Acid and Its Esters: An Emerging Treatment for Multiple Sclerosis. Curr. Neuropharmacol. 2009, 7, 60–64. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, X.; Wang, J.; Wang, F.; Mao, J. P-Coumaric Acid: Advances in Pharmacological Research Based onOxidative Stress. Curr. Top. Med. Chem. 2024, 24, 416–436. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as Anti-Inflammatory Agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Radušienė, J.; Karpavičienė, B.; Raudone, L.; Vilkickyte, G.; Çırak, C.; Seyis, F.; Yayla, F.; Marksa, M.; Rimkienė, L.; Ivanauskas, L. Trends in Phenolic Profiles of Achillea millefolium from Different Geographical Gradients. Plants 2023, 12, 746. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Arasu, M.V.; Park, C.H.; Park, S.U. An Up-to-Date Review of Rutin and Its Biological and Pharmacological Activities. EXCLI J. 2015, 14, 59–63. [Google Scholar] [CrossRef]
- Wen, L.; Wu, D.; Tan, X.; Zhong, M.; Xing, J.; Li, W.; Li, D.; Cao, F. The Role of Catechins in Regulating Diabetes: An Update Review. Nutrients 2022, 14, 4681. [Google Scholar] [CrossRef]
- Daisy, P.; Balasubramanian, K.; Rajalakshmi, M.; Eliza, J.; Selvaraj, J. Insulin Mimetic Impact of Catechin Isolated from Cassia Fistula on the Glucose Oxidation and Molecular Mechanisms of Glucose Uptake on Streptozotocin-Induced Diabetic Wistar Rats. Phytomedicine 2010, 17, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.V.; Vijayakumar, M. Protective Effect of (+)-Catechin against Gastric Mucosal Injury Induced by Ischaemia-Reperfusion in Rats. J. Pharm. Pharmacol. 2007, 59, 1103–1107. [Google Scholar] [CrossRef]
- Mabe, K.; Yamada, M.; Oguni, I.; Takahashi, T. In Vitro and In Vivo Activities of Tea Catechins against Helicobacter pylori. Antimicrob. Agents Chemother. 1999, 43, 1788–1791. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Scientific Opinion on the Safety of Green Tea Catechins. EFSA J. 2018, 16, e05239. [Google Scholar] [CrossRef]
- Dong, J.; Zheng, H.; Zeng, Q.; Zhang, X.; Du, L.; Bais, S. Protective Effect of D-(−)-Quinic Acid as Food Supplement in Modulating AMP-Activated Protein Kinase Signalling Pathway Activation in HFD Induced Obesity. Hum. Exp. Toxicol. 2022, 41, 09603271221119804. [Google Scholar] [CrossRef]
- Huang, J.; Xie, M.; He, L.; Song, X.; Cao, T. Chlorogenic Acid: A Review on Its Mechanisms of Anti-Inflammation, Disease Treatment, and Related Delivery Systems. Front. Pharmacol. 2023, 14, 1218015. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The SHAKE Technical Package for Salt Reduction; World Health Organization: Geneva, Switzerland, 2016; ISBN 978-92-4-151134-6.
- European Parliament, Council of the European Union Regulation (EU). No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 Text with EEA Relevance 2025; European Parliament, Council of the European Union Regulation (EU): Strasbourg, France, 2025.
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Guidance on Scientific Principles and Data Requirements for the Safety and Relative Bioavailability Assessment of New Micronutrient Sources. EFSA J. 2024, 22, e8946. [Google Scholar] [CrossRef]
- FAO/WHO. Human Vitamin and Mineral Requirements 2001; WHO: Bangkok, Thailand, 2002.
- Hu, C.; Li, Q.; Ding, X.; Jiang, K.; Liang, W. Exploring Molecular and Genetic Differences in Angelica biserrata Roots Under Environmental Changes. Int. J. Mol. Sci. 2025, 26, 3894. [Google Scholar] [CrossRef] [PubMed]
- Obata, T.; Fernie, A.R. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 2012, 69, 3225–3243. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Zhou, H.; Qi, Z.; Jiang, J.; Li, W.; Wang, C. Metabolomics and Antioxidant Activity of Valonea from Quercus variabilis Produced in Different Geographical Regions in China. Int. J. Mol. Sci. 2025, 26, 3599. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, H.; Wu, L.; Guo, X.; Xue, D. Diversity and correlation analysis of microbiomes and metabolites of Sphagnum palustre in various microhabitats. BMC Plant Biol. 2025, 25, 761. [Google Scholar] [CrossRef] [PubMed]



| Species and Tissue | K | Na | ||||
|---|---|---|---|---|---|---|
| mg/kg | RSD | %NRV | mg/kg | RSD | %NRV | |
| Crithmum maritimum, l | 2661.37 | 8.4 | 16 | 527.85 | 3.17 | 3.17 |
| Cercis siliquastrum, fruit | 1402.14 | 0.8 | 8.4 | 3.34 | 1.6 | 0.02 |
| Agastache rugosa Kuntze, fl | 1858.11 | 0.8 | 11.1 | 9.34 | 0.4 | 0.06 |
| Agastache rugosa Kuntze, l | 893.62 | 0.9 | 5.4 | 1.18 | 4.7 | 0.01 |
| Achillea millefolium ‘pomegranate’, fl | 2407.66 | 0.3 | 14.4 | 54.89 | 0.7 | 0.33 |
| Achillea millefolium ‘pomegranate’, l | 3734.50 | 0.7 | 22.4 | 350.58 | 1 | 2.1 |
| Mespilus germanica, fr | 4319.00 | 4.1 | 25.9 | 45.30 | 0.27 | 0.27 |
| K LOD = 0.0450 | Na LOD = 0.0285 | |||||
| Species and Tissue | Mg | Zn | ||||
| mg/kg | RSD | %NRV | mg/kg | RSD | %NRV | |
| Crithmum maritimum, l | 222.20 | 7.1 | 7.1 | 0.92 | 0.5 | 1.1 |
| Cercis siliquastrum, fruit | 157.45 | 0.8 | 5 | 0.96 | 2.8 | 1.2 |
| Agastache rugosa Kuntze, fl | 333.49 | 0.5 | 10.7 | 3.95 | 2.7 | 4.7 |
| Agastache rugosa Kuntze, l | 217.96 | 0.2 | 7 | 3.46 | 1.5 | 4.1 |
| Achillea millefolium ‘pomegranate’, fl | 153.22 | 0.9 | 4.9 | 4.59 | 0.8 | 5.5 |
| Achillea millefolium ‘pomegranate’, l | 294.91 | 1.0 | 9.4 | 3.92 | 2.2 | 4.7 |
| Mespilus germanica, fr | 506.90 | 0.4 | 16.2 | 3.26 | 6.6 | 3.9 |
| Mg LOD = 0.0161 | Zn LOD = 0.0347 | |||||
| Species and Tissue | Ca | Fe | ||||
| mg/kg | RSD | %NRV | mg/kg | RSD | %NRV | |
| Crithmum maritimum, l | 493.48 | 7.4 | 7.4 | 4.78 | 2.1 | 4.1 |
| Cercis siliquastrum, fruit | 65.55 | 0.7 | 1 | 1.96 | 1.6 | 1.7 |
| Agastache rugosa Kuntze, fl | 209.64 | 0.9 | 3.1 | 3.28 | 0.7 | 2.8 |
| Agastache rugosa Kuntze, l | 333.38 | 0.7 | 5 | 3.74 | 1.7 | 3.2 |
| Achillea millefolium ‘pomegranate’, fl | 49.54 | 2 | 0.7 | 7.66 | 1.2 | 6.6 |
| Achillea millefolium ‘pomegranate’, l | 153.33 | 1.6 | 2.3 | 13.34 | 0.5 | 11.4 |
| Mespilus germanica, fr | 156.50 | 4.1 | 2.3 | 30.6 | 1.1 | 26.2 |
| Crithmum maritimum, l | Ca LOD = 0.0248 | Fe LOD = 0.0401 | ||||
| Species and Tissue | Mn | B | ||||
| mg/kg | RSD | %NRV | mg/kg | RSD | %NRV | |
| Crithmum maritimum, l | 7.89 | 0.4 | 47.4 | 4.47 | 1.3 | 357.6 |
| Cercis siliquastrum, fruit | 1.16 | 2.5 | 7 | below LD | 2.2 | N/A |
| Agastache rugosa Kuntze, fl | 4.67 | 2.9 | 28 | below LD | 5.6 | N/A |
| Agastache rugosa Kuntze, l | 7.79 | 0.9 | 46.7 | below LD | 0.8 | N/A |
| Achillea millefolium ‘pomegranate’, fl | 4.18 | 2 | 25.1 | below LD | 3.1 | N/A |
| Achillea millefolium ‘pomegranate’, l | 10.97 | 0.6 | 65.8 | below LD | 3.8 | N/A |
| Mespilus germanica, fr | 156.50 | 2.3 | 63 | 1.11 | 2.98 | 88.8 |
| Mn LOD = 0.0564 | B LOD = 0.1156 | |||||
| Species and Tissue | Cu | Al | ||||
| mg/kg | RSD | %NRV | mg/kg | RSD | %NRV | |
| Crithmum maritimum, l | 0.28 | 0.4 | 3.4 | 3.88 | 0.8 | N/A |
| Cercis siliquastrum, fruit | 0.55 | 0.8 | 6.6 | 1.13 | 7.9 | N/A |
| Agastache rugosa Kuntze, fl | 0.87 | 0.4 | 10.4 | 2.37 | 1.3 | N/A |
| Agastache rugosa Kuntze, l | 0.51 | 2.3 | 6.1 | 3.58 | 8.9 | N/A |
| Achillea millefolium ‘pomegranate’, fl | 1.75 | 1.6 | 21 | 4.14 | 4 | N/A |
| Achillea millefolium ‘pomegranate’, l | 2.03 | 1.9 | 24.3 | 7.16 | 6.3 | N/A |
| Mespilus germanica, fr | 0.3 | 1.2 | 3.6 | below LD | 5.2 | N/A |
| Cu LOD = 0.0509 | Al LOD = 0.0521 | |||||
| Species and Tissue | Co | Cr | ||||
| mg/kg | RSD | %NRV | mg/kg | RSD | %NRV | |
| Crithmum maritimum, l | 0.003 | 2.7 | 0.8 | below LOD | 1.8 | N/A |
| Cercis siliquastrum, fruit | below LOD | 25.5 | N/A | below LOD | 4.8 | N/A |
| Agastache rugosa Kuntze, fl | 0.089 | 3.2 | 21.4 | below LOD | 7.2 | N/A |
| Agastache rugosa Kuntze, l | 0.022 | 9.6 | 5.3 | below LOD | 3.1 | N/A |
| Achillea millefolium ‘pomegranate’, fl | 0.028 | 10.8 | 6.6 | below LOD | 9.4 | N/A |
| Achillea millefolium ‘pomegranate’, l | 0.012 | 9.3 | 2.9 | below LOD | 5.4 | N/A |
| Mespilus germanica, fr | below LOD | 4.3 | N/A | below LOD | 14.32 | N/A |
| Co LOD = 0.0014 | Cr LOD = 0.0237 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelov, M.; Ivanova, V.; Stoyanov, P.; Mladenov, R.; Mladenova, T.; Gyuzeleva, D.; Zhelyazkova, S.; Radoukova, T.; Todorov, K.; Bogdanova, S.; et al. Metabolome and Essential Element Analyses of Five Underutilized European Crops Reveal Their Nutritional Properties and Potential to Diversify the European Food System. Metabolites 2025, 15, 720. https://doi.org/10.3390/metabo15110720
Angelov M, Ivanova V, Stoyanov P, Mladenov R, Mladenova T, Gyuzeleva D, Zhelyazkova S, Radoukova T, Todorov K, Bogdanova S, et al. Metabolome and Essential Element Analyses of Five Underutilized European Crops Reveal Their Nutritional Properties and Potential to Diversify the European Food System. Metabolites. 2025; 15(11):720. https://doi.org/10.3390/metabo15110720
Chicago/Turabian StyleAngelov, Mihail, Valentina Ivanova, Plamen Stoyanov, Rumen Mladenov, Tsvetelina Mladenova, Donika Gyuzeleva, Simona Zhelyazkova, Tzenka Radoukova, Krasimir Todorov, Stefka Bogdanova, and et al. 2025. "Metabolome and Essential Element Analyses of Five Underutilized European Crops Reveal Their Nutritional Properties and Potential to Diversify the European Food System" Metabolites 15, no. 11: 720. https://doi.org/10.3390/metabo15110720
APA StyleAngelov, M., Ivanova, V., Stoyanov, P., Mladenov, R., Mladenova, T., Gyuzeleva, D., Zhelyazkova, S., Radoukova, T., Todorov, K., Bogdanova, S., Ivanova, A., Wittenberg, M., Petrov, V., & Gechev, T. (2025). Metabolome and Essential Element Analyses of Five Underutilized European Crops Reveal Their Nutritional Properties and Potential to Diversify the European Food System. Metabolites, 15(11), 720. https://doi.org/10.3390/metabo15110720

